Vysoké Učení Technické V Brně

Total Page:16

File Type:pdf, Size:1020Kb

Vysoké Učení Technické V Brně VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMOBILNÍHO A DOPRAVNÍHO INZENYRSTVÍ FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF AUTOMOTIVE ENGINEERING ZLEPSOVANI BRAYTONOVA OBEHU LETECKYCH PLYNOVYCH TURBIN Improving of Brayton Cycle For Aero Gas Engine BAKALÁŘSKÁ PRÁCE BACHELOR´S THESIS AUTOR PRÁCE RODRIGO ACEVEDO AUTHOR VEDOUCÍ PRÁCE ING. MIROSLAV ŠPLÍCHAL SUPERVISOR BRNO 2012 1 Vysoké učení technické v Brně, Fakulta strojního inženýrství Ústav automobilního a dopravního inženýrství Akademický rok: 2011/2012 ZADÁNÍ BAKALÁŘSKÉ PRÁCE student(ka): Rodrigo Acevedo který/která studuje v bakalářském studijním programu obor: Stavba strojů a zařízení (2302R016) Ředitel ústavu Vám v souladu se zákonem č.111/1998 o vysokých školách a se Studijním a zkušebním řádem VUT v Brně určuje následující téma bakalářské práce: Zlepšování Braytonova oběhu leteckých plynových turbín v anglickém jazyce: Improving of Brayton cycle for aero gas turbine Stručná charakteristika problematiky úkolu: Popsat ideální a skutečný oběh leteckých plynových turbín. Rozbor vlivu zařazení mezistupňového chlazení a regenerace. Popis realizace zlepšení parametrů oběhu u leteckých turbín. Cíle bakalářské práce: Rešerše parametrů oběhu aktuálně používaných leteckých plynových turbín. Rozbor termické účinnosti oběhu leteckých plynových turbín a návrh možných zlepšení. 2 Seznam odborné literatury: OTT, Adolf. Pohon letadel. první. Brno : Nakladatelství Vysokého učení technického v Brně, 1993. 168 s. ISBN 80-214-0522-8. ADAMEC, Josef; KOCÁB, Jindřich. Letadlové motory. Vyd. 2. Praha : Corona, 2008. ISBN 978-808-6116-549 WARD, Thomas A.; Aerospace propulsion systems, Sinagaporse : John Wiley & Sons, 2010, ISBN 978-0-470-82497-9 Vedoucí bakalářské práce: Ing. Miroslav Šplíchal Termín odevzdání bakalářské práce je stanoven časovým plánem akademického roku 2011/2012. V Brně, dne 10.11.2011 L.S. prof. Ing. Václav Píštěk, DrSc. prof. RNDr. Miroslav Doupovec, CSc. Ředitel ústavu Děkan fakulty 3 ABSTRAKT Tato Prace je vyzkum o Braytonuv Obeh. Obsahuju ruzne metody, jak zvisit ucinnost obeh. Take vysvetluje jednu z techto metod presneji a popisuje ruzne moznosti, jako je IRA (Mezichladicem Recuperancni Aeroengine), coz je project z Technicke University v Mnichove. Vyvetluje ruzne studie o tepelnych vymeniku a jak tyto zmeny by mohly prispet ke slepseni spotreby paliva. KLÍČOVÁ SLOVA Aero motor, turbina, kompresor, spalovaci komora, mezi chladic, ohrivani, regenerace, brayton, ucinnost, dvouproudovy, vymenik, teplo. ABSTRACT This thesis is a research about Brayton cycle. It contains different methods on how to improve the efficiency of the cycle. Also it explains one of these methods more precisely and describes different options such as IRA (Intercooled Recuperative Aeroengine) which is a project from Munich Technical University. Besides it explains different studies about heat exchangers and how these modifications could help to improve fuel economy. KEYWORDS Aero engine, tubine, compressor, combustion chamber, intercooling, reheating, regeneration, brayton, cycle, efficiency, turbofan, exchanger, heat. BIBLIOGRAFICKÁ CITACE Acevedo, R. Improving of Brayton Cycle for Aero Gas Turbine. Brno: Vysoké učení technické v Brně, Fakulta strojního inženýrství, 2012. XX s. Vedoucí diplomové práce Ing. Miroslav Šplíchal. 5 ČESTNÉ PROHLÁŠENÍ Prohlašuji, že tato práce je mým původním dílem, zpracoval jsem ji samostatně pod vedením Ing. Miroslava Šplíchala a s použitím literatury uvedené v seznamu. V Brně dne 25. května 2012 …….……..………………………………………….. Jméno a přímení 6 PODĚKOVÁNÍ I would like to thank the tutor of my thesis, for his recomendations and his orientation. Also I would like to thank Ing. Skopan for his patience. I would like to thank Dean Ing. Doupovec for believeing in me. And i would to thank my family for waiting so long, my grandfather Fernando, grandmother Gertrudis, mother Mercedes and my two brothers Jesus and Eduardo and everyone else who helped in one way or another. 7 CONTENT Content ................................................................................................................. -8- 1. Introduction.................................................................................................-10- 2. History .......................................................................................................-11- 3. How it works?.............................................................................................-17- 4. Brayton Cycle.............................................................................................-18- 4.1 First Law of Thermodynamics..............................................................-18- 4.2 Second Law of Thermodynamics..........................................................-18- 4.3 Processes of the Brayton Cycle.............................................................-19- 4.4 Mathematical Explanation ....................................................................-20- 5. Improvement of the Brayton Cycle Efficiency............................................-21- 5.1 Increasing the turbine inlet temperatures...............................................-21- 5.2 Increasing the efficiencies of Components.............................................-21- 5.2.1 The Inlet......................................................................................-21- 5.2.2 The Compressor..........................................................................-22- 5.2.2.1 The Centrifugal Compressor.................................................-22- 5.2.2.2 The Axial Compressor..........................................................-22- 5.2.3 The Combustion Chamber (Combustor) ...................................-23- 5.2.3.1 The Combustor Components................................................-23- 5.2.3.2 Types of Combustors............................................................-25- 5.2.3.3 Geared Turbofan...................................................................-26- 5.2.4 The Turbine.................................................................................-26- 5.2.5 The Nozzle..................................................................................-26- 5.3 Adding Modifications to the Basic Cycle...............................................-27- 5.3.1 The Brayton Cycle with Regeneration........................................-27- 5.3.2 The Brayton Cycle with Intercooling, Reheating and Regeneration................................................................................-29- 5.3.2.1 Thermodynamic Analysis and Parametric Study of an Irreversible Regenerative-Intercooled-Reheat Brayton Cycle..................-32- 5.3.3 IRA (Intercooled Recuperative Aero-Engine) ............................-34- 5.3.3.1 IRA Engine Study at MTU .............................................-34- 5.3.3.2 Fundamentals-Cycle Innovations...................................-35- 5.3.3.3 Recuperated Cycle............................................................-35- 5.3.3.4 Intercooled and Regenerated Cycle.................................-35- 5.3.3.5 Variable Geometry............................................................-36- 5.3.3.6 The IRA-Engine Configuration........................................-36- 5.3.3.7 Mechanical Design...........................................................-37- 5.3.3.8 The MTU profile-tube heat exchanger..............................-38- 5.3.3.9 Thermomechanical Design of a Heat Exchanger for a Recuperative Aero Engine..................................................-39- 5.3.3.10 Investigation of the Thermal Efficiency of a Staggered Elliptic-tube Heat Exchanger for Aeroengine Applications.........................-40- 5.3.3.11 Optimization of the Design of Recuperative Heat Exchangers in the Exhaust Nozzle of an Aero Engine.....-41- 6 Calculations.................................................................................-44- 8 6.1 Example 1- Ideal Cycle..............................................................-44- 6.2 Example 2- Real Cycle with Friction........................................-46- 7 Conclusion....................................................................................-47- 8 List of References and Resources..................................................-48- 9 Attachments....................................................................................-52- 9 1 INTRODUCTION This is a research work on the topic ¨Improving of Brayton Cycle for Aero Gas Turbine¨, it is thesis for finishing a bachelor´s degree on Mechanical Engineering at Brno University of Technology. The goal of this work is to show different ways of how to improve the cycle efficiency and thus make an aero engine with better fuel economy. Also there are some investigation works in different areas those are shown in this paper. First there is history of the aero gas engine, it shows how the development of the engine has been changing through the time, then how it works. After there is an explanation of the first and second law of thermodynamics in order to understand the next part which is the Brayton Cycle. Then it comes the three most commom ways of how to improve the brayton cycle efficiency, this part mention a research project made by MTU(Motors and Turbines Union), called IRA(Intercooled Recuperative AeroEngine), then there are two examples of general calculations of the cycle, the ideal one and the real one with friction. In the conclusion it is mentioned the work with these three main methods
Recommended publications
  • Gallery of USAF Weapons Note: Inventory Numbers Are Total Active Inventory figures As of Sept
    Gallery of USAF Weapons Note: Inventory numbers are total active inventory figures as of Sept. 30, 2014. By Aaron M. U. Church, Associate Editor I 2015 USAF Almanac BOMBER AIRCRAFT flight controls actuate trailing edge surfaces that combine aileron, elevator, and rudder functions. New EHF satcom and high-speed computer upgrade B-1 Lancer recently entered full production. Both are part of the Defensive Management Brief: A long-range bomber capable of penetrating enemy defenses and System-Modernization (DMS-M). Efforts are underway to develop a new VLF delivering the largest weapon load of any aircraft in the inventory. receiver for alternative comms. Weapons integration includes the improved COMMENTARY GBU-57 Massive Ordnance Penetrator and JASSM-ER and future weapons The B-1A was initially proposed as replacement for the B-52, and four pro- such as GBU-53 SDB II, GBU-56 Laser JDAM, JDAM-5000, and LRSO. Flex- totypes were developed and tested in 1970s before program cancellation in ible Strike Package mods will feed GPS data to the weapons bays to allow 1977. The program was revived in 1981 as B-1B. The vastly upgraded aircraft weapons to be guided before release, to thwart jamming. It also will move added 74,000 lb of usable payload, improved radar, and reduced radar cross stores management to a new integrated processor. Phase 2 will allow nuclear section, but cut maximum speed to Mach 1.2. The B-1B first saw combat in and conventional weapons to be carried simultaneously to increase flexibility. Iraq during Desert Fox in December 1998.
    [Show full text]
  • Records Fall at Farnborough As Sales Pass $135 Billion
    ISSN 1718-7966 JULY 21, 2014 / VOL. 448 WEEKLY AVIATION HEADLINES Read by thousands of aviation professionals and technical decision-makers every week www.avitrader.com WORLD NEWS More Malaysia Airlines grief The Airbus A350 XWB The US stock market fell sharply was a guest on fears of renewed hostilities of honour at after the news that a Malaysian Farnborough Airlines flight was allegedly shot (left) last week down over eastern Ukraine, with as it nears its service all 298 people on board reported entry date dead. US vice president Joe Biden with Qatar said the plane was “blown out of Airways later the sky”, apparently by a surface- this year. to-air missile as the Boeing 777 Airbus jet cruised at 33,000 feet, some 1,000 feet above a closed section of airspace. Ukraine has accused Records fall at Farnborough as sales pass $135 billion pro-Russian “terrorists” of shoot- Airbus, CFM International beat forecasts with new highs at UK show ing the plane down with a Soviet- era SA-11 missile as it flew from The 2014 Farnborough Interna- Farnborough International Airshow: Major orders* tional Airshow closed its doors Amsterdam to Kuala Lumpur. Airframer Customer Order Value¹ last week safe in the knowledge Boeing 777 Qatar Airways 50 777-9X $19bn Record show for CFM Int’l that it had broken records on many fronts - not least on total Boeing 777, 737 Air Lease 6 777-300ER, 20 737 MAX $3.9bn CFM International, the 50/50 orders and commitments for Air- Airbus A320 family SMBC 110 A320neo, 5 A320 ceo $11.8bn joint company between Snec- bus and Boeing aircraft, which ma (Safran) and GE, celebrated Airbus A320 family Air Lease 60 A321neo $7.23bn hit a combined $115.5bn at list record sales worth some $21.4bn Embraer E-Jet Trans States 50 E175 E2 $2.4bn prices for 697 aircraft - over 60% at Farnborough.
    [Show full text]
  • Gallery of USAF Weapons Note: Inventory Numbers Are Total Active Inventory Figures As of Sept
    Gallery of USAF Weapons Note: Inventory numbers are total active inventory figures as of Sept. 30, 2011. ■ 2012 USAF Almanac Bombers B-1 Lancer Brief: A long-range, air refuelable multirole bomber capable of flying intercontinental missions and penetrating enemy defenses with the largest payload of guided and unguided weapons in the Air Force inventory. Function: Long-range conventional bomber. Operator: ACC, AFMC. First Flight: Dec. 23, 1974 (B-1A); Oct. 18, 1984 (B-1B). Delivered: June 1985-May 1988. IOC: Oct. 1, 1986, Dyess AFB, Tex. (B-1B). Production: 104. Inventory: 66. Aircraft Location: Dyess AFB, Tex.; Edwards AFB, Calif.; Eglin AFB, Fla.; Ellsworth AFB, S.D. Contractor: Boeing, AIL Systems, General Electric. Power Plant: four General Electric F101-GE-102 turbofans, each 30,780 lb thrust. Accommodation: pilot, copilot, and two WSOs (offensive and defensive), on zero/zero ACES II ejection seats. Dimensions: span 137 ft (spread forward) to 79 ft (swept aft), length 146 ft, height 34 ft. B-1B Lancer (SSgt. Brian Ferguson) Weight: max T-O 477,000 lb. Ceiling: more than 30,000 ft. carriage, improved onboard computers, improved B-2 Spirit Performance: speed 900+ mph at S-L, range communications. Sniper targeting pod added in Brief: Stealthy, long-range multirole bomber that intercontinental. mid-2008. Receiving Fully Integrated Data Link can deliver nuclear and conventional munitions Armament: three internal weapons bays capable of (FIDL) upgrade to include Link 16 and Joint Range anywhere on the globe. accommodating a wide range of weapons incl up to Extension data link, enabling permanent LOS and Function: Long-range heavy bomber.
    [Show full text]
  • EASA AD No.: 2018-0211
    EASA AD No.: 2018-0211 Airworthiness Directive AD No.: 2018-0211 Issued: 28 September 2018 Note: This Airworthiness Directive (AD) is issued by EASA, acting in accordance with Regulation (EU) 2018/1139 on behalf of the European Union, its Member States and of the European third countries that participate in the activities of EASA under Article 129 of that Regulation. This AD is issued in accordance with Regulation (EU) 748/2012, Part 21.A.3B. In accordance with Regulation (EU) 1321/2014 Annex I, Part M.A.301, the continuing airworthiness of an aircraft shall be ensured by accomplishing any applicable ADs. Consequently, no person may operate an aircraft to which an AD applies, except in accordance with the requirements of that AD, unless otherwise specified by the Agency [Regulation (EU) 1321/2014 Annex I, Part M.A.303] or agreed with the Authority of the State of Registry [Regulation (EU) 2018/1139, Article 71 exemption]. Design Approval Holder’s Name: Type/Model designation(s): CFM INTERNATIONAL S.A. CFM56-7B engines Effective Date: 05 October 2018 TCDS Number(s): EASA.E.004 Foreign AD: Not applicable Supersedure: This AD supersedes EASA AD 2018-0109 dated 17 May 2018. ATA 72 – Engine – Fan Blades – Inspection Manufacturer(s): SAFRAN Aircraft Engines, formerly SNECMA (France); General Electric Aircraft Engines (United States) Applicability: CFM56-7B20, CFM56-7B22, CFM56-7B22/B1, CFM56-7B24, CFM56-7B24/B1, CFM56-7B26, CFM56-7B26/B1, CFM56-7B26/B2, CFM56-7B27, CFM56-7B27/B1, CFM56-7B27/B3, CFM56-7B20/2, CFM56-7B22/2, CFM56-7B24/2, CFM56-7B26/2,
    [Show full text]
  • Canada Aviation and Space Museum
    CANADA AVIATION AND SPACE MUSEUM BOEING MODEL 720B PRATT & WHITNEY CANADA FLYING EXPERIMENTAL TEST BED REGISTRATION C-FETB Introduction The practical era of jet-age passenger transport aircraft officially dawned when the British de Havilland Company D.H.106 Comet made its premiere flight to great acclaim from the Hatfield, Hertfordshire aerodrome in England on 27 July 1949. Catering to British and mid to long-range routes to European, Middle Eastern and overseas destinations, the Comet series of airliners carried their passengers aloft in luxurious opulence for more than twenty years. Military and test derivatives followed suit and these continued flying for many decades, including two Comets for the Royal Canadian Air Force (RCAF). Just 14 days later, across the vast Atlantic Ocean, in the small town of Malton, Ontario, Canada, a new aviation company called Avro Canada successfully accomplished the same task with much less fanfare and accolades. Avro sent its small, medium-range, turbo-jet transport, called the C-102 Jetliner, aloft for its first flight, inaugurating the dreamed potential for such a unique travel experience for the public on the North American continent. United States Air Force personnel found the aircraft favourable when they tried it out on flights at Wright Field, Ohio in March 1951. However, this Canadian dream didn’t last for long. The modestly successful Comet-series didn’t shine as brightly as its popular name when a series of tragic, fatal accidents to production civil aircraft nearly snuffed out its very existence. Following design rectification’s, the Royal Air Force continued to employ Comets in versatile roles, such as modifying the design into the Nimrod.
    [Show full text]
  • ISSEK HSE) Role of Big Data Augmented Horizon Scanning in Strategic and Marketing Analytics
    National Research University Higher School of Economics Institute for Statistical Studies and Economics of Knowledge Big Data Augmented Horizon Scanning: Combination of Quantitative and Qualitative Methods for Strategic and Marketing Analytics [email protected] [email protected] XIX April International Academic Conference on Economic and Social Development Moscow, 11 April 2018 Outline - Role of artificial intelligence and big data in modern analytics - System of Intelligent Foresight Analytics iFORA - Combined quantitative and qualitative analysis methodology and software solutions - Use cases - Conclusion and discussion 2 Growing interest in Artificial Intelligence, Big Data and Machine Learning International analytical reports & news feed 12000 10000 8000 Artificial Intelligence 6000 Big Data Machine Learning 4000 2000 0 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 Russian analytical reports & news feed 800 700 600 500 Artificial Intelligence 400 Big Data 300 Machine Learning 200 100 0 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 3 Source: System of Intelligent Foresight Analytics iFORA™ (ISSEK HSE) Role of Big Data Augmented Horizon Scanning in Strategic and Marketing Analytics AI-related tasks Tracking latest and challenges trends, technologies, drivers, barriers Market forecasting Trend analysis Understanding S&T modern skills and Instruments for Customers Market Intelligence competences analysis feedback knowledge discovery HR policy Vacancy Feedback mining
    [Show full text]
  • Propulsione Aeronautica 2020/2021 Francesco Barato
    PROPULSIONE AERONAUTICA 2020/2021 FRANCESCO BARATO MATERIALE DI SUPPORTO FONDAMENTI DI PROPULSIONE AERONAUTICA Thrust 푇 = (푚̇ 푎 + 푚̇ 푓)푉푒 − 푚̇ 푎푉0 + (푝푒 − 푝푎)퐴푒 푇 ≈ 푚̇ 푎(푉푒 − 푉0) + (푝푒 − 푝푎)퐴푒 1 PROPULSIONE AERONAUTICA 2020/2021 FRANCESCO BARATO Ramjet P-270 Moskit (left), BrahMos (right) Turboramjet Pratt & Whitney J-58 turbo(ram)jet 2 PROPULSIONE AERONAUTICA 2020/2021 FRANCESCO BARATO Scramjet 3 PROPULSIONE AERONAUTICA 2020/2021 FRANCESCO BARATO Specific impulse 푇 푉푒 푇 푚̇ 푝 푉푒 − 푉0 퐼푠푝 = = [푠] 푟표푐푘푒푡푠 퐼푠푝 = = [푠] 푎푟 푏푟푒푎푡ℎ푛푔 푚̇ 푝푔0 푔0 푚̇ 푓푔0 푚̇ 푓 푔0 4 PROPULSIONE AERONAUTICA 2020/2021 FRANCESCO BARATO Propulsive efficiency Overall efficiency Overall efficiency with Mach number 5 PROPULSIONE AERONAUTICA 2020/2021 FRANCESCO BARATO Engine bypass ratios Bypass Engine Name Major applications ratio turbojet early jet aircraft, Concorde 0.0 SNECMA M88 Rafale 0.30 GE F404 F/A-18, T-50, F-117 0.34 PW F100 F-16, F-15 0.36 Eurojet EJ200 Typhoon 0.4 Klimov RD-33 MiG-29, Il-102 0.49 Saturn AL-31 Su-27, Su-30, J-10 0.59 Kuznetsov NK-144A Tu-144 0.6 PW JT8D DC-9, MD-80, 727, 737 Original 0.96 Soloviev D-20P Tu-124 1.0 Kuznetsov NK-321 Tu-160 1.4 GE Honda HF120 HondaJet 2.9 RR Tay Gulfstream IV, F70, F100 3.1 GE CF6-50 A300, DC-10-30,Lockheed C-5M Super Galaxy 4.26 PowerJet SaM146 SSJ 100 4.43 RR RB211-22B TriStar 4.8 PW PW4000-94 A300, A310, Boeing 767, Boeing 747-400 4.85 Progress D-436 Yak-42, Be-200, An-148 4.91 GE CF6-80C2 A300-600, Boeing 747-400, MD-11, A310 4.97-5.31 RR Trent 700 A330 5.0 PW JT9D Boeing 747, Boeing 767, A310, DC-10 5.0 6 PROPULSIONE
    [Show full text]
  • We Want to Continue Innovating, Finding Newer Ways to Delight Our Customers and Redefine Air Travel.” — LESLIE THNG, CHIEF EXECUTIVE OFFICER, VISTARA
    FIRST BIOFUEL CIVIL AIRCRAFT SHOW POWERED FLIGHT MANUFACTURING REPORT: IN INDIA IN INDIA FIA 2018 P 11 P 16 P 22 AUGUST-SEPTEMBER 2018 `100.00 (INDIA-BASED BUYER ONLY) VOLUME 11 • ISSUE 4 WWW.SPSAIRBUZ.COM ANAIRBUZ EXCLUSIVE MAGAZINE ON CIVIL AVIATION FROM INDIA EXCLUSIVE PAGE 8 “we wANT TO CONTINUE INNOVATING, FINDING NEWER WAYS TO DELIGHT OUR CUSTOMERS AND REDEFINE AIR TRAvel.” — LESLIE THNG, CHIEF EXECUTIVE OFFICER, VISTARA AN SP GUIDE PUBLICATION RNI NUMBER: DELENG/2008/24198 TABLE OF CONTENTS EXCLUSIVE COVER STORY / INTERVIEW P8 “we’re not chasing the COMPETITION, BUT CREATING A Cover: FIRST BIOFUEL CIVIL AIRCRAFT SHOW “Vistara has naturally inherited POWERED FLIGHT MANUFACTURING REPORT: IN INDIA IN INDIA FIA 2018 UNIQUE SPACE FOR OURSELVES IN P 11 P 16 P 22 very strong values and stands the market” AUGUST-SEPTEMBER 2018 `100.00 (INDIA-BASED BUYER ONLY) VOLUME 11 • ISSUE 4 committed to delivering WWW.SPSAIRBUZ.COM ANAIRBUZ EXCLUSIVE MAGAZINE ON CIVIL AVIATION FROM INDIA EXCLUSIVE In an exclusive interview with Jayant customer-centricity at every PAGE 8 “WE WANT touchpoint,”says Leslie Thng, TO CONTINUE Baranwal, Editor-in-Chief of SP’s INNOVATING, FINDING CEO, Vistara, in an exclusive NEWER WAYS AirBuz, Leslie Thng, Chief Executive TO DELIGHT OUR CUSTOMERS with SP’s AirBuz. AND REDEFINE AIR TRAVEL.” Officer of Vistara shares his optimism — LESLIE THNG, CHIEF EXECUTIVE OFFICER, Cover Photograph: VISTARA AN SP GUIDE PUBLICATION and outlines his vision and plans for Vistara RNI NUMBER: DELENG/2008/24198 the future growth of the airlines. SP's AirBuz Cover 4-2018.indd 1 18/09/18 4:43 PM POLICY / AIR INDIA P14 AIR INDIA DISINVESTMENT Debate on Air India disinvestment though, has been on for over two decades and the failed attempt at disinvestment earlier this year, was an anticlimactic episode in the ongoing saga.
    [Show full text]
  • Japanese Innovation Finally Takes
    ISSN 1718-7966 NOvEMbER 16, 2015/ vOL. 516 WEEKLY AVIATION HEADLINES Read by thousands of aviation professionals and technical decision-makers every week www.avitrader.com WORLD NEWS Emirates opens new freighter facility Emirates SkyCargo’s state-of-the-art cargo terminal at the Logistics District in Dubai South was officially inaugu- rated. Named Emirates SkyCentral, the cargo facility is the home of Emir- ates SkyCargo’s fleet of 15 freighter aircraft, and was officially opened on the side lines of the Dubai Air Show. The event was attended by a number of dignitaries, including members of Dubai’s Executive Council, represent- atives from various local authorities, members of Emirates’ senior man- agement, as well as local and interna- The first MRJ on test flight tional media. from Nagoya. Photo: Ethiopian Door Trainers pass Mitusbishi test Aircraft Corporation UK based EDM, a global provider of training simulators to the civil avia- tion and defence sectors, announced Japanese innovation finally takes off that the A350 and b767 Door Train- As MRJ90 completes first test flight ers it supplied to Ethiopian Airlines have passed their Site Acceptance Japanese ambition to become a Corporation. “We will make our second quarter of 2017. The flight Test (SAT). EDM manufactured the two Door Trainers for Ethiopian Air- world player in aircraft manufac- utmost efforts towards type certifi- tests in the US are scheduled to lines as part of a major contract to turing took a step closer after the cate acquisition, committing all our start in the second quarter of 2016, supply a comprehensive range of first Mitsubishi Regional Jet (MRJ) resources to develop and produce from the MRJ base at Grant County state-of-the-art cabin crew training took off for the first time in Nagoya, the finest regional jet aircraft to en- International Airport at Moses Lake equipment.
    [Show full text]
  • Development of a Forecast Model for Global Air Traffic Emissions
    Forschungsbericht 2012-08 Development of a Forecast Model for Global Air Traffic Emissions Martin Schaefer Deutsches Zentrum für Luft- und Raumfahrt Institut für Antriebstechnik Köln 235 Seiten 137 Bilder 70 Tabellen 133 Literaturstellen Development of a Forecast Model for Global Air Traffic Emissions Dissertation zur Erlangung des Grades Doktor-Ingenieur der Fakultät für Maschinenbau der Ruhr-Universität Bochum von Martin Schaefer aus Nürnberg Bochum 2012 Dissertation eingereicht am: 07. März 2012 Tag der mündlichen Prüfung: 29. Juni 2012 Erster Referent: Prof. Dr.-Ing. Reinhard Mönig (Ruhr-Universität Bochum) Zweiter Referent: Prof. Dr. rer. nat. Johannes Reichmuth (RWTH Aachen) PAGE I CONTENTS LIST OF FIGURES............................................................................. V LIST OF TABLES ............................................................................. XI LIST OF ABBREVIATIONS...............................................................XIV PREFACE.....................................................................................XIX 1 EXECUTIVE SUMMARY ......................................................................1 1.1 Objectives of this Study ..............................................................................................1 1.2 Abstract of Methodology .............................................................................................1 1.3 Summary of Results ...................................................................................................4 1.3.1 Overview
    [Show full text]
  • Technology Transfers in Commercial Aircraft Support Systems Contents
    CHAPTER 7 Technology Transfers in Commercial Aircraft Support Systems Contents Page INTRODUCTION . 247 COMMERCIAL AIRCRAFT SUPPORT SYSTEMS IN THE MIDDLE EAST. 249 Commercial Aircraft Support Systems . 249 Commercial Aircraft Support Systems in the Middle East: Current Status . 251 Perspectives of Recipient Countries and Firms . 261 Perspectives of Supplier Countries and Firms . 275 Future Prospects . 291 IMPLICATIONS FOR U.S. POLICY.. 292 SUMMARY AND CONCLUSIONS . 293 APPENDIX 7A: COMMERCIAL AIRCRAFT SUPPORT SYSTEMS: SELECTED RECENT CONTRACTS IN THE MIDDLE EAST . 296 Tables Table No. Page 62. operating and Performance Statistics of Selected Airlines for 1982 . 253 63. Employee Totals for Representative Airlines, 1982 . 253 64. Airport Traffic Statistics for Representative Airports . 254 65. Commercial Airline Fleets in the Middle East in Servicers of March 1984 . 256 66. U.S. Exports of Commercial Transport Aircraft . 277 67. Typical Configurations and Purchase Prices of Various Competing Aircraft . 278 68. Ten Leading U.S. Exporting Companies. 280 69. Export-Import Bank Total Authorizations of Loans and Guarantees and Authorizations in Support of Aircraft Exports . 282 70. Export-Import Bank Summary of Commercial Jet Aircraft Authorizations for Loans and Guarantees . 283 7A-1. Selected Recent Commercial Aircraft Support Systems Contracts in Saudi Arabia . 296 7A-2. Major Projects and Sources of Investment, 1971-81: Commercial Aircraft Support in Egypt. 297 7A-3. Major Projects: Civil Aviation in Algeria, 1979-82 . 297 7A-4. Selected Recent Commercial Aircraft Support Systems Contracts in Iraq . 298 7A-5. Selected Commercial Aircraft Support Systems Contracts in Iran ....,... 299 Figure Figure No. Page 14. Aerospace Industry Funds for Research and Development .
    [Show full text]
  • The Market for Aviation Turbofan Engines
    The Market for Aviation Turbofan Engines Product Code #F640 A Special Focused Market Segment Analysis by: Aviation Gas Turbine Forecast Analysis 1 The Market for Aviation Turbofan Engines 2010-2019 Table of Contents Executive Summary .................................................................................................................................................2 Introduction................................................................................................................................................................2 Trends..........................................................................................................................................................................3 Market Focus .............................................................................................................................................................3 Competitive Environment.......................................................................................................................................4 Figure 1 - The Market for Aviation Turbofan Engines Unit Production 2010 - 2019 (Bar Graph) .................................................................................6 Figure 2 - The Market for Aviation Turbofan Engines Value of Production 2010 - 2019 (Bar Graph)...........................................................................6 Manufacturers Review.............................................................................................................................................7
    [Show full text]