Application of Tetraether Membrane Lipids As Proxies for Continental Climate

Total Page:16

File Type:pdf, Size:1020Kb

Application of Tetraether Membrane Lipids As Proxies for Continental Climate Institut de Ciència i Tecnologia Ambientals Universitat Autònoma de Barcelona Application of tetraether membrane lipids as proxies for continental climate reconstruction in Iberian and Siberian lakes Marina Escala Pascual Tesi doctoral Institut de Ciència i Tecnologia Ambientals Universitat Autònoma de Barcelona Application of tetraether membrane lipids as proxies for continental climate reconstruction in Iberian and Siberian lakes Memòria presentada per Marina Escala Pascual per optar al títol de Doctor per la Universitat Autònoma de Barcelona, sota la direcció del doctor Antoni Rosell Melé. Marina Escala Pascual Abril 2009 Cover photograph: Lake Baikal (Jens Klump, Continent Project) Als meus pares i al meu germà. INDEX Acknowledgements .................................................................................i Abstract .................................................................................................iii Resum ....................................................................................................iv Chapter 1 Introduction 1.1. Paleoclimate and biomarker proxies ....................................................3 1.2. Distribution of Archaea in freshwater environments ........................5 1.3. Origin and significance of GDGTs .......................................................9 1.4. Calibration of GDGT-based proxies ..................................................14 1.5. Objective and outline of this thesis ....................................................19 Chapter 2 Methodology 2.1. A review of GDGT analysis .................................................................23 2.1.1. Development of GDGT analysis ..................................................23 2.1.2. The future: intact polar lipids analysis .........................................29 2.2. GDGT determination in the present thesis .......................................31 2.2.1. Material and chemicals ................................................................31 2.2.1.1. Laboratory material cleaning .........................................................31 2.2.1.2. Solvents ...........................................................................................31 2.2.1.3. Standards..............................................................................31 2.2.2. Analytical instrumentation ..........................................................32 2.2.2.1. HPLC/APCI-MS systems ................................................................32 2.2.2.2. GDGT identification ......................................................................32 2.2.2.3. Linear range .........................................................................35 2.2.2.4. Limit of detection ........................................................................... 36 2.2.2.5. Precision and reproducibility ..................................................37 2.2.3. Interlaboratory comparison ..........................................................40 2.3. Rapid screening of glycerol dialkyl glycerol tetraethers in continental Eurasia samples using HPLC/APCI-ion trap mass spectrometry................................................................................42 2.3.1. Experimental section ....................................................................42 2.3.2. Results and discussion .................................................................43 2.4. Analytical considerations for the use of the paleothermometer TEX86 and the BIT index regarding the choice of clean-up and instrumental conditions ...............................................................46 2.4.1. Experimental section ...................................................................46 2.4.1.1. Comparison of clean-up procedures .........................................47 2.4.1.2. Comparison of adsorbents ......................................................47 2.4.1.3. GDGT determination by HPLC/APCI-MS ................................47 2.4.1.4. Comparison of HPLC columns ................................................48 2.4.1.5. Comparison of mass spectrometers .........................................49 2.4.2. Results and discussion .................................................................49 2.4.2.1. Clean-up methods .................................................................49 2.4.2.2. Comparison of adsorbents ......................................................50 2.4.2.3. HPLC column effects .............................................................51 2.4.2.4. Comparison of mass spectrometers .........................................52 2.4.3. Conclusions .................................................................................55 Chapter 3 Exploration of GDGT-based proxies in Iberian lakes for climate reconstruction 3.1. Introduction ..........................................................................................59 3.2. Study area and sample collection ........................................................61 3.3. Methodology ..........................................................................................65 3.3.1. GDGT analysis ............................................................................65 3.3.2. Statistics .......................................................................................65 3.3.3. Lake surface versus air surface temperature ................................67 3.4. Results from Iberian lakes ...................................................................70 3.4.1. Distribution of GDGTs and proxy indices ..................................70 3.4.2. Results from Principal Component Analysis ..............................76 3.4.3. Results from Hierarchical Cluster Analysis .................................82 3.4.4. Comparison of Iberian lakes with other lacustrine sites ..............89 3.5. Discussion and conclusions ..................................................................91 Chapter 4 Appraisal of GDGT proxies in Lake Baikal 4.1. Site description: Lake Baikal region ..................................................97 4.1.1. Location, geomorphology and hydrology ...................................97 4.1.2. Climatology, hydrography and productivity ................................99 4.2. Rationale for this study in Lake Baikal ...........................................104 4.3. Sediment traps and surface sediments ............................................106 4.3.1. Sample description ....................................................................106 4.3.2. Results and discussion ...............................................................107 4.4. GDGTs in Baikal sediment cores as climatic proxies .....................116 4.4.1. Sediment core description .........................................................116 4.4.2. Lake Baikal record of GDGT proxies for the last glacial-interglacial cycle ............................................................118 4.4.3. Comparison with other proxies .................................................121 4.4.4. Comparison with models ...........................................................125 4.5. Conclusions and outlook ...................................................................129 Chapter 5 Archaeal lipids in new archives 5.1. Archaeal lipids in drill core samples from the Bosumtwi impact structure, Ghana ...................................................................133 5.1.1. Introduction ...............................................................................133 5.1.2. Samples and methods ................................................................134 5.1.3. Results and discussion ...............................................................135 5.1.4. Summary and conclusions .........................................................139 Chapter 6 Conclusions and outlook Advantages and pitfalls of GDGT proxies and outlook for future studies ................................................................................143 Glossary ..............................................................................................149 Index of figures and tables ................................................................151 References ..........................................................................................155 Appendices 1. Analytical protocols .......................................................................179 2. Data compilation ............................................................................184 3. Published manuscripts ..................................................................209 An interlaboratory study of TEX86 and BIT analysis using high-performance liquid chromatography-mass spectrometry.......211 Rapid screening of glycerol dialkyl glycerol tetraethers in continental Eurasia samples using HPLC/APCI-ion trap mass spectrometry ..........................................................................225 Analytical considerations for the use of the paleothermometer Tetraether Index86 and the Branched vs Isoprenoid Tetraether Index regarding the choice of cleanup and instrumental conditions.......................................................................................229 Archaeabacterial lipids in drill core samples from the Bosumtwi impact structure.............................................................237 Agraïments - Acknowledgements Agraïments - Acknowledgements Vull donar les gràcies a l’Antoni Rosell, per donar-me l’oportunitat d’investigar en el camp del paleoclima i per tot el que
Recommended publications
  • Volcanic History of the Imbrium Basin: a Close-Up View from the Lunar Rover Yutu
    Volcanic history of the Imbrium basin: A close-up view from the lunar rover Yutu Jinhai Zhanga, Wei Yanga, Sen Hua, Yangting Lina,1, Guangyou Fangb, Chunlai Lic, Wenxi Pengd, Sanyuan Zhue, Zhiping Hef, Bin Zhoub, Hongyu Ling, Jianfeng Yangh, Enhai Liui, Yuchen Xua, Jianyu Wangf, Zhenxing Yaoa, Yongliao Zouc, Jun Yanc, and Ziyuan Ouyangj aKey Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China; bInstitute of Electronics, Chinese Academy of Sciences, Beijing 100190, China; cNational Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China; dInstitute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; eKey Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; fKey Laboratory of Space Active Opto-Electronics Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China; gThe Fifth Laboratory, Beijing Institute of Space Mechanics & Electricity, Beijing 100076, China; hXi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China; iInstitute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China; and jInstitute of Geochemistry, Chinese Academy of Science, Guiyang 550002, China Edited by Mark H. Thiemens, University of California, San Diego, La Jolla, CA, and approved March 24, 2015 (received for review February 13, 2015) We report the surface exploration by the lunar rover Yutu that flows in Mare Imbrium was obtained only by remote sensing from landed on the young lava flow in the northeastern part of the orbit. On December 14, 2013, Chang’e-3 successfully landed on the Mare Imbrium, which is the largest basin on the nearside of the young and high-Ti lava flow in the northeastern Mare Imbrium, Moon and is filled with several basalt units estimated to date from about 10 km south from the old low-Ti basalt unit (Fig.
    [Show full text]
  • Actual Problems Актуальные Проблемы
    АКАДЕМИЯ НАУК АВИАЦИИ И ВОЗДУХОПЛАВАНИЯ РОССИЙСКАЯ АКАДЕМИЯ КОСМОНАВТИКИ ИМ. К.Э.ЦИОЛКОВСКОГО ACADEMY OF AVIATION AND AERONAUTICS SCIENCES RUSSIAN ASTRONAUTICS ACADEMY OF K.E.TSIOLKOVSKY'S NAME СССР 7 195 ISSN 1727-6853 12.04.1961 АКТУАЛЬНЫЕ ПРОБЛЕМЫ АВИАЦИОННЫХ И АЭРОКОСМИЧЕСКИХ СИСТЕМ процессы, модели, эксперимент 2(39) 2014 RUSSIAN-AMERICAN SCIENTIFIC JOURNAL ACTUAL PROBLEMS OF AVIATION AND AEROSPACE SYSTEMS processes, models, experiment УРНАЛ УЧНЫЙ Ж О-АМЕРИКАНСКИЙ НА ОССИЙСК Р Казань Daytona Beach А К Т УА Л Ь Н Ы Е П Р О Б Л Е М Ы А В И А Ц И О Н Н Ы Х И А Э Р О К О С М И Ч Е С К И Х С И С Т Е М Казань, Дайтона Бич Вып. 2 (39), том 19, 1-206, 2014 СОДЕРЖАНИЕ CONTENTS Г.В.Новожилов 1 G.V.Novozhilov К 120-летию авиаконструктора To the 120-th Anniversary of Сергея Владимировича Ильюшина Sergey Vladimirovich Ilyushin А.Болонкин 14 A.Bolonkin Использование энергии ветра Utilization of wind energy at high больших высот altitude Эмилио Спедикато 46 Emilio Spedicato О моделировании взаимодействия About modelling interaction of Earth Земли с крупным космическим with large space object: the script with объектом: сценарий взрыва Фаэтона explosion of Phaeton and the sub- и последующей эволюции sequent evolution of Mankind (part II) Человечества (часть II) М.В.Левский 76 M.V.Levskii Оптимальное по времени The time-optimal control of motion of a управление движением spacecraft with inertial executive космического аппарата с devices инерционными исполнительными органами В.А.Афанасьев, А.С.Мещанов, 99 V.A.Afanasyev, A.S.Meshchanov, Е.Ю.Самышева
    [Show full text]
  • Sardegna Punica
    BIBLIOTHECA SARDA N. 56 Gennaro Pesce SARDEGNA PUNICA a cura di Raimondo Zucca In copertina: Federico Melis, Cavaliere, 1928 INDICE 7 Prefazione 219 Betili 28 Nota biografica 222 Statuette e altri oggetti in bronzo 39 Nota bibliografica 230 Scultura in legno 45 Avvertenze redazionali 231 Plastica in terracotta SARDEGNA PUNICA 265 La stipe votiva di Bithia Riedizione dell’opera: 276 I vasi di terracotta Sardegna punica, Cagliari, 49 Premessa Fratelli Fossataro, 1961. 293 Ori e argenti 53 I Fenici in Occidente 299 Le gemme 60 I Fenici in Sardegna 304 Amuleti 69 Cartagine e il suo mondo Pesce, Gennaro 306 Oggetti in osso Sardegna punica / Gennaro Pesce ; 77 Sardegna punica a cura di Raimondo Zucca. - Nuoro : Ilisso, c2000. 334 p. : ill. ; 18 cm. - (Bibliotheca sarda ; 56). 308 Vetri 1. Cartaginesi - Civiltà - Sardegna 84 Gli dei I. Zucca, Raimondo 316 Piombo e ferro 937.9 89 Le città 317 Monete Scheda catalografica: 99 I documenti scritti Cooperativa per i Servizi Bibliotecari, Nuoro 321 Uova di struzzo e valve 105 L’architettura: i templi di conchiglia 159 Le tombe 323 Valore della civiltà puni- 171 La casa d’abitazione ca in Sardegna 325 Le fonti letterarie sulla sto- © Copyright 2000 179 La statuaria by ILISSO EDIZIONI - Nuoro ria sarda prima del domi- ISBN 88-87825-13-0 191 Sculture a rilievo nio romano PREFAZIONE Allorquando il 6 gennaio 1949 assunse la reggenza della Soprintendenza alle Antichità della Sardegna, Genna- ro Pesce diveniva il decimo soprintendente della storia dell’archeologia nell’isola, dal momento che il primo Com- missario ai Musei e Scavi della Sardegna (come allora si di- cevano i responsabili delle Antichità), il canonico Giovanni Spano, era entrato ufficialmente in possesso della sua cari- ca nel 1875, lo stesso anno dell’istituzione del Commissaria- to con R.D.
    [Show full text]
  • March 21–25, 2016
    FORTY-SEVENTH LUNAR AND PLANETARY SCIENCE CONFERENCE PROGRAM OF TECHNICAL SESSIONS MARCH 21–25, 2016 The Woodlands Waterway Marriott Hotel and Convention Center The Woodlands, Texas INSTITUTIONAL SUPPORT Universities Space Research Association Lunar and Planetary Institute National Aeronautics and Space Administration CONFERENCE CO-CHAIRS Stephen Mackwell, Lunar and Planetary Institute Eileen Stansbery, NASA Johnson Space Center PROGRAM COMMITTEE CHAIRS David Draper, NASA Johnson Space Center Walter Kiefer, Lunar and Planetary Institute PROGRAM COMMITTEE P. Doug Archer, NASA Johnson Space Center Nicolas LeCorvec, Lunar and Planetary Institute Katherine Bermingham, University of Maryland Yo Matsubara, Smithsonian Institute Janice Bishop, SETI and NASA Ames Research Center Francis McCubbin, NASA Johnson Space Center Jeremy Boyce, University of California, Los Angeles Andrew Needham, Carnegie Institution of Washington Lisa Danielson, NASA Johnson Space Center Lan-Anh Nguyen, NASA Johnson Space Center Deepak Dhingra, University of Idaho Paul Niles, NASA Johnson Space Center Stephen Elardo, Carnegie Institution of Washington Dorothy Oehler, NASA Johnson Space Center Marc Fries, NASA Johnson Space Center D. Alex Patthoff, Jet Propulsion Laboratory Cyrena Goodrich, Lunar and Planetary Institute Elizabeth Rampe, Aerodyne Industries, Jacobs JETS at John Gruener, NASA Johnson Space Center NASA Johnson Space Center Justin Hagerty, U.S. Geological Survey Carol Raymond, Jet Propulsion Laboratory Lindsay Hays, Jet Propulsion Laboratory Paul Schenk,
    [Show full text]
  • Nd AAS Meeting Abstracts
    nd AAS Meeting Abstracts 101 – Kavli Foundation Lectureship: The Outreach Kepler Mission: Exoplanets and Astrophysics Search for Habitable Worlds 200 – SPD Harvey Prize Lecture: Modeling 301 – Bridging Laboratory and Astrophysics: 102 – Bridging Laboratory and Astrophysics: Solar Eruptions: Where Do We Stand? Planetary Atoms 201 – Astronomy Education & Public 302 – Extrasolar Planets & Tools 103 – Cosmology and Associated Topics Outreach 303 – Outer Limits of the Milky Way III: 104 – University of Arizona Astronomy Club 202 – Bridging Laboratory and Astrophysics: Mapping Galactic Structure in Stars and Dust 105 – WIYN Observatory - Building on the Dust and Ices 304 – Stars, Cool Dwarfs, and Brown Dwarfs Past, Looking to the Future: Groundbreaking 203 – Outer Limits of the Milky Way I: 305 – Recent Advances in Our Understanding Science and Education Overview and Theories of Galactic Structure of Star Formation 106 – SPD Hale Prize Lecture: Twisting and 204 – WIYN Observatory - Building on the 308 – Bridging Laboratory and Astrophysics: Writhing with George Ellery Hale Past, Looking to the Future: Partnerships Nuclear 108 – Astronomy Education: Where Are We 205 – The Atacama Large 309 – Galaxies and AGN II Now and Where Are We Going? Millimeter/submillimeter Array: A New 310 – Young Stellar Objects, Star Formation 109 – Bridging Laboratory and Astrophysics: Window on the Universe and Star Clusters Molecules 208 – Galaxies and AGN I 311 – Curiosity on Mars: The Latest Results 110 – Interstellar Medium, Dust, Etc. 209 – Supernovae and Neutron
    [Show full text]
  • Evidence for Crater Ejecta on Venus Tessera Terrain from Earth-Based Radar Images ⇑ Bruce A
    Icarus 250 (2015) 123–130 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Evidence for crater ejecta on Venus tessera terrain from Earth-based radar images ⇑ Bruce A. Campbell a, , Donald B. Campbell b, Gareth A. Morgan a, Lynn M. Carter c, Michael C. Nolan d, John F. Chandler e a Smithsonian Institution, MRC 315, PO Box 37012, Washington, DC 20013-7012, United States b Cornell University, Department of Astronomy, Ithaca, NY 14853-6801, United States c NASA Goddard Space Flight Center, Mail Code 698, Greenbelt, MD 20771, United States d Arecibo Observatory, HC3 Box 53995, Arecibo 00612, Puerto Rico e Smithsonian Astrophysical Observatory, MS-63, 60 Garden St., Cambridge, MA 02138, United States article info abstract Article history: We combine Earth-based radar maps of Venus from the 1988 and 2012 inferior conjunctions, which had Received 12 June 2014 similar viewing geometries. Processing of both datasets with better image focusing and co-registration Revised 14 November 2014 techniques, and summing over multiple looks, yields maps with 1–2 km spatial resolution and improved Accepted 24 November 2014 signal to noise ratio, especially in the weaker same-sense circular (SC) polarization. The SC maps are Available online 5 December 2014 unique to Earth-based observations, and offer a different view of surface properties from orbital mapping using same-sense linear (HH or VV) polarization. Highland or tessera terrains on Venus, which may retain Keywords: a record of crustal differentiation and processes occurring prior to the loss of water, are of great interest Venus, surface for future spacecraft landings.
    [Show full text]
  • Theoretical Study on Thermal Release of Helium-3 in Lunar Ilmenite
    minerals Article Theoretical Study on Thermal Release of Helium-3 in Lunar Ilmenite Hongqing Song 1,*, Jie Zhang 1, Yueqiang Sun 2, Yongping Li 2, Xianguo Zhang 2, Dongyu Ma 1 and Jue Kou 1 1 School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China; [email protected] (J.Z.); [email protected] (D.M.); [email protected] (J.K.) 2 National Space Science Center, Chinese Academy of Science, Beijing 100190, China; [email protected] (Y.S.); [email protected] (Y.L.); [email protected] (X.Z.) * Correspondence: [email protected]; Tel.: +86-010-82376239 Abstract: The in-situ utilization of lunar helium-3 resource is crucial to manned lunar landings and lunar base construction. Ilmenite was selected as the representative mineral which preserves most of the helium-3 in lunar soil. The implantation of helium-3 ions into ilmenite was simulated to figure out the concentration profile of helium-3 trapped in lunar ilmenite. Based on the obtained concentration profile, the thermal release model for molecular dynamics was established to investigate the diffusion and release of helium-3 in ilmenite. The optimal heating temperature, the diffusion coefficient, and the release rate of helium-3 were analyzed. The heating time of helium-3 in lunar ilmenite under actual lunar conditions was also studied using similitude analysis. The results show that after the implantation of helium-3 into lunar ilmenite, it is mainly trapped in vacancies and interstitials of ilmenite crystal and the corresponding concentration profile follows a Gaussian distribution.
    [Show full text]
  • ∫ K∫ K∫ Chaplygin Equations and an Infinite Set of Uniformly Divergent Gas-Dynamics Equations
    Doklady Physics, Vol. 47, No. 3, 2002, pp. 173–175. Translated from Doklady Akademii Nauk, Vol. 383, No. 1, 2002, pp. 34–36. Original Russian Text Copyright © 2002 by Rylov. PHYSICS Chaplygin Equations and an Infinite Set of Uniformly Divergent Gas-Dynamics Equations A. I. Rylov Presented by Academician G.G. ChernyÏ September 19, 2001 Received September 24, 2001 1. We consider two-dimensional potential ideal-gas (ϕ and ψ) and, as a result, a conservation law in the flows. At the hodograph plane, they are described by physical plane: the Chaplygin equations kβϕ +0,αψ ==βψ –0;αϕ (3) ϕ ψ ϕ ψ z +0,k θ ==θ –0z (1) ()αρu + βv + ()αρv – βu or the Chaplygin equations of the second order for the x y ()ρ ()ρ stream function [1–4]: = f ug+ v x +0.f v – gu x = (4) ρ 1M– 2 Remark. The solutions ϕ = f = const and ψ = g = kψθθ +0,ψ ==z ---dq, k =----------------. (2) zz ∫ q ρ2 const also allow us to obtain certain conservation laws on the (x, y)-plane. For example, substituting either Hereafter, ϕ is the potential; ψ is the stream function; q, f = 1 and g = 0 or f = 0 and g = 1 into (4), we obtain the θ, u, and v are the modulus, angle of inclination, and conservation law for either mass or circulation, respec- horizontal and vertical components of the velocity vec- tively. tor, respectively; M is the Mach number; p is pressure; 2. We consider several tentative examples of exact and ρ is the density.
    [Show full text]
  • Table 2. Geographic Areas, and Biography
    Table 2. Geographic Areas, and Biography The following numbers are never used alone, but may be used as required (either directly when so noted or through the interposition of notation 09 from Table 1) with any number from the schedules, e.g., public libraries (027.4) in Japan (—52 in this table): 027.452; railroad transportation (385) in Brazil (—81 in this table): 385.0981. They may also be used when so noted with numbers from other tables, e.g., notation 025 from Table 1. When adding to a number from the schedules, always insert a decimal point between the third and fourth digits of the complete number SUMMARY —001–009 Standard subdivisions —1 Areas, regions, places in general; oceans and seas —2 Biography —3 Ancient world —4 Europe —5 Asia —6 Africa —7 North America —8 South America —9 Australasia, Pacific Ocean islands, Atlantic Ocean islands, Arctic islands, Antarctica, extraterrestrial worlds —001–008 Standard subdivisions —009 History If “history” or “historical” appears in the heading for the number to which notation 009 could be added, this notation is redundant and should not be used —[009 01–009 05] Historical periods Do not use; class in base number —[009 1–009 9] Geographic treatment and biography Do not use; class in —1–9 —1 Areas, regions, places in general; oceans and seas Not limited by continent, country, locality Class biography regardless of area, region, place in —2; class specific continents, countries, localities in —3–9 > —11–17 Zonal, physiographic, socioeconomic regions Unless other instructions are given, class
    [Show full text]
  • Abundance and Size-Frequency Distributions of Boulders in Linné Crater's Ejecta (Moon)
    Abundance and size-frequency distributions of boulders in Linné crater’s ejecta (Moon) Maurizio Pajola1, Riccardo Pozzobon2, Alice Lucchetti1, Sandro Rossato2, Emanuele Baratti3, Valentina Galluzzi4, Gabriele Cremonese1 1 INAF, Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, 35122, Padova, Italy. 2 Geosciences Department, University of Padova, Padova, Italy. 3 School of Civil Engineering, Department DICAM, University of Bologna, Bologna, Italy. 4 INAF-Istituto di Astrofisica e Planetologia Spaziali, Roma, Italy. Abstract---------------------------------------------------------------------------------------------------- This paper presents the abundances and the size-frequency distributions (SFD) of the ejected boulders surrounding the Linnè crater, located on the Moon’s Mare Serenitatis basin. By means of Lunar Reconnaissance Orbiter Camera high-resolution images we prepare a context geological map of the Linné crater as well as we identify ~12000 boulders ≥ 4.4 m, with a maximum measured size of 30.8 m. The cumulative number of boulders per km2 is fitted with a power-law curve with index - 4.03 +0.09/-0.10. By studying the radial ejecta abundances, we find that the largest ones are located within the first 2 km from the crater’s centre, while few tens of boulders with sizes < 8 m are detectable above 5 km from the crater’s rim. We find that the Linné proximal ejecta blanket is slightly asymmetrical, as indicated in the geological map too, showing a density increase in the NE-SW direction. This may be the result of an oblique impact emplacement of the original impactor, or it may be explained with a perpendicular impact in the Mare Serenitatis location, but on a surface with lunar basalts with different local mechanical properties.
    [Show full text]
  • Review of Non-Market Values of Water Sensitive Systems and Practices: an Update
    Review of non-market values of water sensitive systems and practices: An update Asha Gunawardena, Fan Zhang, James Fogarty and Sayed Iftekhar 2 | Review of non-market values of water sensitive systems and practices: An update Review of non-market values of water sensitive systems and practices: An update Comprehensive economic evaluation framework (IRP2) IRP2-3-2017 Authors Asha Gunawardena1,2, Fan Zhang2, James Fogarty1,2 and Sayed Iftekhar1,2 1 CRC for Water Sensitive Cities 2 Agricultural and Resource Economics, UWA School of Agriculture and Environment © 2017 Cooperative Research Centre for Water Sensitive Cities Ltd. This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of it may be reproduced by any process without written permission from the publisher. Requests and inquiries concerning reproduction rights should be directed to the publisher. Publisher Cooperative Research Centre for Water Sensitive Cities Level 1, 8 Scenic Blvd, Clayton Campus Monash University Clayton, VIC 3800 p. +61 3 9902 4985 e. [email protected] w. www.watersensitivecities.org.au Date of publication: December 2017 An appropriate citation for this document is: Gunawardena, A., Zhang, F., Fogarty, J., Iftekhar, M. S., (2017). Review of non-market values of water sensitive systems and practices: An update. Melbourne, Australia: Cooperative Research Centre for Water Sensitive Cities Disclaimer The CRC for Water Sensitive Cities has endeavoured to ensure that all information in this publication is correct. It makes no warranty with regard to the accuracy of the information provided and will not be liable if the information is inaccurate, incomplete or out of date nor be liable for any direct or indirect damages arising from its use.
    [Show full text]
  • 10Th International Conference and School on Plasma Physics and Controlled Fusion
    UA0500657 10th International Conference and School on Plasma Physics and Controlled Fusion Alushta (Crimea), Ukraine, September 13-18, 2004 i Alushta Ukraine Organized by National Science Center 'Kharkov Institute of Physics and Technology 10th International Conference and School on Plasma Physics and Controlled Fusion Alushta (Crimea), Ukraine, September 13-18, 2004 BOOK OF ABSTRACTS Alushta Ukraine Organized by National Science Center 'Kharkov Institute of Physics and Technology' International Advisory Committee: C.Alejaldre - CIEMAT, Spain M.I.Pergament-TRINITI, Russia V.Astashynski - 1MAF of Belarus MJ.Sadowski - SINS, Poland Acad. of Sci. V.P.Smirnov - RRC "Kurchatov I.G.Brown - LBNL, USA Inst.", Russia T.Dolan - INEEL, USA P.E.Stott - CEA, Cadarache, France Ya.B.Fainberg-NSC KIPT, Ukraine F.Wagner - IPP, Germany A.Hassanein - ANL, USA K. Yamazaki - NIFS, Japan L.M.Kovrizhnykh -GPI of RAS, Russia K.A.Yushchenko - Paton Inst. of E.P.Kruglyakov - INF, Russia Welding, NAS of Ukraine V.I.Lapshin - NSC KIPT, Ukraine A.G.Zagorodny - Bogolyubov Inst. J.Lyon - ORNL, USA for Theoretic Phys., NAS of Ukraine Program Committee: V.I.Lapshin (IPP NSC KIPT) - Chairman K.N.Stepanov (IPP NSC KIPT) - Vice Chairman I.E.Garkusha (IPP NSC KIPT) - Scientific Secretary N.A.Azarenkov (Karazin National Univ., Kharkov) Yu.I.Chutov (T.Shevchenko National Univ., Kiev) T.A.Davydova (INR of NAS of Ukraine, Kiev) G.S.Kirichenko (INR of NAS of Ukraine, Kiev) I.N.Qnishchenko (IPENMA NSC KIPT) O.S.Pavlichenko (IPP NSC KIPT) O.B.Shpenyk (IEP of NAS of Ukraine, Uzhgorod) I.A.SoIoshenko (IP of NAS of Ukraine, Kiev) V.S.Taran (IPP NSC KIPT) V.I.Tereshin (IPP NSC KIPT) V.T.Tolok (Karazin National Univ., Kharkov) V.S.Voitsenya (IPP NSC KIPT) E.D.Volkov (IPP NSC KIPT) A.M.Yegorov (IPENMA NSC KIPT) I.I.Zalyubovski (Karazin National Univ., Kharkov) K.A.Yushchenko (Paton Inst.
    [Show full text]