Viewed, Edited and Availability of Supporting Data Approved the Final Version of the Manuscript
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Molecular Regulation of Plant Monoterpene Biosynthesis in Relation to Fragrance
Molecular Regulation of Plant Monoterpene Biosynthesis In Relation To Fragrance Mazen K. El Tamer Promotor: Prof. Dr. A.G.J Voragen, hoogleraar in de Levensmiddelenchemie, Wageningen Universiteit Co-promotoren: Dr. ir. H.J Bouwmeester, senior onderzoeker, Business Unit Celcybernetica, Plant Research International Dr. ir. J.P Roozen, departement Agrotechnologie en Voedingswetenschappen, Wageningen Universiteit Promotiecommissie: Dr. M.C.R Franssen, Wageningen Universiteit Prof. Dr. J.H.A Kroeze, Wageningen Universiteit Prof. Dr. A.J van Tunen, Swammerdam Institute for Life Sciences, Universiteit van Amsterdam. Prof. Dr. R.G.F Visser, Wageningen Universiteit Mazen K. El Tamer Molecular Regulation Of Plant Monoterpene Biosynthesis In Relation To Fragrance Proefschrift ter verkrijging van de graad van doctor op gezag van de rector magnificus van Wageningen Universiteit, Prof. dr. ir. L. Speelman, in het openbaar te verdedigen op woensdag 27 november 2002 des namiddags te vier uur in de Aula Mazen K. El Tamer Molecular Regulation Of Plant Monoterpene Biosynthesis In Relation To Fragrance Proefschrift Wageningen Universiteit ISBN 90-5808-752-2 Cover and Invitation Design: Zeina K. El Tamer This thesis is dedicated to my Family & Friends Contents Abbreviations Chapter 1 General introduction and scope of the thesis 1 Chapter 2 Monoterpene biosynthesis in lemon (Citrus limon) cDNA isolation 21 and functional analysis of four monoterpene synthases Chapter 3 Domain swapping of Citrus limon monoterpene synthases: Impact 57 on enzymatic activity and -
Key Enzymes Involved in the Synthesis of Hops Phytochemical Compounds: from Structure, Functions to Applications
International Journal of Molecular Sciences Review Key Enzymes Involved in the Synthesis of Hops Phytochemical Compounds: From Structure, Functions to Applications Kai Hong , Limin Wang, Agbaka Johnpaul , Chenyan Lv * and Changwei Ma * College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua Donglu Road, Haidian District, Beijing 100083, China; [email protected] (K.H.); [email protected] (L.W.); [email protected] (A.J.) * Correspondence: [email protected] (C.L.); [email protected] (C.M.); Tel./Fax: +86-10-62737643 (C.M.) Abstract: Humulus lupulus L. is an essential source of aroma compounds, hop bitter acids, and xanthohumol derivatives mainly exploited as flavourings in beer brewing and with demonstrated potential for the treatment of certain diseases. To acquire a comprehensive understanding of the biosynthesis of these compounds, the primary enzymes involved in the three major pathways of hops’ phytochemical composition are herein critically summarized. Hops’ phytochemical components impart bitterness, aroma, and antioxidant activity to beers. The biosynthesis pathways have been extensively studied and enzymes play essential roles in the processes. Here, we introduced the enzymes involved in the biosynthesis of hop bitter acids, monoterpenes and xanthohumol deriva- tives, including the branched-chain aminotransferase (BCAT), branched-chain keto-acid dehydroge- nase (BCKDH), carboxyl CoA ligase (CCL), valerophenone synthase (VPS), prenyltransferase (PT), 1-deoxyxylulose-5-phosphate synthase (DXS), 4-hydroxy-3-methylbut-2-enyl diphosphate reductase (HDR), Geranyl diphosphate synthase (GPPS), monoterpene synthase enzymes (MTS), cinnamate Citation: Hong, K.; Wang, L.; 4-hydroxylase (C4H), chalcone synthase (CHS_H1), chalcone isomerase (CHI)-like proteins (CHIL), Johnpaul, A.; Lv, C.; Ma, C. -
Multi-Substrate Terpene Synthases: Their Occurrence and Physiological
FOCUSED REVIEW published: 12 July 2016 doi: 10.3389/fpls.2016.01019 Multi-Substrate Terpene Synthases: Edited by: Joshua L. Heazlewood, The University of Melbourne, Australia Their Occurrence and Physiological Reviewed by: Maaria Rosenkranz, Significance Helmholtz Zentrum München, Germany Leila Pazouki 1* and Ülo Niinemets 1, 2* Sandra Irmisch, University of British Columbia (UBC), 1 Department of Plant Physiology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Canada Tartu, Estonia, 2 Estonian Academy of Sciences, Tallinn, Estonia Pengxiang Fan, Michigan State University, USA Terpene synthases are responsible for synthesis of a large number of terpenes *Correspondence: in plants using substrates provided by two distinct metabolic pathways, the mevalonate-dependent pathway that is located in cytosol and has been suggested to be responsible for synthesis of sesquiterpenes (C15), and 2-C-methyl-D-erythritol-4-phosphate pathway located in plastids and suggested to be responsible for the synthesis of hemi- (C5), mono- (C10), and diterpenes (C20). Leila Pazouki did her undergraduate Recent advances in characterization of genes and enzymes responsible for substrate and degree at the University of Tehran and master degree in Plant Biotechnology end product biosynthesis as well as efforts in metabolic engineering have demonstrated at the University of Bu Ali Sina in Iran. existence of a number of multi-substrate terpene synthases. This review summarizes the She worked as a researcher at the progress in the characterization of such multi-substrate terpene synthases and suggests Agricultural Biotechnology Research Institute of Iran (ABRII) for four years. that the presence of multi-substrate use might have been significantly underestimated. -
Integrated Molecular Analysis of Sugar Metabolism of Sulfolobus Solfataricus
Integrated molecular analysis of Sugar Metabolism of Sulfolobus solfataricus Stan J.J. Brouns Integrated molecular analysis of sugar metabolism of Sulfolobus solfataricus Stan J.J. Brouns Promotoren prof. dr. Willem M. de Vos hoogleraar in de Microbiologie Wageningen Universiteit prof. dr. John van der Oost persoonlijk hoogleraar Microbiologie en Biochemie Wageningen Universiteit Leden van de prof. dr. Ton J.W.G. Visser promotie bijzonder hoogleraar Microspectroscopie in de Biochemie commissie Wageningen Universiteit prof. dr. Arnold J.M. Driessen hoogleraar Moleculaire Microbiologie Rijksuniversiteit Groningen dr. Loren L. Looger Howard Hughes Medical Institute Ashburn (VA), Verenigde Staten dr. Thijs Kaper Genencor International Palo Alto (CA), Verenigde Staten Dit onderzoek is uitgevoerd binnen de onderzoekschool VLAG Integrated molecular analysis of sugar metabolism of Sulfolobus solfataricus Stan J.J. Brouns Proefschrift ter verkrijging van de graad van doctor op gezag van de rector magnificus van Wageningen Universiteit, prof. dr. M.J. Kropff, in het openbaar te verdedigen op dinsdag 2 oktober 2007 des namiddags te half twee in de Aula Cover Boiling water: the habitat of a hyperthermophile (photo: S.J.J. Brouns) Printing Gildeprint (Enschede) Sponsoring Hellma Benelux, bioMérieux Brouns, S.J.J. - Integrated molecular analysis of sugar metabolism of Sulfolobus solfataricus in Dutch Geïntegreerde moleculaire analyse van het suikermetabolisme van Sulfolobus solfataricus PhD Thesis Wageningen University, Wageningen, Netherlands (2007) 176 p. - with summary in Dutch ISBN 978-90-8504-713-1 Voor mijn ouders en Marloes DANkwooRD Met trots ligt ligt hier nu een boekje. Natuurlijk kon het niet totstandkomen zonder de hulp van anderen. In dit stukje wil ik die mensen bedanken. -
Metatranscriptomic Analysis of Community Structure And
School of Environmental Sciences Metatranscriptomic analysis of community structure and metabolism of the rhizosphere microbiome by Thomas Richard Turner Submitted in partial fulfilment of the requirement for the degree of Doctor of Philosophy, September 2013 This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with the author and that use of any information derived there from must be in accordance with current UK Copyright Law. In addition, any quotation or extract must include full attribution. i Declaration I declare that this is an account of my own research and has not been submitted for a degree at any other university. The use of material from other sources has been properly and fully acknowledged, where appropriate. Thomas Richard Turner ii Acknowledgements I would like to thank my supervisors, Phil Poole and Alastair Grant, for their continued support and guidance over the past four years. I’m grateful to all members of my lab, both past and present, for advice and friendship. Graham Hood, I don’t know how we put up with each other, but I don’t think I could have done this without you. Cheers Salt! KK, thank you for all your help in the lab, and for Uma’s biryanis! Andrzej Tkatcz, thanks for the useful discussions about our projects. Alison East, thank you for all your support, particularly ensuring Graham and I did not kill each other. I’m grateful to Allan Downie and Colin Murrell for advice. For sequencing support, I’d like to thank TGAC, particularly Darren Heavens, Sophie Janacek, Kirsten McKlay and Melanie Febrer, as well as John Walshaw, Mark Alston and David Swarbreck for bioinformatic support. -
Floral Volatile Alleles Can Contribute to Pollinatormediated
Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2014 Floral volatile alleles can contribute to pollinator-mediated reproductive isolation in monkeyflowers (Mimulus) Byers, Kelsey J R P ; Vela, James P ; Peng, Foen ; Riffell, Jeffrey A ; Bradshaw, HD Abstract: Pollinator-mediated reproductive isolation is a major factor in driving the diversification of flowering plants. Studies of floral traits involved in reproductive isolation have focused nearly exclusively on visual signals, such as flower color. The role of less obvious signals, such as floral scent, hasbeen studied only recently. In particular, the genetics of floral volatiles involved in mediating differential pollinator visitation remains unknown. The bumblebee-pollinated Mimulus lewisii and hummingbird- pollinated M. cardinalis are a model system for studying reproductive isolation via pollinator preference. We have shown that these two species differ in three floral terpenoid volatiles - D-limonene, -myrcene, and E--ocimene - that are attractive to bumblebee pollinators. By genetic mapping and in vitro enzyme activity analysis we demonstrate that these interspecific differences are consistent with allelic variation at two loci – LIMONENE-MYRCENE SYNTHASE (LMS) and OCIMENE SYNTHASE (OS). M. lewisii LMS (MlLMS) and OS (MlOS) are expressed most strongly in floral tissue in the last stages of floral development. M. cardinalis LMS (McLMS) is weakly expressed and has a nonsense mutation in exon 3. M. cardinalis OS (McOS) is expressed similarly to MlOS, but the encoded McOS enzyme produces no E--ocimene. Recapitulating the M. cardinalis phenotype by reducing the expression of MlLMS by RNAi in transgenic M. -
(10) Patent No.: US 8119385 B2
US008119385B2 (12) United States Patent (10) Patent No.: US 8,119,385 B2 Mathur et al. (45) Date of Patent: Feb. 21, 2012 (54) NUCLEICACIDS AND PROTEINS AND (52) U.S. Cl. ........................................ 435/212:530/350 METHODS FOR MAKING AND USING THEMI (58) Field of Classification Search ........................ None (75) Inventors: Eric J. Mathur, San Diego, CA (US); See application file for complete search history. Cathy Chang, San Diego, CA (US) (56) References Cited (73) Assignee: BP Corporation North America Inc., Houston, TX (US) OTHER PUBLICATIONS c Mount, Bioinformatics, Cold Spring Harbor Press, Cold Spring Har (*) Notice: Subject to any disclaimer, the term of this bor New York, 2001, pp. 382-393.* patent is extended or adjusted under 35 Spencer et al., “Whole-Genome Sequence Variation among Multiple U.S.C. 154(b) by 689 days. Isolates of Pseudomonas aeruginosa” J. Bacteriol. (2003) 185: 1316 1325. (21) Appl. No.: 11/817,403 Database Sequence GenBank Accession No. BZ569932 Dec. 17. 1-1. 2002. (22) PCT Fled: Mar. 3, 2006 Omiecinski et al., “Epoxide Hydrolase-Polymorphism and role in (86). PCT No.: PCT/US2OO6/OOT642 toxicology” Toxicol. Lett. (2000) 1.12: 365-370. S371 (c)(1), * cited by examiner (2), (4) Date: May 7, 2008 Primary Examiner — James Martinell (87) PCT Pub. No.: WO2006/096527 (74) Attorney, Agent, or Firm — Kalim S. Fuzail PCT Pub. Date: Sep. 14, 2006 (57) ABSTRACT (65) Prior Publication Data The invention provides polypeptides, including enzymes, structural proteins and binding proteins, polynucleotides US 201O/OO11456A1 Jan. 14, 2010 encoding these polypeptides, and methods of making and using these polynucleotides and polypeptides. -
{Replace with the Title of Your Dissertation}
Metabolic Regulation and Genetic Tools for Bacterial Neutral Lipid Production A THESIS SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY Nagendra Prasad Palani IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE Dr. Brett M. Barney September 2011 © Nagendra Prasad Palani 2011 Acknowledgements I express my most sincere thanks to Dr. Brett Barney. He has been an exceptional teacher, advisor and mentor for me. He has been unfailingly supportive during my time here and I cannot thank him enough for all he has taught me. I also thank the Department of Bioproducts & Biosystems Engineering, University of Minnesota, the National Science Foundation and the Department of Energy for their support of research in Dr. Barney’s lab. I thank my committee members Dr. Igor Libourel and Dr. Simo Sarkanen for posing critical questions about my research, helping me think better in the process. Their wisdom and insight often set me into thinking about my research from new perspectives. I thank fellow graduate and undergraduate students of the Barney lab and members of the Libourel lab for the many favors I have asked of them. I thank my friends here in the US for their fantastic company. I cannot express enough gratitude to my friends back home, who stepped in as sons and brothers whenever my family needed me. I thank my parents and my sister for their unwavering love, support and confidence in me. For her incredible patience and steadfast support, many thanks to my best friend and soon-to-be wife, Ajeetha. -
WO 2014/152434 A2 25 September 2014 (25.09.2014) P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2014/152434 A2 25 September 2014 (25.09.2014) P O P C T (51) International Patent Classification: (74) Agents: HEBERT, Michael, L. et al; Jones Day, 222 East A61B 17/70 (2006.01) 41st Street, New York, NY 10017-6702 (US). (21) International Application Number: (81) Designated States (unless otherwise indicated, for every PCT/US2014/027337 kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (22) International Filing Date: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, 14 March 2014 (14.03.2014) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (25) Filing Language: English HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, (26) Publication Language: English MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (30) Priority Data: OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, 61/799,255 15 March 2013 (15.03.2013) US SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, 61/857,174 22 July 2013 (22.07.2013) US TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, 61/876,610 11 September 2013 ( 11.09.2013) us ZW. 61/945,082 26 February 2014 (26.02.2014) us (84) Designated States (unless otherwise indicated, for every 61/945,109 26 February 2014 (26.02.2014) us kind of regional protection available): ARIPO (BW, GH, (71) Applicant: GENOMATICA, INC. -
Novel Non-Phosphorylative Pathway of Pentose Metabolism from Bacteria
www.nature.com/scientificreports OPEN Novel non-phosphorylative pathway of pentose metabolism from bacteria Received: 22 March 2018 Seiya Watanabe1,2,3, Fumiyasu Fukumori4, Hisashi Nishiwaki1,2, Yasuhiro Sakurai5, Accepted: 30 September 2018 Kunihiko Tajima5 & Yasuo Watanabe1,2 Published: xx xx xxxx Pentoses, including D-xylose, L-arabinose, and D-arabinose, are generally phosphorylated to D-xylulose 5-phosphate in bacteria and fungi. However, in non-phosphorylative pathways analogous to the Entner-Dodorof pathway in bacteria and archaea, such pentoses can be converted to pyruvate and glycolaldehyde (Route I) or α-ketoglutarate (Route II) via a 2-keto-3-deoxypentonate (KDP) intermediate. Putative gene clusters related to these metabolic pathways were identifed on the genome of Herbaspirillum huttiense IAM 15032 using a bioinformatic analysis. The biochemical characterization of C785_RS13685, one of the components encoded to D-arabinonate dehydratase, difered from the known acid-sugar dehydratases. The biochemical characterization of the remaining components and a genetic expression analysis revealed that D- and L-KDP were converted not only to α-ketoglutarate, but also pyruvate and glycolate through the participation of dehydrogenase and hydrolase (Route III). Further analyses revealed that the Route II pathway of D-arabinose metabolism was not evolutionally related to the analogous pathway from archaea. Te breakdown of D-glucose is central for energy and biosynthetic metabolism throughout all domains of life. Te most common glycolytic routes in bacteria are the Embden-Meyerhof-Parnas, the Entner-Doudorof (ED), and the oxidative pentose phosphate pathways. Te distinguishing diference between the two former glyco- lytic pathways lies in the nature of the 6-carbon metabolic intermediates that serve as substrates for aldol cleav- age. -
2013 RSC Bio-Organic Group Postgraduate Symposium Manchester Institute of Biotechnology, University of Manchester Thursday 11Th April 2013
2013 RSC Bio-Organic Group Postgraduate Symposium Manchester Institute of Biotechnology, University of Manchester Thursday 11th April 2013 10:15 Registration, coffee, poster set-up 10:55 Welcome 11:00 – 12:30 Sarah Lovelock (University of Manchester) Anabaena variabilis Phenylalanine Ammonia Lyase: An investigation into the catalytic mechanism and applications as a biocatalyst. Cristina Marculescu (University College London) The Development of a New Class of Maleimides as Reagents for Protein Modification Simge Davulcu (University of Bath) Catalytic conversion of unactivated nitriles into N-substituted amides Jon Ashley (National University of Singapore) Hybridised-SELEX: a capillary electrophoresis based method for maximising the number of aptamers screened 12:30 – 13:40 Lunch, poster session 13:40 – 15:10 Ryan Beattie (University of Bristol) A Versatile Synthetic Approach to Novel Deoxy Sugar Analogues Matthew Styles (University of Manchester) Tailoring Complex Natural Products by Altering the Biosynthetic Machinery that Builds Them Oscar Cascón (Cardiff University) Study of (+)-δ-cadinene synthase mechanism using farnesyl diphosphate analogues. John M. Wadsworth (University of Edinburgh) The natural product inhibitor myriocin displays a unique dual mode of action against serine palmitoyltransferase 15:10 – 15:45 Coffee, poster session 15:45 – 16:30 Plenary lecture: Prof. Nigel Scrutton, Manchester Institute of Biotechnology Addressing controversies in tunnelling and dynamics in enzyme catalysed H transfer 16:30 – 17:15 Prizes, refreshments 17:30 Close We are grateful to the following organisations for sponsoring this event: 1 Talk 1 Anabaena variabilis Phenylalanine Ammonia Lyase: An investigation into the catalytic mechanism and applications as a biocatalyst. Authors: Sarah Lovelock, Rachel Heath, Richard Lloyd and Nicholas Turner. -
Plant Terpenoid Synthases: Molecular Biology and Phylogenetic Analysis (Terpene Cyclase͞isoprenoids͞plant Defense͞genetic Engineering͞secondary Metabolism)
Proc. Natl. Acad. Sci. USA Vol. 95, pp. 4126–4133, April 1998 Biochemistry This contribution is part of the special series of Inaugural Articles by members of the National Academy of Sciences elected on April 29, 1997. Plant terpenoid synthases: Molecular biology and phylogenetic analysis (terpene cyclaseyisoprenoidsyplant defenseygenetic engineeringysecondary metabolism) JO¨RG BOHLMANN*†,GILBERT MEYER-GAUEN‡, AND RODNEY CROTEAU*§ *Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340; and ‡Human Genetics Center, University of Texas, Houston, TX 77225 Contributed by Rodney Croteau, February 25, 1998 ABSTRACT This review focuses on the monoterpene, field is periodically surveyed (10, 11). After brief coverage of the sesquiterpene, and diterpene synthases of plant origin that use three types of terpene synthases from higher plants, with empha- the corresponding C10,C15, and C20 prenyl diphosphates as sis on common features of structure and function, we focus here substrates to generate the enormous diversity of carbon on molecular cloning and sequence analysis of these important skeletons characteristic of the terpenoid family of natural and fascinating catalysts. products. A description of the enzymology and mechanism of Enzymology and Mechanism of Terpenoid Cyclization terpenoid cyclization is followed by a discussion of molecular cloning and heterologous expression of terpenoid synthases. GDP is considered to be the natural substrate for monoterpene Sequence relatedness and phylogenetic reconstruction, based synthases, because all enzymes of this class efficiently utilize this on 33 members of the Tps gene family, are delineated, and precursor without the formation of free intermediates (12). Since comparison of important structural features of these enzymes GDP cannot be cyclized directly because of the C2-C3 trans- is provided.