MECHANISMS of TUMORIGENESIS in AFRICAN AMERICAN COLORECTAL CANCER by Gaius J. Augustus

Total Page:16

File Type:pdf, Size:1020Kb

MECHANISMS of TUMORIGENESIS in AFRICAN AMERICAN COLORECTAL CANCER by Gaius J. Augustus Mechanisms of Tumorigenesis in African American Colorectal Cancer Item Type text; Electronic Dissertation Authors Augustus, Gaius Julian Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction, presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 27/09/2021 11:20:21 Link to Item http://hdl.handle.net/10150/633006 MECHANISMS OF TUMORIGENESIS IN AFRICAN AMERICAN COLORECTAL CANCER by Gaius J. Augustus __________________________ Copyright © Gaius J. Augustus 2019 A Dissertation Submitted to the Faculty of the GRADUATE INTERDISCIPLINARY PROGRAM IN CANCER BIOLOGY In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 2019 Mechanisms of Tumorigenesis in African American CRC 2 Mechanisms of Tumorigenesis in African American CRC Acknowledgements This work was supported by grants from the National Cancer Institute (U01 CA153060 and P30 CA023074, NAE; RO1 CA204808, HRG, EM, LTH; RO1 CA141057, BJ) and the American Cancer Society Illinois Division (223187, XL). GJA was supported by a Cancer Biology Training Grant (T32CA009213). The funders had no role in the design of the study; the collection, analysis, or interpretation of the data; the writing of the manuscript; or the decision to submit the manuscript for publication. The author gratefully acknowledges the recruiters of the CCCC for their dedication and integrity, including Maggie Moran, Timothy Carroll, Katy Ceryes, Amy Disharoon, Archana Krishnan, Katie Morrissey, Maureen Regan, and Katya Seligman. Zarema Arbieva and the University of Illinois at Chicago Genomics Core in the Research Resources Core performed the hybridization and initial analysis of CytoScan HD arrays. The author additionally thanks Mary Yagle and Johnathan Blohm for their assistance in SNP genotyping. 3 Mechanisms of Tumorigenesis in African American CRC Dedication I dedicate this work to DiAngele Augustus, without whom none of my success would be possible. 4 Mechanisms of Tumorigenesis in African American CRC Table of Contents ABSTRACT 8 CHAPTER 1 - COLORECTAL CANCER DISPARITY IN AFRICAN AMERICANS: RISK FACTORS AND CARCINOGENIC MECHANISMS 9 ABSTRACT 10 INTRODUCTION 11 IMPACT OF RISK FACTORS ON CRC INCIDENCE 11 ENDOSCOPIC SCREENING REDUCES CANCER INCIDENCE 11 GENETIC RISK FACTORS AND CRC INCIDENCE 15 CAN VITAMIN D LEVELS EXPLAIN DIFFERENCES IN CRC INCIDENCE IN AFRICAN AMERICANS? 24 DIETARY INFLUENCES ON CRC AND THE GUT MICROBIOME 26 ARE CARCINOGENIC MECHANISMS DIFFERENT IN AFRICAN AMERICAN CRC? 29 SIMILAR FREQUENCIES OF MICROSATELLITE INSTABILITY 30 SOMATIC MUTATIONS IN AFRICAN AMERICAN CRC 31 EPIGENETIC CHANGES IN AFRICAN AMERICAN CRC 34 CRC-SPECIFIC GENE DYSREGULATION 38 THE CONTINUING PROBLEM OF CRC MORTALITY IN AFRICAN AMERICANS 39 CHAPTER 2 - IS INCREASED COLORECTAL SCREENING EFFECTIVE IN PREVENTING DISTANT DISEASE? 42 ABSTRACT 43 INTRODUCTION 45 MATERIALS AND METHODS 46 DATA ACQUISITION 46 STATISTICAL ANALYSES 48 AVAILABILITY OF DATA AND MATERIAL 48 RESULTS 49 DECREASE IN INCIDENCE RATE OF DISTANT CRC IS SLOWER THAN THE DECREASE IN INCIDENCE RATES OF LOCALIZED AND REGIONAL CRC 49 DECREASE IN INCIDENCE RATE OF DISTANT CRC IS SLOWER IN PATIENTS DIAGNOSED WITH CRC AT 50 OR MORE YEARS OF AGE 54 DECREASE IN INCIDENCE RATE OF DISTANT CRC IS SLOWER FOR BOTH PROXIMAL AND DISTAL CRCS 56 DECREASE IN INCIDENCE RATE OF DISTANT CRC IS SLOWER FOR MOST ETHNIC GROUPS 57 DECREASE IN INCIDENCE RATE OF DISTANT CRC IS SLOWER IN BOTH MALES AND FEMALES 57 DISCUSSION 58 INADEQUATE SCREENING DOES NOT EXPLAIN THE SLOW DECREASE IN INCIDENCE OF DISTANT CRC 60 MORE RAPIDLY ADVANCING CANCERS OF THE SERRATED ADENOMA PATHWAY CAN ONLY EXPLAIN PART OF THE SLOW DECREASE IN INCIDENCE OF DISTANT CRC 61 HYPOTHESIS OF NONMSI CRC THAT ADVANCES RAPIDLY 62 LIMITATIONS AND ALTERNATIVE THEORIES 64 5 Mechanisms of Tumorigenesis in African American CRC CHAPTER 3 - RACE-DEPENDENT ASSOCIATION OF SULFIDOGENIC BACTERIA WITH COLORECTAL CANCER 66 ABSTRACT 67 ABBREVIATIONS 69 INTRODUCTION 70 MATERIALS AND METHODS 71 HUMAN SUBJECTS 71 QUANTITATIVE POLYMERASE CHAIN REACTION (QPCR) ANALYSIS 72 STATISTICAL ANALYSIS 75 ANALYSIS OF DIETARY INTAKE 75 RESULTS 76 RACE-SPECIFIC DIFFERENCES IN MUCOSAL SULFIDOGENIC BACTERIA 76 ASSOCIATIONS BETWEEN DIET AND SULFIDOGENIC BACTERIA 81 DISCUSSION 92 CHAPTER 4 - LACK OF APC SOMATIC MUTATION IS ASSOCIATED WITH EARLY-ONSET COLORECTAL CANCER IN AFRICAN AMERICANS 96 ABSTRACT 97 INTRODUCTION 99 MATERIALS AND METHODS 100 ASCERTAINMENT, RECRUITMENT, AND BIOSPECIMEN COLLECTION 100 DNA SEQUENCE ANALYSIS 101 COPY NUMBER ANALYSIS 102 METHYLATION ANALYSIS 103 STATISTICAL ANALYSIS 103 RESULTS 104 APC MUTATION-NEGATIVE TUMORS ARE ASSOCIATED WITH EARLY-ONSET CRC 115 UNDER-REPRESENTATION OF KNOWN DRIVER GENES IN AFRICAN AMERICAN CRCS 119 COPY NUMBER VARIATION IN AFRICAN AMERICAN CRCS 123 METHYLATION PATTERNS IN APC MUTATION-NEGATIVE VS. MUTATION-POSITIVE TUMORS 127 DISCUSSION 134 CHAPTER 5 - DECREASED COPY-NEUTRAL LOSS OF HETEROZYGOSITY IN AFRICAN AMERICAN COLORECTAL CANCERS 139 ABSTRACT 140 INTRODUCTION 142 METHODS 146 DATA ACQUISITION 146 DATA PROCESSING 147 SMALL INTERSTITIAL CNLOH ANALYSIS 149 STATISTICAL ANALYSES 151 RESULTS 153 AFRICAN AMERICANS AND WHITES HAVE SIMILAR FREQUENCIES OF COPY NUMBER GAINS AND LOSSES 153 6 Mechanisms of Tumorigenesis in African American CRC WHITE CRCS HAVE A HIGHER FREQUENCY OF CNLOH THAN AFRICAN AMERICAN CRCS FOR MOST CHROMOSOME ARMS 153 WHITE CRCS HAVE MORE CHROMOSOME ARMS AFFECTED BY CNLOH THAN AFRICAN AMERICAN CRCS AFTER ADJUSTMENT FOR COVARIATES 162 SMALL INTERSTITIAL COPY-NEUTRAL LOSS OF HETEROZYGOSITY (SI-CNLOH) 166 DISCUSSION 180 CONCLUSIONS 186 CHAPTER 6 - IMPLICATIONS AND FUTURE DIRECTIONS FOR AFRICAN AMERICAN COLORECTAL CANCER 187 INTRODUCTION 188 SUSCEPTIBILITY 189 TUMORIGENESIS 190 LIMITATIONS AND FUTURE DIRECTIONS 191 APPENDIX A 192 APPENDIX B 193 APPENDIX C 194 APPENDIX D 202 REFERENCES 207 7 Mechanisms of Tumorigenesis in African American CRC Abstract While colorectal cancer (CRC) incidence has decreased over the past 20 years, the reduction in incidence has not been uniform across all stages of disease. The reduction in late stage (distant) CRC was significantly less than that of than earlier stage CRC, a trend enriched for early-onset CRCs. African Americans have the highest incidence and mortality rates of CRC of any ethnic group in the United States and are more likely to present before recommended guidelines for screening (i.e., age of 50 years). Despite this ongoing health disparity, relatively few studies have sought to address risk factors and etiological signatures unique to African American CRC. We hypothesized that molecular characteristics in the gut microenvironment and tumor mutation profiles of African American CRCs are unique. The studies presented here sought to address this hypothesis through molecular studies in a low-income cohort from urban Chicago, the Chicago Colorectal Cancer Consortium, as well as a publicly available cohort, The Cancer Genome Atlas. We found that African Americans have higher abundances of the sulfidogenic bacterium Bilophila wadsworthia, a trend that remained after adjusting for covariates including diet. African American cases had significantly higher abundances than African American controls, a trend that did not exist in non-Hispanic Whites. We found that African American CRCs had molecular features that were distinct from non- Hispanic Whites. CCCC African American CRCs had significantly fewer mutations than expected in APC, a gene typically mutated in 80% of CRCs, and that the lack of APC mutation was associated with younger age, chromosome stability, and a non-CIMP DNA methylation profile. Together, the findings presented here suggest that unknown risk factors and unique tumorigenic processes drive CRC in African Americans. 8 Mechanisms of Tumorigenesis in African American CRC Chapter 1 Colorectal Cancer Disparity in African Americans: Risk Factors and Carcinogenic Mechanisms Originally published in the American Journal of Pathology (Permissions can be found in Appendix A) Augustus GJ, Ellis NA. Colorectal Cancer Disparity in African Americans: Risk Factors and Carcinogenic Mechanisms. Am J Pathol. 2018;188(2):291-303. doi:10.1016/J.AJPATH.2017.07.023 9 Mechanisms of Tumorigenesis in African American CRC Chapter 1 Abstract African Americans have the highest incidence and mortality rates of colorectal cancer (CRC) of any ethnic group in the United States. Although some of these disparities can be explained by differences in access to care, cancer screening, and other socioeconomic factors, disparities remain after adjustment for these factors. Consequently, an examination of recent advances in the understanding of ethnicity-specific factors, including genetic and environmental factors relating to risk of CRC, the biology of CRC progression, and the changes in screening and mortality, is important for evaluating our progress toward eliminating the disparities. An overarching limitation in this field is the number and sample size of studies performed to characterize the etiological bases of CRC incidence and mortality in African Americans. Despite this limitation, significant differences in etiology are manifest in many studies. These differences need validation, and their impacts on disparities need more detailed investigation.
Recommended publications
  • Whole Exome Sequencing in Families at High Risk for Hodgkin Lymphoma: Identification of a Predisposing Mutation in the KDR Gene
    Hodgkin Lymphoma SUPPLEMENTARY APPENDIX Whole exome sequencing in families at high risk for Hodgkin lymphoma: identification of a predisposing mutation in the KDR gene Melissa Rotunno, 1 Mary L. McMaster, 1 Joseph Boland, 2 Sara Bass, 2 Xijun Zhang, 2 Laurie Burdett, 2 Belynda Hicks, 2 Sarangan Ravichandran, 3 Brian T. Luke, 3 Meredith Yeager, 2 Laura Fontaine, 4 Paula L. Hyland, 1 Alisa M. Goldstein, 1 NCI DCEG Cancer Sequencing Working Group, NCI DCEG Cancer Genomics Research Laboratory, Stephen J. Chanock, 5 Neil E. Caporaso, 1 Margaret A. Tucker, 6 and Lynn R. Goldin 1 1Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; 2Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; 3Ad - vanced Biomedical Computing Center, Leidos Biomedical Research Inc.; Frederick National Laboratory for Cancer Research, Frederick, MD; 4Westat, Inc., Rockville MD; 5Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; and 6Human Genetics Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA ©2016 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2015.135475 Received: August 19, 2015. Accepted: January 7, 2016. Pre-published: June 13, 2016. Correspondence: [email protected] Supplemental Author Information: NCI DCEG Cancer Sequencing Working Group: Mark H. Greene, Allan Hildesheim, Nan Hu, Maria Theresa Landi, Jennifer Loud, Phuong Mai, Lisa Mirabello, Lindsay Morton, Dilys Parry, Anand Pathak, Douglas R. Stewart, Philip R. Taylor, Geoffrey S. Tobias, Xiaohong R. Yang, Guoqin Yu NCI DCEG Cancer Genomics Research Laboratory: Salma Chowdhury, Michael Cullen, Casey Dagnall, Herbert Higson, Amy A.
    [Show full text]
  • Extensive Expansion of the Speedy Gene Family in Homininae and Functional Differentiation in Humans
    bioRxiv preprint doi: https://doi.org/10.1101/354886; this version posted June 26, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Extensive Expansion of the Speedy gene Family in Homininae and Functional Differentiation in Humans Liang Wang1,2†, Hui Wang1,3,4†, Hongmei Wang1,Yuhui Zhao2, Xiaojun Liu1, Gary Wong5, Qinong Ye6, Xiaoqin Xia7, George F. Gao2, Shan Gao1,8,* 1CAS Key Laboratory of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China; 2CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; 3 Institute of Biomedical Engineering, Department of Engineering Science, Old Road Campus Research Building, University of Oxford, Oxford OX3 7DQ, UK; 4Oxford Suzhou Centre for Advanced Research (OSCAR), 388 Ruo Shui Road, Suzhou Industrial Park, Jiangsu 215123, China; 5Shenzhen Key Laboratory of Pathogen and Immunity, Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious Diseases, Shenzhen Third People’s Hospital, Shenzhen 518112, China; 6Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing 100850, China; 7Institutes of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, P. R. China, 430072; 8Medical College, Guizhou University, District of Huaxi, Guiyang 550025, China. †These authors contributed equally to this work 1 bioRxiv preprint doi: https://doi.org/10.1101/354886; this version posted June 26, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Development of Novel Analysis and Data Integration Systems to Understand Human Gene Regulation
    Development of novel analysis and data integration systems to understand human gene regulation Dissertation zur Erlangung des Doktorgrades Dr. rer. nat. der Fakult¨atf¨urMathematik und Informatik der Georg-August-Universit¨atG¨ottingen im PhD Programme in Computer Science (PCS) der Georg-August University School of Science (GAUSS) vorgelegt von Raza-Ur Rahman aus Pakistan G¨ottingen,April 2018 Prof. Dr. Stefan Bonn, Zentrum f¨urMolekulare Neurobiologie (ZMNH), Betreuungsausschuss: Institut f¨urMedizinische Systembiologie, Hamburg Prof. Dr. Tim Beißbarth, Institut f¨urMedizinische Statistik, Universit¨atsmedizin, Georg-August Universit¨at,G¨ottingen Prof. Dr. Burkhard Morgenstern, Institut f¨urMikrobiologie und Genetik Abtl. Bioinformatik, Georg-August Universit¨at,G¨ottingen Pr¨ufungskommission: Prof. Dr. Stefan Bonn, Zentrum f¨urMolekulare Neurobiologie (ZMNH), Referent: Institut f¨urMedizinische Systembiologie, Hamburg Prof. Dr. Tim Beißbarth, Institut f¨urMedizinische Statistik, Universit¨atsmedizin, Korreferent: Georg-August Universit¨at,G¨ottingen Prof. Dr. Burkhard Morgenstern, Weitere Mitglieder Institut f¨urMikrobiologie und Genetik Abtl. Bioinformatik, der Pr¨ufungskommission: Georg-August Universit¨at,G¨ottingen Prof. Dr. Carsten Damm, Institut f¨urInformatik, Georg-August Universit¨at,G¨ottingen Prof. Dr. Florentin W¨org¨otter, Physikalisches Institut Biophysik, Georg-August-Universit¨at,G¨ottingen Prof. Dr. Stephan Waack, Institut f¨urInformatik, Georg-August Universit¨at,G¨ottingen Tag der m¨undlichen Pr¨ufung: der 30. M¨arz2018
    [Show full text]
  • Circular DNA Intermediates in the Generation of Large Human Segmental Duplications
    Circular DNA intermediates in the generation of large human segmental duplications. Javier Ugarte Chicote IISPV Marcos López-Sánchez Universitat Pompeu Fabra Tomàs Marquès-Bonet Universitat Pompeu Fabra José Callizo Hospital Universitari de Tarragona Joan XXIII Luis Alberto Pérez-Jurado Universitat Pompeu Fabra Antonio Garcia-España ( [email protected] ) iispv https://orcid.org/0000-0002-9957-3161 Research article Keywords: Segmental duplications, circular DNA, human genome evolution, X-Y transposed region, chromoanasynthesis,, MMBIR/FoSTeS, NHEJ, copy number variants Posted Date: July 16th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-27725/v2 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published on August 26th, 2020. See the published version at https://doi.org/10.1186/s12864-020-06998-w. Page 1/17 Abstract Background: Duplications of large genomic segments provide genetic diversity in genome evolution. Despite their importance, how these duplications are generated remains uncertain, particularly for distant duplicated genomic segments. Results: Here we provide evidence of the participation of circular DNA intermediates in the single generation of some large human segmental duplications. A specic reversion of sequence order from A- B/C-D to B-A/D-C between duplicated segments and the presence of only microhomologies and short indels at the evolutionary breakpoints suggest a circularization of the donor ancestral locus and an accidental replicative interaction with the acceptor locus. Conclusions: This novel mechanism of random genomic mutation could explain several distant genomic duplications including some of the ones that took place during recent human evolution.
    [Show full text]
  • Molecular Regulation of BRD3 in Forward Programming of Megakaryocytes
    Molecular regulation of BRD3 in forward programming of Megakaryocytes Maria Isabel Marques Rosa University of Cambridge Newnham College This dissertation is submitted for the degree of Doctor of Philosophy September 2018 Declaration This dissertation is the result of my own work and includes nothing which is the outcome of work done in collaboration except as declared in the Preface and specified in the text. It is not substantially the same as any that I have submitted, or, is being concurrently submitted for a degree or diploma or other qualification at the University of Cambridge or any other University or similar institution except as declared in the Preface and specified in the text. I further state that no substantial part of my dissertation has already been submitted, or, is being concurrently submitted for any such degree, diploma or other qualification at the University of Cambridge or any other University or similar institution except as declared in the Preface and specified in the text. It does not exceed the prescribed word limit for the relevant Degree Committee. Isabel Rosa September 2018 “Quando de lá vimos, é que para lá havíamos de ir” “The moment when one finishes a journey, is when they are truly ready to start.” Ernesto Rosa, my Dad Table of contents Abstract ................................................................................................................................ 1 Introduction ................................................................................................................................
    [Show full text]
  • Supplementary Table 1 Double Treatment Vs Single Treatment
    Supplementary table 1 Double treatment vs single treatment Probe ID Symbol Gene name P value Fold change TC0500007292.hg.1 NIM1K NIM1 serine/threonine protein kinase 1.05E-04 5.02 HTA2-neg-47424007_st NA NA 3.44E-03 4.11 HTA2-pos-3475282_st NA NA 3.30E-03 3.24 TC0X00007013.hg.1 MPC1L mitochondrial pyruvate carrier 1-like 5.22E-03 3.21 TC0200010447.hg.1 CASP8 caspase 8, apoptosis-related cysteine peptidase 3.54E-03 2.46 TC0400008390.hg.1 LRIT3 leucine-rich repeat, immunoglobulin-like and transmembrane domains 3 1.86E-03 2.41 TC1700011905.hg.1 DNAH17 dynein, axonemal, heavy chain 17 1.81E-04 2.40 TC0600012064.hg.1 GCM1 glial cells missing homolog 1 (Drosophila) 2.81E-03 2.39 TC0100015789.hg.1 POGZ Transcript Identified by AceView, Entrez Gene ID(s) 23126 3.64E-04 2.38 TC1300010039.hg.1 NEK5 NIMA-related kinase 5 3.39E-03 2.36 TC0900008222.hg.1 STX17 syntaxin 17 1.08E-03 2.29 TC1700012355.hg.1 KRBA2 KRAB-A domain containing 2 5.98E-03 2.28 HTA2-neg-47424044_st NA NA 5.94E-03 2.24 HTA2-neg-47424360_st NA NA 2.12E-03 2.22 TC0800010802.hg.1 C8orf89 chromosome 8 open reading frame 89 6.51E-04 2.20 TC1500010745.hg.1 POLR2M polymerase (RNA) II (DNA directed) polypeptide M 5.19E-03 2.20 TC1500007409.hg.1 GCNT3 glucosaminyl (N-acetyl) transferase 3, mucin type 6.48E-03 2.17 TC2200007132.hg.1 RFPL3 ret finger protein-like 3 5.91E-05 2.17 HTA2-neg-47424024_st NA NA 2.45E-03 2.16 TC0200010474.hg.1 KIAA2012 KIAA2012 5.20E-03 2.16 TC1100007216.hg.1 PRRG4 proline rich Gla (G-carboxyglutamic acid) 4 (transmembrane) 7.43E-03 2.15 TC0400012977.hg.1 SH3D19
    [Show full text]
  • Genetic Screening Approaches to Cancer Driver Characterization and Synthetic Lethal Target Discovery
    Genetic Screening Approaches to Cancer Driver Characterization and Synthetic Lethal Target Discovery The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Mengwasser, Kristen Elizabeth. 2018. Genetic Screening Approaches to Cancer Driver Characterization and Synthetic Lethal Target Discovery. Doctoral dissertation, Harvard University, Graduate School of Arts & Sciences. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:41121232 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Genetic Screening Approaches to Cancer Driver Characterization and Synthetic Lethal Target Discovery A dissertation presented by Kristen Elizabeth Mengwasser to The Division of Medical Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Biological and Biomedical Sciences Harvard University Cambridge, Massachusetts May 2018 © 2018 Kristen Elizabeth Mengwasser All rights reserved. Dissertation Advisor: Dr. Stephen J Elledge Kristen Elizabeth Mengwasser Genetic Screening Approaches to Cancer Driver Characterization and Synthetic Lethal Target Discovery Abstract Advances in genetic screening technology have expanded the toolkit for systematic perturbation of gene function. While the CRISPR-Cas9 system robustly probes genetic loss-of-function in mammalian cells, a barcoded ORFeome library offers the opportunity to systematically study genetic gain-of-function. We employed these two screening tools for three purposes. First, we performed shRNA and CRISPR-based screens for synthetic lethality with BRCA2 deficiency, in two pairs of BRCA2 isogenic cell lines.
    [Show full text]
  • Circular DNA Intermediates in the Generation of Large Human Segmental Duplications
    1 Circular DNA intermediates in the generation of large human segmental duplications. 2 Javier U Chicote1, Marcos López-Sánchez 2,3, Tomàs Marquès-Bonet 4,5,6, José Callizo 7, Luis A Pérez- 3 Jurado 2,3,8*, and Antonio García-España1* 4 1 Research Unit, Hospital Universitari de Tarragona Joan XXIII, Institut d’Investigació Sanitària Pere 5 Virgili, Universitat Rovira i Virgili, Tarragona 43005, Spain. 6 2 Genetics Unit, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 7 Barcelona 08003, Spain. 8 3 Hospital del Mar Research Institute (IMIM) and Centro de Investigación Biomédica en Red de 9 Enfermedades Raras (CIBERER), Barcelona 08003, Spain. 10 4 Institut de Biologia Evolutiva (CSIC-UPF), Departament de Ciències Experimentals i de la Salut, 11 Universitat Pompeu Fabra, Barcelona 08003, Spain. 12 5 Catalan Institution of Research and Advanced Studies (ICREA), Barcelona 08010, Spain 13 6 CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), 14 Barcelona 08028, Spain. 15 7 Department of Ophthalmology, Hospital Universitari de Tarragona Joan XXIII, Institut d’Investigació 16 Sanitària Pere Virgili, Universitat Rovira i Virgili, Tarragona 43005, Spain. 17 8 SA Clinical Genetics, Women's and Children's Hospital, South Australian Health and Medical Research 18 Institute (SAHMRI) & University of Adelaide, Adelaide, SA 5000, Australia. 19 20 *Corresponding author: [email protected] (A.G-E); [email protected] (L.A.P-J) 21 22 RUNNING TITLE: Human genomic duplications by circular DNA 23 24 25 Keywords 26 Segmental duplications, circular DNA, human genome evolution, X-Y transposed region, 27 chromoanasynthesis,, MMBIR/FoSTeS, NHEJ, copy number variants.
    [Show full text]
  • Replication Stress: Mechanisms and Molecules Involved in DNA Replication Progression and Reinitiation
    Replication stress: mechanisms and molecules involved in DNA replication progression and reinitiation Sònia Feu i Coll Aquesta tesi doctoral està subjecta a la llicència Reconeixement- NoComercial – CompartirIgual 4.0. Espanya de Creative Commons. Esta tesis doctoral está sujeta a la licencia Reconocimiento - NoComercial – CompartirIgual 4.0. España de Creative Commons. This doctoral thesis is licensed under the Creative Commons Attribution-NonCommercial- ShareAlike 4.0. Spain License. DOCTORAL PROGRAMME IN BIOMEDICINE SCHOOL OF MEDICINE AND HEALTH SCIENCES, UNIVERSITY OF BARCELONA Replication stress: mechanisms and molecules involved in DNA replication progression and reinitiation Thesis presented by Sònia Feu i Coll to qualify for the degree of Doctor in Biomedicine by the University of Barcelona This thesis has been performed in the Department of Biomedicine of the School of Medicine and Health Science of University of Barcelona, under the supervision of Prof. Neus Agell i Jané, Ph.D. Barcelona, March 2019 “A journey of a thousand miles begins with one step” Benjamin Franklin ACKNOWLEDGEMENTS Quan arribo a aquestes línies, toca una visualització breu (o això espero) dels anys que deixo enrere. Ara ja farà gairebé 6 anys que vaig entrar per primera vegada al laboratori de Senyalització i Checkpoints del Cicle Cel·lular. En aquell moment encara no sabia on em portaria la vida, ni la ciència! L’estiu abans de començar el Màster de Biomedicina estava fent entrevistes per tal d’escollir el grup on fer el Treball Final i em vaig topar amb tu, Neus. Per què em vaig decidir fer el màster al teu grup? Bàsicament per tu, pel que em vas transmetre i inspirar.
    [Show full text]
  • Neurophysiological and Genetic Findings in Patients with Juvenile Myoclonic Epilepsy
    fnint-14-00045 August 18, 2020 Time: 18:56 # 1 ORIGINAL RESEARCH published: 20 August 2020 doi: 10.3389/fnint.2020.00045 Neurophysiological and Genetic Findings in Patients With Juvenile Myoclonic Epilepsy Stefani Stefani1,2*, Ioanna Kousiappa1,2, Nicoletta Nicolaou3,4, Eleftherios S. Papathanasiou1,2, Anastasis Oulas1,5, Pavlos Fanis1,6, Vassos Neocleous1,6, Leonidas A. Phylactou1,6, George M. Spyrou1,5 and Savvas S. Papacostas1,2,3,4* 1 Cyprus School of Molecular Medicine, Nicosia, Cyprus, 2 Neurology Clinic B, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus, 3 Medical School, University of Nicosia, Nicosia, Cyprus, 4 Centre for Neuroscience and Integrative Brain Research (CENIBRE), University of Nicosia, Nicosia, Cyprus, 5 Bioinformatics Group, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus, 6 Department of Molecular Genetics, Function & Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus Objective: Transcranial magnetic stimulation (TMS), a non-invasive procedure, stimulates the cortex evaluating the central motor pathways. The response is called motor evoked potential (MEP). Polyphasia results when the response crosses the baseline more than twice (zero crossing). Recent research shows MEP polyphasia Edited by: in patients with generalized genetic epilepsy (GGE) and their first-degree relatives Rossella Breveglieri, University of Bologna, Italy compared with controls. Juvenile Myoclonic Epilepsy (JME), a GGE type, is not Reviewed by: well studied regarding polyphasia. In our study, we assessed polyphasia appearance Elias Manjarrez, probability with TMS in JME patients, their healthy first-degree relatives and controls. Meritorious Autonomous University Two genetic approaches were applied to uncover genetic association with polyphasia. of Puebla, Mexico Laura Säisänen, Methods: 20 JME patients, 23 first-degree relatives and 30 controls underwent TMS, Kuopio University Hospital, Finland obtaining 10–15 MEPs per participant.
    [Show full text]
  • Cnest: a Novel Copy Number Association Discovery Method Uncovers 862 New Associations from 200,629 Whole Exome Sequence Datasets in the UK Biobank
    bioRxiv preprint doi: https://doi.org/10.1101/2021.08.19.456963; this version posted August 19, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. CNest: A Novel Copy Number Association Discovery Method Uncovers 862 New Associations from 200,629 Whole Exome Sequence Datasets in the UK Biobank Tomas Fitzgerald1* & Ewan Birney1* 1) European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL- EBI), Wellcome Genome Campus, Cambridge, CB10 1SD, UK * Corresponding authors: Tomas William Fitzgerald, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, CB10 1SD, UK, Tel:, Fax:, Email: [email protected] Ewan Birney, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, CB10 1SD, UK, Tel:, Fax:, Email: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2021.08.19.456963; this version posted August 19, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Abstract Copy number variation (CNV) has long been known to influence human traits having a rich history of research into common and rare genetic disease and although CNV is accepted as an important class of genomic variation, progress on copy number (CN) phenotype associations from Next Generation Sequencing data (NGS) has been limited, in part, due to the relative difficulty in CNV detection and an enrichment for large numbers of false positives.
    [Show full text]
  • Med1 Regulates Meiotic Progression During Spermatogenesis in Mice
    REPRODUCTIONRESEARCH Differences in the transcriptional profiles of human cumulus cells isolated from MI and MII oocytes of patients with polycystic ovary syndrome Xin Huang, Cuifang Hao, Xiaofang Shen, Xiaoyan Liu, Yinghua Shan, Yuhua Zhang and Lili Chen Reproductive Medicine Centre, Yuhuangding Hospital of Yantai, Affiliated Hospital of Qingdao Medical University, 20 Yuhuangding Road East, Yantai, Shandong, 264000, People’s Republic of China Correspondence should be addressed to C Hao; Email: [email protected] Abstract Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic disorder in women. The abnormalities of endocrine and intra-ovarian paracrine interactions may change the microenvironment for oocyte development during the folliculogenesis process and reduce the developmental competence of oocytes in PCOS patients who are suffering from anovulatory infertility and pregnancy loss. In this microenvironment, the cross talk between an oocyte and the surrounding cumulus cells (CCs) is critical for achieving oocyte competence. The aim of our study was to investigate the gene expression profiles of CCs obtained from PCOS patients undergoing IVF cycles in terms of oocyte maturation by using human Genome U133 Plus 2.0 microarrays. A total of 59 genes were differentially expressed in two CC groups. Most of these genes were identified to be involved in one or more of the following pathways: receptor interactions, calcium signaling, metabolism and biosynthesis, focal adhesion, melanogenesis, leukocyte transendothelial migration, Wnt signaling, and type 2 diabetes mellitus. According to the different expression levels in the microarrays and their putative functions, six differentially expressed genes (LHCGR, ANGPTL1, TNIK, GRIN2A, SFRP4, and SOCS3) were selected and analyzed by quantitative RT-PCR (qRT-PCR).
    [Show full text]