Novel Control Effectors for Truss Braced Wing
Total Page:16
File Type:pdf, Size:1020Kb
NASA/CR–2015-218792 Novel Control Effectors for Truss Braced Wing Edward V. White The Boeing Company, St. Louis, Missouri Rakesh K. Kapania Virginia Polytechnic Institute and State University, Blacksburg, Virginia Shiv Joshi NextGen Aeronautics, Inc., Torrance California August 2015 NASA STI Program . in Profile Since its founding, NASA has been dedicated to the CONFERENCE PUBLICATION. advancement of aeronautics and space science. The Collected papers from scientific and technical NASA scientific and technical information (STI) conferences, symposia, seminars, or other program plays a key part in helping NASA maintain meetings sponsored or this important role. co-sponsored by NASA. The NASA STI program operates under the auspices SPECIAL PUBLICATION. Scientific, of the Agency Chief Information Officer. It collects, technical, or historical information from NASA organizes, provides for archiving, and disseminates programs, projects, and missions, often NASA’s STI. The NASA STI program provides access concerned with subjects having substantial to the NTRS Registered and its public interface, the public interest. NASA Technical Reports Server, thus providing one of the largest collections of aeronautical and space TECHNICAL TRANSLATION. science STI in the world. Results are published in both English-language translations of foreign non-NASA channels and by NASA in the NASA STI scientific and technical material pertinent to Report Series, which includes the following report NASA’s mission. types: Specialized services also include organizing TECHNICAL PUBLICATION. Reports of and publishing research results, distributing completed research or a major significant phase of specialized research announcements and feeds, research that present the results of NASA providing information desk and personal search Programs and include extensive data or theoretical support, and enabling data exchange services. analysis. Includes compilations of significant scientific and technical data and information For more information about the NASA STI program, deemed to be of continuing reference value. see the following: NASA counter-part of peer-reviewed formal professional papers but has less stringent Access the NASA STI program home page at limitations on manuscript length and extent of http://www.sti.nasa.gov graphic presentations. E-mail your question to [email protected] TECHNICAL MEMORANDUM. Scientific and technical findings that are Phone the NASA STI Information Desk at preliminary or of specialized interest, 757-864-9658 e.g., quick release reports, working papers, and bibliographies that contain minimal Write to: annotation. Does not contain extensive analysis. NASA STI Information Desk Mail Stop 148 CONTRACTOR REPORT. Scientific and NASA Langley Research Center technical findings by NASA-sponsored Hampton, VA 23681-2199 contractors and grantees. NASA/CR–2015-218792 Novel Control Effectors for Truss Braced Wing Edward V. White The Boeing Company, St. Louis, Missouri Rakesh K. Kapania Virginia Polytechnic Institute and State University, Blacksburg, Virginia Shiv Joshi NextGen Aeronautics, Inc., Torrance, California National Aeronautics and Space Administration Langley Research Center Prepared for Langley Research Center Hampton, Virginia 23681-2199 under Contract NNL10AA00B August 2015 Acknowledgments The authors would like to thank NASA for funding the research and the valuable insights by Drs. Ruben Del Rosario and Richard Wahls. The authors would like to thank the Boeing team, which is comprised of Mr. Brian Foist, Program Manager; Mr. Daniel Chen, loads, aeroelasticity, structural sizing, and finite element modeling; Mr. David Hyde, guidance and control requirements and analysis; Dr. Yueping Guo, noise assessment; Mr. Timothy Allen, loads requirements and finite element modeling; Mr. Antonio Gonzales, mass properties; Mr. Christopher Droney, conceptual design; and Mr. Brent Whiting, assistant Program Manager. The authors also appreciate the assistance at Virginia Polytechnic Institute and State University (Virginia Tech) and Next Gen Aeronautics, Inc. In addition to Dr. Kapania, the Virginia Tech (VT) team was made up of Dr. Joseph Schetz, Mr. Wrik Mallik, Dr. John Coggin, and Mr. David Jingeleski. Additional support from Next Gen Aeronautics, Inc. was provided by Dr. Jay Kudva, Mr. Robert Bortolin, Mr. Adam Propst, and Mr. Gerald Andersen. Available from: NASA STI Program / Mail Stop 148 NASA Langley Research Center Hampton, VA 23681-2199 Fax: 757-864-6500 TABLE OF CONTENTS Executive Summary ........................................................................................................................ 1 1. INTRODUCTION ..................................................................................................................... 3 2. Background and Assumptions ................................................................................................... 4 2.1 Scope of Work Summary .................................................................................................. 4 2.2 Flight Vehicle Assumptions ............................................................................................. 6 3. Concept Development ................................................................................................................ 8 3.1 Requirements Development .............................................................................................. 8 3.2 SUGAR VGRWT Concept Development ...................................................................... 15 3.2.1 Load Path Assessment Criteria ................................................................................18 3.2.2 Skin Assessment Criteria .........................................................................................21 3.2.3 Final Concept Selection ...........................................................................................23 4. Aircraft/NCE Configuration Multidisciplinary Optimization (MDO) ................................... 31 4.1 Introduction ..................................................................................................................... 31 4.2 Design Methodology ...................................................................................................... 33 4.2.1 Development of new structural model .....................................................................33 4.2.2 Aeroelastic Analysis of the Lateral Motion of the Vehicle .....................................34 4.2.2.1 Aerodynamic Analysis .................................................................................... 34 4.2.2.2 Analysis of Control Effectiveness ................................................................... 35 4.2.2.3 Analysis of Rolling Motion ............................................................................. 36 4.3 Multidisciplinary Optimization Problem Statement ....................................................... 37 4.4 Results............................................................................................................................. 39 4.4.1 Cantilever Designs ...................................................................................................39 4.4.1.1 Optimization results ........................................................................................ 39 4.4.1.2 Performance of the New Structural Model ..................................................... 41 4.4.2 Truss-braced Wing Designs .....................................................................................41 4.4.2.1 Optimization Results ....................................................................................... 41 4.5 Summary and Conclusion ............................................................................................... 45 5. Subsystem Layout, Finite Element, and Kinematic Models .................................................... 47 5.1 Kinematic Model ............................................................................................................ 47 5.2 Initial Structural Sizing ................................................................................................... 51 5.3 Actuation and Routing .................................................................................................... 53 v 5.4 Summary of NCE for Dual Aisle Aircraft ...................................................................... 54 5.5 MDO Output for Dual Aisle Aircraft ............................................................................. 55 5.5.1 Skin Moment of Inertia ............................................................................................57 5.6 NCE Model Design for Dual Aisle Aircraft ................................................................... 60 5.6.1 CAD Design .............................................................................................................60 5.7 Discussion of NCE Design for Dual Aisle Aircraft ........................................................ 66 6. Subsystem Study ...................................................................................................................... 68 6.1 System Description ......................................................................................................... 68 6.2 Subsystem Integration .................................................................................................... 70 7. Aerodynamic Analysis ............................................................................................................