Gallery of Weapons
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Gallery of USAF Weapons Note: Inventory Numbers Are Total Active Inventory figures As of Sept
Gallery of USAF Weapons Note: Inventory numbers are total active inventory figures as of Sept. 30, 2014. By Aaron M. U. Church, Associate Editor I 2015 USAF Almanac BOMBER AIRCRAFT flight controls actuate trailing edge surfaces that combine aileron, elevator, and rudder functions. New EHF satcom and high-speed computer upgrade B-1 Lancer recently entered full production. Both are part of the Defensive Management Brief: A long-range bomber capable of penetrating enemy defenses and System-Modernization (DMS-M). Efforts are underway to develop a new VLF delivering the largest weapon load of any aircraft in the inventory. receiver for alternative comms. Weapons integration includes the improved COMMENTARY GBU-57 Massive Ordnance Penetrator and JASSM-ER and future weapons The B-1A was initially proposed as replacement for the B-52, and four pro- such as GBU-53 SDB II, GBU-56 Laser JDAM, JDAM-5000, and LRSO. Flex- totypes were developed and tested in 1970s before program cancellation in ible Strike Package mods will feed GPS data to the weapons bays to allow 1977. The program was revived in 1981 as B-1B. The vastly upgraded aircraft weapons to be guided before release, to thwart jamming. It also will move added 74,000 lb of usable payload, improved radar, and reduced radar cross stores management to a new integrated processor. Phase 2 will allow nuclear section, but cut maximum speed to Mach 1.2. The B-1B first saw combat in and conventional weapons to be carried simultaneously to increase flexibility. Iraq during Desert Fox in December 1998. -
Bell 429 Product Specifications
BELL 429 SPECIFICATIONS BELL 429 SPECIFICATIONS Publisher’s Notice The information herein is general in nature and may vary with conditions. Individuals using this information must exercise their independent judgment in evaluating product selection and determining product appropriateness for their particular purpose and requirements. For performance data and operating limitations for any specific mission, reference must be made to the approved flight manual. Bell Helicopter Textron Inc. makes no representations or warranties, either expressed or implied, including without limitation any warranties of merchantability or fitness for a particular purpose with respect to the information set forth herein or the product(s) and service(s) to which the information refers. Accordingly, Bell Helicopter Textron Inc. will not be responsible for damages (of any kind or nature, including incidental, direct, indirect, or consequential damages) resulting from the use of or reliance on this information. Bell Helicopter Textron Inc. reserves the right to change product designs and specifications without notice. © 2019 Bell Helicopter Textron Inc. All registered trademarks are the property of their respective owners. FEBRUARY 2019 © 2019 Bell Helicopter Textron Inc. Specifications subject to change without notice. i BELL 429 SPECIFICATIONS Table of Contents Bell 429 ..................................................................................................................................1 Bell 429 Specification Summary (U.S. Units) ........................................................................4 -
Lockheed Martin F-35 Lightning II Incorporates Many Significant Technological Enhancements Derived from Predecessor Development Programs
AIAA AVIATION Forum 10.2514/6.2018-3368 June 25-29, 2018, Atlanta, Georgia 2018 Aviation Technology, Integration, and Operations Conference F-35 Air Vehicle Technology Overview Chris Wiegand,1 Bruce A. Bullick,2 Jeffrey A. Catt,3 Jeffrey W. Hamstra,4 Greg P. Walker,5 and Steve Wurth6 Lockheed Martin Aeronautics Company, Fort Worth, TX, 76109, United States of America The Lockheed Martin F-35 Lightning II incorporates many significant technological enhancements derived from predecessor development programs. The X-35 concept demonstrator program incorporated some that were deemed critical to establish the technical credibility and readiness to enter the System Development and Demonstration (SDD) program. Key among them were the elements of the F-35B short takeoff and vertical landing propulsion system using the revolutionary shaft-driven LiftFan® system. However, due to X- 35 schedule constraints and technical risks, the incorporation of some technologies was deferred to the SDD program. This paper provides insight into several of the key air vehicle and propulsion systems technologies selected for incorporation into the F-35. It describes the transition from several highly successful technology development projects to their incorporation into the production aircraft. I. Introduction HE F-35 Lightning II is a true 5th Generation trivariant, multiservice air system. It provides outstanding fighter T class aerodynamic performance, supersonic speed, all-aspect stealth with weapons, and highly integrated and networked avionics. The F-35 aircraft -
Remote ID NPRM Maps out UAS Airspace Integration Plans by Charles Alcock
PUBLICATIONS Vol.49 | No.2 $9.00 FEBRUARY 2020 | ainonline.com « Joby Aviation’s S4 eVTOL aircraft took a leap forward in the race to launch commercial service with a January 15 announcement of $590 million in new investment from a group led by Japanese car maker Toyota. Joby says it will have the piloted S4 flying as part of the Uber Air air taxi network in early adopter cities before the end of 2023, but it will surely take far longer to get clearance for autonomous eVTOL operations. (Full story on page 8) People HAI’s new president takes the reins page 14 Safety 2019 was a bad year for Part 91 page 12 Part 135 FAA has stern words for BlackBird page 22 Remote ID NPRM maps out UAS airspace integration plans by Charles Alcock Stakeholders have until March 2 to com- in planned urban air mobility applications. Read Our SPECIAL REPORT ment on proposed rules intended to provide The final rule resulting from NPRM FAA- a framework for integrating unmanned air- 2019-100 is expected to require remote craft systems (UAS) into the U.S. National identification for the majority of UAS, with Airspace System. On New Year’s Eve, the exceptions to be made for some amateur- EFB Hardware Federal Aviation Administration (FAA) pub- built UAS, aircraft operated by the U.S. gov- When it comes to electronic flight lished its long-awaited notice of proposed ernment, and UAS weighing less than 0.55 bags, (EFBs), most attention focuses on rulemaking (NPRM) for remote identifica- pounds. -
Gallery of USAF Weapons Note: Inventory Numbers Are Total Active Inventory Figures As of Sept
Gallery of USAF Weapons Note: Inventory numbers are total active inventory figures as of Sept. 30, 2011. ■ 2012 USAF Almanac Bombers B-1 Lancer Brief: A long-range, air refuelable multirole bomber capable of flying intercontinental missions and penetrating enemy defenses with the largest payload of guided and unguided weapons in the Air Force inventory. Function: Long-range conventional bomber. Operator: ACC, AFMC. First Flight: Dec. 23, 1974 (B-1A); Oct. 18, 1984 (B-1B). Delivered: June 1985-May 1988. IOC: Oct. 1, 1986, Dyess AFB, Tex. (B-1B). Production: 104. Inventory: 66. Aircraft Location: Dyess AFB, Tex.; Edwards AFB, Calif.; Eglin AFB, Fla.; Ellsworth AFB, S.D. Contractor: Boeing, AIL Systems, General Electric. Power Plant: four General Electric F101-GE-102 turbofans, each 30,780 lb thrust. Accommodation: pilot, copilot, and two WSOs (offensive and defensive), on zero/zero ACES II ejection seats. Dimensions: span 137 ft (spread forward) to 79 ft (swept aft), length 146 ft, height 34 ft. B-1B Lancer (SSgt. Brian Ferguson) Weight: max T-O 477,000 lb. Ceiling: more than 30,000 ft. carriage, improved onboard computers, improved B-2 Spirit Performance: speed 900+ mph at S-L, range communications. Sniper targeting pod added in Brief: Stealthy, long-range multirole bomber that intercontinental. mid-2008. Receiving Fully Integrated Data Link can deliver nuclear and conventional munitions Armament: three internal weapons bays capable of (FIDL) upgrade to include Link 16 and Joint Range anywhere on the globe. accommodating a wide range of weapons incl up to Extension data link, enabling permanent LOS and Function: Long-range heavy bomber. -
EASA AD No.: 2018-0211
EASA AD No.: 2018-0211 Airworthiness Directive AD No.: 2018-0211 Issued: 28 September 2018 Note: This Airworthiness Directive (AD) is issued by EASA, acting in accordance with Regulation (EU) 2018/1139 on behalf of the European Union, its Member States and of the European third countries that participate in the activities of EASA under Article 129 of that Regulation. This AD is issued in accordance with Regulation (EU) 748/2012, Part 21.A.3B. In accordance with Regulation (EU) 1321/2014 Annex I, Part M.A.301, the continuing airworthiness of an aircraft shall be ensured by accomplishing any applicable ADs. Consequently, no person may operate an aircraft to which an AD applies, except in accordance with the requirements of that AD, unless otherwise specified by the Agency [Regulation (EU) 1321/2014 Annex I, Part M.A.303] or agreed with the Authority of the State of Registry [Regulation (EU) 2018/1139, Article 71 exemption]. Design Approval Holder’s Name: Type/Model designation(s): CFM INTERNATIONAL S.A. CFM56-7B engines Effective Date: 05 October 2018 TCDS Number(s): EASA.E.004 Foreign AD: Not applicable Supersedure: This AD supersedes EASA AD 2018-0109 dated 17 May 2018. ATA 72 – Engine – Fan Blades – Inspection Manufacturer(s): SAFRAN Aircraft Engines, formerly SNECMA (France); General Electric Aircraft Engines (United States) Applicability: CFM56-7B20, CFM56-7B22, CFM56-7B22/B1, CFM56-7B24, CFM56-7B24/B1, CFM56-7B26, CFM56-7B26/B1, CFM56-7B26/B2, CFM56-7B27, CFM56-7B27/B1, CFM56-7B27/B3, CFM56-7B20/2, CFM56-7B22/2, CFM56-7B24/2, CFM56-7B26/2, -
Canada Aviation and Space Museum
CANADA AVIATION AND SPACE MUSEUM BOEING MODEL 720B PRATT & WHITNEY CANADA FLYING EXPERIMENTAL TEST BED REGISTRATION C-FETB Introduction The practical era of jet-age passenger transport aircraft officially dawned when the British de Havilland Company D.H.106 Comet made its premiere flight to great acclaim from the Hatfield, Hertfordshire aerodrome in England on 27 July 1949. Catering to British and mid to long-range routes to European, Middle Eastern and overseas destinations, the Comet series of airliners carried their passengers aloft in luxurious opulence for more than twenty years. Military and test derivatives followed suit and these continued flying for many decades, including two Comets for the Royal Canadian Air Force (RCAF). Just 14 days later, across the vast Atlantic Ocean, in the small town of Malton, Ontario, Canada, a new aviation company called Avro Canada successfully accomplished the same task with much less fanfare and accolades. Avro sent its small, medium-range, turbo-jet transport, called the C-102 Jetliner, aloft for its first flight, inaugurating the dreamed potential for such a unique travel experience for the public on the North American continent. United States Air Force personnel found the aircraft favourable when they tried it out on flights at Wright Field, Ohio in March 1951. However, this Canadian dream didn’t last for long. The modestly successful Comet-series didn’t shine as brightly as its popular name when a series of tragic, fatal accidents to production civil aircraft nearly snuffed out its very existence. Following design rectification’s, the Royal Air Force continued to employ Comets in versatile roles, such as modifying the design into the Nimrod. -
Vysoké Učení Technické V Brně
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMOBILNÍHO A DOPRAVNÍHO INZENYRSTVÍ FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF AUTOMOTIVE ENGINEERING ZLEPSOVANI BRAYTONOVA OBEHU LETECKYCH PLYNOVYCH TURBIN Improving of Brayton Cycle For Aero Gas Engine BAKALÁŘSKÁ PRÁCE BACHELOR´S THESIS AUTOR PRÁCE RODRIGO ACEVEDO AUTHOR VEDOUCÍ PRÁCE ING. MIROSLAV ŠPLÍCHAL SUPERVISOR BRNO 2012 1 Vysoké učení technické v Brně, Fakulta strojního inženýrství Ústav automobilního a dopravního inženýrství Akademický rok: 2011/2012 ZADÁNÍ BAKALÁŘSKÉ PRÁCE student(ka): Rodrigo Acevedo který/která studuje v bakalářském studijním programu obor: Stavba strojů a zařízení (2302R016) Ředitel ústavu Vám v souladu se zákonem č.111/1998 o vysokých školách a se Studijním a zkušebním řádem VUT v Brně určuje následující téma bakalářské práce: Zlepšování Braytonova oběhu leteckých plynových turbín v anglickém jazyce: Improving of Brayton cycle for aero gas turbine Stručná charakteristika problematiky úkolu: Popsat ideální a skutečný oběh leteckých plynových turbín. Rozbor vlivu zařazení mezistupňového chlazení a regenerace. Popis realizace zlepšení parametrů oběhu u leteckých turbín. Cíle bakalářské práce: Rešerše parametrů oběhu aktuálně používaných leteckých plynových turbín. Rozbor termické účinnosti oběhu leteckých plynových turbín a návrh možných zlepšení. 2 Seznam odborné literatury: OTT, Adolf. Pohon letadel. první. Brno : Nakladatelství Vysokého učení technického v Brně, 1993. 168 s. ISBN 80-214-0522-8. ADAMEC, Josef; KOCÁB, Jindřich. Letadlové motory. Vyd. 2. Praha : Corona, 2008. ISBN 978-808-6116-549 WARD, Thomas A.; Aerospace propulsion systems, Sinagaporse : John Wiley & Sons, 2010, ISBN 978-0-470-82497-9 Vedoucí bakalářské práce: Ing. Miroslav Šplíchal Termín odevzdání bakalářské práce je stanoven časovým plánem akademického roku 2011/2012. -
Japanese Innovation Finally Takes
ISSN 1718-7966 NOvEMbER 16, 2015/ vOL. 516 WEEKLY AVIATION HEADLINES Read by thousands of aviation professionals and technical decision-makers every week www.avitrader.com WORLD NEWS Emirates opens new freighter facility Emirates SkyCargo’s state-of-the-art cargo terminal at the Logistics District in Dubai South was officially inaugu- rated. Named Emirates SkyCentral, the cargo facility is the home of Emir- ates SkyCargo’s fleet of 15 freighter aircraft, and was officially opened on the side lines of the Dubai Air Show. The event was attended by a number of dignitaries, including members of Dubai’s Executive Council, represent- atives from various local authorities, members of Emirates’ senior man- agement, as well as local and interna- The first MRJ on test flight tional media. from Nagoya. Photo: Ethiopian Door Trainers pass Mitusbishi test Aircraft Corporation UK based EDM, a global provider of training simulators to the civil avia- tion and defence sectors, announced Japanese innovation finally takes off that the A350 and b767 Door Train- As MRJ90 completes first test flight ers it supplied to Ethiopian Airlines have passed their Site Acceptance Japanese ambition to become a Corporation. “We will make our second quarter of 2017. The flight Test (SAT). EDM manufactured the two Door Trainers for Ethiopian Air- world player in aircraft manufac- utmost efforts towards type certifi- tests in the US are scheduled to lines as part of a major contract to turing took a step closer after the cate acquisition, committing all our start in the second quarter of 2016, supply a comprehensive range of first Mitsubishi Regional Jet (MRJ) resources to develop and produce from the MRJ base at Grant County state-of-the-art cabin crew training took off for the first time in Nagoya, the finest regional jet aircraft to en- International Airport at Moses Lake equipment. -
R66 Police Brochure
The R66 POLICE HELICOPTER offers law enforcement a reliable, high-performance TURBINE POLICE turbine helicopter that is economical and easy to maintain. R66 HELICOPTER The four-place R66 Police Helicopter meets the latest FAA crashworthiness regula- tions. Its aerodynamic fuselage optimizes airspeed and fuel economy, allowing the helicopter to remain on station for up to three hours. The R66 Police Helicopter comes turn-key equipped with the latest in navigation and surveillance technology. • Wescam MX-10 Infrared Camera • Garmin G500H 1060 TXi PFD/MFD (compatible with optional autopilot) • Garmin GTN 635 Touchscreen GPS/COM • SX-7 Starsun Searchlight System, 25-30 Million Candlepower Searchlight • Two 6-Channel Audio Controllers • Lithium-ion Battery • Fold-Away Color Monitor • Garmin GTX 335 Transponder A wide variety of upgrades and options are available including: searchlight-to-cam- era slaving system, 5-point shoulder harness system (front seats), P/A speaker and siren, LoJack provisions, moving map systems, Garmin Synthetic Vision Technol- ogy, a selection of UHF, VHF, and 800 MHz police radios, SAS/Autopilot, radar altime- ter, air conditioning, and auxiliary fuel tank. Wescam MX-10 Infrared Camera TURBINE POLICE R66 HELICOPTER SPECIFICATIONS Engine Rolls Royce RR300 turbine Horsepower 300 shp turboshaft; derated to 270 shp for takeoff and 224 shp continuous Maximum Gross Weight 2700 lb (1225 kg) Approximate Empty Weight 1421 lb (644 kg) (including oil, avionics and standard police package) Fuel Capacity (73.6 gal) 493 lb (224 kg) Pilot, Passengers and Cargo 786 lb (357 kg) with Standard Fuel Cruise Speed at Maximum up to 110 kts (127 mph) Gross Weight Maximum Range approx 325 nm (602 km) STANDARD EQUIPMENT (no reserve) • Hydraulic power controls Hover Ceiling IGE over 10,000 ft • Bladder fuel tank at Max. -
Technology Transfers in Commercial Aircraft Support Systems Contents
CHAPTER 7 Technology Transfers in Commercial Aircraft Support Systems Contents Page INTRODUCTION . 247 COMMERCIAL AIRCRAFT SUPPORT SYSTEMS IN THE MIDDLE EAST. 249 Commercial Aircraft Support Systems . 249 Commercial Aircraft Support Systems in the Middle East: Current Status . 251 Perspectives of Recipient Countries and Firms . 261 Perspectives of Supplier Countries and Firms . 275 Future Prospects . 291 IMPLICATIONS FOR U.S. POLICY.. 292 SUMMARY AND CONCLUSIONS . 293 APPENDIX 7A: COMMERCIAL AIRCRAFT SUPPORT SYSTEMS: SELECTED RECENT CONTRACTS IN THE MIDDLE EAST . 296 Tables Table No. Page 62. operating and Performance Statistics of Selected Airlines for 1982 . 253 63. Employee Totals for Representative Airlines, 1982 . 253 64. Airport Traffic Statistics for Representative Airports . 254 65. Commercial Airline Fleets in the Middle East in Servicers of March 1984 . 256 66. U.S. Exports of Commercial Transport Aircraft . 277 67. Typical Configurations and Purchase Prices of Various Competing Aircraft . 278 68. Ten Leading U.S. Exporting Companies. 280 69. Export-Import Bank Total Authorizations of Loans and Guarantees and Authorizations in Support of Aircraft Exports . 282 70. Export-Import Bank Summary of Commercial Jet Aircraft Authorizations for Loans and Guarantees . 283 7A-1. Selected Recent Commercial Aircraft Support Systems Contracts in Saudi Arabia . 296 7A-2. Major Projects and Sources of Investment, 1971-81: Commercial Aircraft Support in Egypt. 297 7A-3. Major Projects: Civil Aviation in Algeria, 1979-82 . 297 7A-4. Selected Recent Commercial Aircraft Support Systems Contracts in Iraq . 298 7A-5. Selected Commercial Aircraft Support Systems Contracts in Iran ....,... 299 Figure Figure No. Page 14. Aerospace Industry Funds for Research and Development . -
Download This File Now!
INTRODUCTION................................................................................................................. 4 1. AERODYNAMIC SECTION........................................................................................... 8 1.1 Introduction ............................................................................................................................................................ 8 1.2 The Pitch limiters ................................................................................................................................................. 10 1.2 The Lift and Drag ( Cl / Cd )............................................................................................................................... 12 1.3 The Rudder ( CY )................................................................................................................................................ 19 1.4 The Drag Index (DI)............................................................................................................................................. 20 2 ENGINES SECTION................................................................................................ 22 2.1 The Pratt & Whitney engines ............................................................................................................................. 22 2.2 The General Electric Engines ............................................................................................................................. 28 3 A BIT OF HISTORY.............................................................................................