Wildlife Travel Burren 2018
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fauna Lepidopterologica Volgo-Uralensis" 150 Years Later: Changes and Additions
©Ges. zur Förderung d. Erforschung von Insektenwanderungen e.V. München, download unter www.zobodat.at Atalanta (August 2000) 31 (1/2):327-367< Würzburg, ISSN 0171-0079 "Fauna lepidopterologica Volgo-Uralensis" 150 years later: changes and additions. Part 5. Noctuidae (Insecto, Lepidoptera) by Vasily V. A n ik in , Sergey A. Sachkov , Va d im V. Z o lo t u h in & A n drey V. Sv ir id o v received 24.II.2000 Summary: 630 species of the Noctuidae are listed for the modern Volgo-Ural fauna. 2 species [Mesapamea hedeni Graeser and Amphidrina amurensis Staudinger ) are noted from Europe for the first time and one more— Nycteola siculana Fuchs —from Russia. 3 species ( Catocala optata Godart , Helicoverpa obsoleta Fabricius , Pseudohadena minuta Pungeler ) are deleted from the list. Supposedly they were either erroneously determinated or incorrect noted from the region under consideration since Eversmann 's work. 289 species are recorded from the re gion in addition to Eversmann 's list. This paper is the fifth in a series of publications1 dealing with the composition of the pres ent-day fauna of noctuid-moths in the Middle Volga and the south-western Cisurals. This re gion comprises the administrative divisions of the Astrakhan, Volgograd, Saratov, Samara, Uljanovsk, Orenburg, Uralsk and Atyraus (= Gurjev) Districts, together with Tataria and Bash kiria. As was accepted in the first part of this series, only material reliably labelled, and cover ing the last 20 years was used for this study. The main collections are those of the authors: V. A n i k i n (Saratov and Volgograd Districts), S. -
Climate Change and Conservation of Orophilous Moths at the Southern Boundary of Their Range (Lepidoptera: Macroheterocera)
Eur. J. Entomol. 106: 231–239, 2009 http://www.eje.cz/scripts/viewabstract.php?abstract=1447 ISSN 1210-5759 (print), 1802-8829 (online) On top of a Mediterranean Massif: Climate change and conservation of orophilous moths at the southern boundary of their range (Lepidoptera: Macroheterocera) STEFANO SCALERCIO CRA Centro di Ricerca per l’Olivicoltura e l’Industria Olearia, Contrada Li Rocchi-Vermicelli, I-87036 Rende, Italy; e-mail: [email protected] Key words. Biogeographic relict, extinction risk, global warming, species richness, sub-alpine prairies Abstract. During the last few decades the tree line has shifted upward on Mediterranean mountains. This has resulted in a decrease in the area of the sub-alpine prairie habitat and an increase in the threat to strictly orophilous moths that occur there. This also occurred on the Pollino Massif due to the increase in temperature and decrease in rainfall in Southern Italy. We found that a number of moths present in the alpine prairie at 2000 m appear to be absent from similar habitats at 1500–1700 m. Some of these species are thought to be at the lower latitude margin of their range. Among them, Pareulype berberata and Entephria flavicinctata are esti- mated to be the most threatened because their populations are isolated and seem to be small in size. The tops of these mountains are inhabited by specialized moth communities, which are strikingly different from those at lower altitudes on the same massif further south. The majority of the species recorded in the sub-alpine prairies studied occur most frequently and abundantly in the core area of the Pollino Massif. -
Analysis of Paralogs in Target Enrichment Data Pinpoints Multiple Ancient Polyploidy Events
bioRxiv preprint doi: https://doi.org/10.1101/2020.08.21.261925; this version posted August 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 1 Analysis of paralogs in target enrichment data pinpoints multiple ancient polyploidy events 2 in Alchemilla s.l. (Rosaceae). 3 4 Diego F. Morales-Briones1.2,*, Berit Gehrke3, Chien-Hsun Huang4, Aaron Liston5, Hong Ma6, 5 Hannah E. Marx7, David C. Tank2, Ya Yang1 6 7 1Department of Plant and Microbial Biology, University of Minnesota-Twin Cities, 1445 Gortner 8 Avenue, St. Paul, MN 55108, USA 9 2Department of Biological Sciences and Institute for Bioinformatics and Evolutionary Studies, 10 University of Idaho, 875 Perimeter Drive MS 3051, Moscow, ID 83844, USA 11 3University Gardens, University Museum, University of Bergen, Mildeveien 240, 5259 12 Hjellestad, Norway 13 4State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics 14 and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological 15 Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, 16 Fudan University, Shanghai 200433, China 17 5Department of Botany and Plant Pathology, Oregon State University, 2082 Cordley Hall, 18 Corvallis, OR 97331, USA 19 6Department of Biology, the Huck Institute of the Life Sciences, the Pennsylvania State 20 University, 510D Mueller Laboratory, University Park, PA 16802 USA 21 7Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 22 48109-1048, USA 23 bioRxiv preprint doi: https://doi.org/10.1101/2020.08.21.261925; this version posted August 23, 2020. -
Coleoptera and Lepidoptera (Insecta) Diversity in the Central Part of Sredna Gora Mountains (Bulgaria)
BULLETIN OF THE ENTOMOLOGICALENTOMOLOGICAL SOCIETY OF MALTAMALTA (2019) Vol. 10 : 75–95 DOI: 10.17387/BULLENTSOCMALTA.2019.09 Coleoptera and Lepidoptera (Insecta) diversity in the central part of Sredna Gora Mountains (Bulgaria) Rumyana KOSTOVA1*, Rostislav BEKCHIEV2 & Stoyan BESHKOV2 ABSTRACT.ABSTRACT. Despite the proximity of Sredna Gora Mountains to Sofia, the insect assemblages of this region are poorly studied. As a result of two studies carried out as a part of an Environmental Impact Assessment in the Natura 2000 Protected Areas: Sredna Gora and Popintsi, a rich diversity of insects was discovered, with 107 saproxylic and epigeobiont Coleoptera species and 355 Lepidoptera species recorded. This research was conducted during a short one-season field study in the surrounding areas of the town of Panagyurishte and Oborishte Village. Special attention was paid to protected species and their conservation status. Of the Coleoptera recorded, 22 species were of conservation significance. Forty-five Lepidoptera species of conservation importance were also recorded. KEY WORDS.WORDS. Saproxylic beetles, epigeobiont beetles, Macrolepidoptera, Natura 2000 INTRODUCTION INTRODUCTION The Sredna Gora Mountains are situated in the central part of Bulgaria, parallel to the Stara Planina Mountains The Sredna chain. Gora TheyMountains are insufficiently are situated instudied the central with partregard of toBulgaria, their invertebrate parallel to theassemblages. Stara Planina Mountains chain. They are insufficiently studied with regard to their invertebrate assemblages. There is lack of information about the beetles from Sredna Gora Mountains in the region of the Panagyurishte There is lack townof information and Oborishte about village. the beetles Most offrom the Srednaprevious Gora data Mountains is old and foundin the inregion catalogues, of the mentioningPanagyurishte the town mountain and Oborishte without distinct village. -
Phylogenetics of Tribe Orchideae (Orchidaceae: Orchidoideae)
Annals of Botany 110: 71–90, 2012 doi:10.1093/aob/mcs083, available online at www.aob.oxfordjournals.org Phylogenetics of tribe Orchideae (Orchidaceae: Orchidoideae) based on combined DNA matrices: inferences regarding timing of diversification and evolution of pollination syndromes Luis A. Inda1,*, Manuel Pimentel2 and Mark W. Chase3 1Escuela Polite´cnica Superior de Huesca, Universidad de Zaragoza, carretera de Cuarte sn. 22071 Huesca, Spain, 2Facultade de Ciencias, Universidade da Corun˜a, Campus da Zapateira sn. 15071 A Corun˜a, Spain and 3Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK * For correspondence. E-mail [email protected] Received: 3 November 2011 Returned for revision: 9 December 2011 Accepted: 1 March 2012 Published electronically: 25 April 2012 † Background and aims Tribe Orchideae (Orchidaceae: Orchidoideae) comprises around 62 mostly terrestrial genera, which are well represented in the Northern Temperate Zone and less frequently in tropical areas of both the Old and New Worlds. Phylogenetic relationships within this tribe have been studied previously using only nuclear ribosomal DNA (nuclear ribosomal internal transcribed spacer, nrITS). However, different parts of the phylogenetic tree in these analyses were weakly supported, and integrating information from different plant genomes is clearly necessary in orchids, where reticulate evolution events are putatively common. The aims of this study were to: (1) obtain a well-supported and dated phylogenetic hypothesis for tribe Orchideae, (ii) assess appropriateness of recent nomenclatural changes in this tribe in the last decade, (3) detect possible examples of reticulate evolution and (4) analyse in a temporal context evolutionary trends for subtribe Orchidinae with special emphasis on pollination systems. -
Piano Di Gestione Del Sic/Zps It3310001 “Dolomiti Friulane”
Piano di Gestione del SIC/ZPS IT 3310001 “Dolomiti Friulane” – ALLEGATO 2 PIANO DI GESTIONE DEL SIC/ZPS IT3310001 “DOLOMITI FRIULANE” ALLEGATO 2 ELENCO DELLE SPECIE FLORISTICHE E SCHEDE DESCRITTIVE DELLE SPECIE DI IMPORTANZA COMUNITARIA Agosto 2012 Responsabile del Piano : Ing. Alessandro Bardi Temi Srl Piano di Gestione del SIC/ZPS IT 3310001 “Dolomiti Friulane” – ALLEGATO 2 Classe Sottoclasse Ordine Famiglia Specie 1 Lycopsida Lycopodiatae Lycopodiales Lycopodiaceae Huperzia selago (L.)Schrank & Mart. subsp. selago 2 Lycopsida Lycopodiatae Lycopodiales Lycopodiaceae Diphasium complanatum (L.) Holub subsp. complanatum 3 Lycopsida Lycopodiatae Lycopodiales Lycopodiaceae Lycopodium annotinum L. 4 Lycopsida Lycopodiatae Lycopodiales Lycopodiaceae Lycopodium clavatum L. subsp. clavatum 5 Equisetopsida Equisetatae Equisetales Equisetaceae Equisetum arvense L. 6 Equisetopsida Equisetatae Equisetales Equisetaceae Equisetum hyemale L. 7 Equisetopsida Equisetatae Equisetales Equisetaceae Equisetum palustre L. 8 Equisetopsida Equisetatae Equisetales Equisetaceae Equisetum ramosissimum Desf. 9 Equisetopsida Equisetatae Equisetales Equisetaceae Equisetum telmateia Ehrh. 10 Equisetopsida Equisetatae Equisetales Equisetaceae Equisetum variegatum Schleich. ex Weber & Mohr 11 Polypodiopsida Polypodiidae Polypodiales Adiantaceae Adiantum capillus-veneris L. 12 Polypodiopsida Polypodiidae Polypodiales Hypolepidaceae Pteridium aquilinum (L.)Kuhn subsp. aquilinum 13 Polypodiopsida Polypodiidae Polypodiales Cryptogrammaceae Phegopteris connectilis (Michx.)Watt -
Evolution of Angiosperm Pollen. 7. Nitrogen-Fixing Clade1
Evolution of Angiosperm Pollen. 7. Nitrogen-Fixing Clade1 Authors: Jiang, Wei, He, Hua-Jie, Lu, Lu, Burgess, Kevin S., Wang, Hong, et. al. Source: Annals of the Missouri Botanical Garden, 104(2) : 171-229 Published By: Missouri Botanical Garden Press URL: https://doi.org/10.3417/2019337 BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/terms-of-use. Usage of BioOne Complete content is strictly limited to personal, educational, and non - commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Downloaded From: https://bioone.org/journals/Annals-of-the-Missouri-Botanical-Garden on 01 Apr 2020 Terms of Use: https://bioone.org/terms-of-use Access provided by Kunming Institute of Botany, CAS Volume 104 Annals Number 2 of the R 2019 Missouri Botanical Garden EVOLUTION OF ANGIOSPERM Wei Jiang,2,3,7 Hua-Jie He,4,7 Lu Lu,2,5 POLLEN. 7. NITROGEN-FIXING Kevin S. Burgess,6 Hong Wang,2* and 2,4 CLADE1 De-Zhu Li * ABSTRACT Nitrogen-fixing symbiosis in root nodules is known in only 10 families, which are distributed among a clade of four orders and delimited as the nitrogen-fixing clade. -
Click to View .Pdf of This Issue
JJoouurrnnaall of the HHAARRDDYY OORRCCHHIIDD SSOOCCIIEETTYY Vol. 6 No. 2 (52) April 2009 JOURNAL of the HARDY ORCHID SOCIETY Vol. 6 No. 2 (52) April 2009 The Hardy Orchid Society Our aim is to promote interest in the study of Native European Orchids and those from similar temperate climates throughout the world. We cover such varied aspects as field study, cultivation and propagation, photography, taxonomy and systematics, and practical conservation. We welcome articles relating to any of these subjects, which will be considered for publication by the editorial committee. Please send your submissions to the Editor, and please structure your text according to the “Advice to Authors” (see website, January 2004 Journal, Members’ Handbook or contact the Editor). Views expressed in journal articles are those of their author(s) and may not reflect those of HOS. The Hardy Orchid Society Committee President: Prof. Richard Bateman, Jodrell Laboratory, Royal Botanic Gardens Kew, Richmond, Surrey, TW9 3DS Chairman & Field Meeting Co-ordinator: David Hughes, Linmoor Cottage, Highwood, Ringwood, Hants., BH24 3LE [email protected] Vice-Chairman: Celia Wright, The Windmill, Vennington, Westbury, Shrewsbury, Shropshire, SY5 9RG [email protected] Secretary (Acting): Alan Leck, 61 Fraser Close, Deeping St. James, Peterborough, PE6 8QL [email protected] Treasurer: Iain Wright, The Windmill, Vennington, Westbury, Shrewsbury, Shropshire, SY5 9RG [email protected] Membership Secretary: Celia Wright, The Windmill, Vennington, Westbury, -
The New Kirstenbosch Bulb Terrace
- Growing indigenous Working with the seasons The new Kirstenbosch Bulb Terrace by Graham Duncan, Kirstenbosch Heavy winter rains, inadequately drained soils and insufficient winter light lev els experienced in many parts of Kirstenbosch preclude the display of a wide vari ety of our spectacular wealth of winter-growing bulbous plants in the garden itself. In addition, the depredations of molerats, and more importantly, marauding por cupines place further constraints on bulbs that can be displayed to the public. For these reasons the more fastidious species are cultivated under cover in the Kirstenbosch bulb nursery and displayed in containers, in season, inside the Kay Bergh Bulb House of the Botanical Society Conservatory. Although bulbous plants that are able to stand up to the rigours of general gar den cultivation are displayed in many parts of the garden, no section is specifical ly dedicated to bulbs. However, with the recent completion of the Centre for Home Gardening, an area known as the Bulb Terrace has been specifically provided for the display of both winter- and summer-growing bulbs. We hope these displays will draw attention to the many bulbous species suitable for home gardens. Passing through the Centre for Home Gardening towards the garden, the Bulb Terrace comprises eight broadly rectangular beds on either side of the sloping main bricked walkway adjacent to the new Kirstenbosch Tearoom. Four beds on each side of the walkway alternate with wooden benches. Quantities of heavy, poorly ABOVE: The dwarf Watsonia coccinea provides a brilliant splash of reddish-orange in mid-September. Photo Graham Duncan drained soil was removed from each bed. -
Reconstructing Palaeoenvironments of the White Peak Region of Derbyshire, Northern England
THE UNIVERSITY OF HULL Reconstructing Palaeoenvironments of the White Peak Region of Derbyshire, Northern England being a Thesis submitted for the Degree of Doctor of Philosophy in the University of Hull by Simon John Kitcher MPhysGeog May 2014 Declaration I hereby declare that the work presented in this thesis is my own, except where otherwise stated, and that it has not been previously submitted in application for any other degree at any other educational institution in the United Kingdom or overseas. ii Abstract Sub-fossil pollen from Holocene tufa pool sediments is used to investigate middle – late Holocene environmental conditions in the White Peak region of the Derbyshire Peak District in northern England. The overall aim is to use pollen analysis to resolve the relative influence of climate and anthropogenic landscape disturbance on the cessation of tufa production at Lathkill Dale and Monsal Dale in the White Peak region of the Peak District using past vegetation cover as a proxy. Modern White Peak pollen – vegetation relationships are examined to aid semi- quantitative interpretation of sub-fossil pollen assemblages. Moss-polsters and vegetation surveys incorporating novel methodologies are used to produce new Relative Pollen Productivity Estimates (RPPE) for 6 tree taxa, and new association indices for 16 herb taxa. RPPE’s of Alnus, Fraxinus and Pinus were similar to those produced at other European sites; Betula values displaying similarity with other UK sites only. RPPE’s for Fagus and Corylus were significantly lower than at other European sites. Pollen taphonomy in woodland floor mosses in Derbyshire and East Yorkshire is investigated. -
Review of Coverage of the National Vegetation Classification
JNCC Report No. 302 Review of coverage of the National Vegetation Classification JS Rodwell, JC Dring, ABG Averis, MCF Proctor, AJC Malloch, JHJ Schaminée, & TCD Dargie July 2000 This report should be cited as: Rodwell, JS, Dring, JC, Averis, ABG, Proctor, MCF, Malloch, AJC, Schaminée, JNJ, & Dargie TCD, 2000 Review of coverage of the National Vegetation Classification JNCC Report, No. 302 © JNCC, Peterborough 2000 For further information please contact: Habitats Advice Joint Nature Conservation Committee Monkstone House, City Road, Peterborough PE1 1JY UK ISSN 0963-8091 1 2 Contents Preface .............................................................................................................................................................. 4 Acknowledgements .......................................................................................................................................... 4 1 Introduction.............................................................................................................................................. 5 1.1 Coverage of the original NVC project......................................................................................................... 5 1.2 Generation of NVC-related data by the community of users ...................................................................... 5 2 Methodology............................................................................................................................................. 7 2.1 Reviewing the wider European scene......................................................................................................... -
Rubiaceae) in Africa and Madagascar
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Springer - Publisher Connector Plant Syst Evol (2010) 285:51–64 DOI 10.1007/s00606-009-0255-8 ORIGINAL ARTICLE Adaptive radiation in Coffea subgenus Coffea L. (Rubiaceae) in Africa and Madagascar Franc¸ois Anthony • Leandro E. C. Diniz • Marie-Christine Combes • Philippe Lashermes Received: 31 July 2009 / Accepted: 28 December 2009 / Published online: 5 March 2010 Ó The Author(s) 2010. This article is published with open access at Springerlink.com Abstract Phylogeographic analysis of the Coffea subge- biogeographic differentiation of coffee species, but they nus Coffea was performed using data on plastid DNA were not congruent with morphological and biochemical sequences and interpreted in relation to biogeographic data classifications, or with the capacity to grow in specific on African rain forest flora. Parsimony and Bayesian analyses environments. Examples of convergent evolution in the of trnL-F, trnT-L and atpB-rbcL intergenic spacers from 24 main clades are given using characters of leaf size, caffeine African species revealed two main clades in the Coffea content and reproductive mode. subgenus Coffea whose distribution overlaps in west equa- torial Africa. Comparison of trnL-F sequences obtained Keywords Africa Á Biogeography Á Coffea Á Evolution Á from GenBank for 45 Coffea species from Cameroon, Phylogeny Á Plastid sequences Á Rubiaceae Madagascar, Grande Comore and the Mascarenes revealed low divergence between African and Madagascan species, suggesting a rapid and radial mode of speciation. A chro- Introduction nological history of the dispersal of the Coffea subgenus Coffea from its centre of origin in Lower Guinea is pro- Coffeeae tribe belongs to the Ixoroideae monophyletic posed.