Linda T. Elkins-Tanton the Earth and the Moon
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Volcanic History of the Imbrium Basin: a Close-Up View from the Lunar Rover Yutu
Volcanic history of the Imbrium basin: A close-up view from the lunar rover Yutu Jinhai Zhanga, Wei Yanga, Sen Hua, Yangting Lina,1, Guangyou Fangb, Chunlai Lic, Wenxi Pengd, Sanyuan Zhue, Zhiping Hef, Bin Zhoub, Hongyu Ling, Jianfeng Yangh, Enhai Liui, Yuchen Xua, Jianyu Wangf, Zhenxing Yaoa, Yongliao Zouc, Jun Yanc, and Ziyuan Ouyangj aKey Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China; bInstitute of Electronics, Chinese Academy of Sciences, Beijing 100190, China; cNational Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China; dInstitute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; eKey Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; fKey Laboratory of Space Active Opto-Electronics Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China; gThe Fifth Laboratory, Beijing Institute of Space Mechanics & Electricity, Beijing 100076, China; hXi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China; iInstitute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China; and jInstitute of Geochemistry, Chinese Academy of Science, Guiyang 550002, China Edited by Mark H. Thiemens, University of California, San Diego, La Jolla, CA, and approved March 24, 2015 (received for review February 13, 2015) We report the surface exploration by the lunar rover Yutu that flows in Mare Imbrium was obtained only by remote sensing from landed on the young lava flow in the northeastern part of the orbit. On December 14, 2013, Chang’e-3 successfully landed on the Mare Imbrium, which is the largest basin on the nearside of the young and high-Ti lava flow in the northeastern Mare Imbrium, Moon and is filled with several basalt units estimated to date from about 10 km south from the old low-Ti basalt unit (Fig. -
7 Planetary Rings Matthew S
7 Planetary Rings Matthew S. Tiscareno Center for Radiophysics and Space Research, Cornell University, Ithaca, NY, USA 1Introduction..................................................... 311 1.1 Orbital Elements ..................................................... 312 1.2 Roche Limits, Roche Lobes, and Roche Critical Densities .................... 313 1.3 Optical Depth ....................................................... 316 2 Rings by Planetary System .......................................... 317 2.1 The Rings of Jupiter ................................................... 317 2.2 The Rings of Saturn ................................................... 319 2.3 The Rings of Uranus .................................................. 320 2.4 The Rings of Neptune ................................................. 323 2.5 Unconfirmed Ring Systems ............................................. 324 2.5.1 Mars ............................................................... 324 2.5.2 Pluto ............................................................... 325 2.5.3 Rhea and Other Moons ................................................ 325 2.5.4 Exoplanets ........................................................... 327 3RingsbyType.................................................... 328 3.1 Dense Broad Disks ................................................... 328 3.1.1 Spiral Waves ......................................................... 329 3.1.2 Gap Edges and Moonlet Wakes .......................................... 333 3.1.3 Radial Structure ..................................................... -
Actual Problems Актуальные Проблемы
АКАДЕМИЯ НАУК АВИАЦИИ И ВОЗДУХОПЛАВАНИЯ РОССИЙСКАЯ АКАДЕМИЯ КОСМОНАВТИКИ ИМ. К.Э.ЦИОЛКОВСКОГО ACADEMY OF AVIATION AND AERONAUTICS SCIENCES RUSSIAN ASTRONAUTICS ACADEMY OF K.E.TSIOLKOVSKY'S NAME СССР 7 195 ISSN 1727-6853 12.04.1961 АКТУАЛЬНЫЕ ПРОБЛЕМЫ АВИАЦИОННЫХ И АЭРОКОСМИЧЕСКИХ СИСТЕМ процессы, модели, эксперимент 2(39) 2014 RUSSIAN-AMERICAN SCIENTIFIC JOURNAL ACTUAL PROBLEMS OF AVIATION AND AEROSPACE SYSTEMS processes, models, experiment УРНАЛ УЧНЫЙ Ж О-АМЕРИКАНСКИЙ НА ОССИЙСК Р Казань Daytona Beach А К Т УА Л Ь Н Ы Е П Р О Б Л Е М Ы А В И А Ц И О Н Н Ы Х И А Э Р О К О С М И Ч Е С К И Х С И С Т Е М Казань, Дайтона Бич Вып. 2 (39), том 19, 1-206, 2014 СОДЕРЖАНИЕ CONTENTS Г.В.Новожилов 1 G.V.Novozhilov К 120-летию авиаконструктора To the 120-th Anniversary of Сергея Владимировича Ильюшина Sergey Vladimirovich Ilyushin А.Болонкин 14 A.Bolonkin Использование энергии ветра Utilization of wind energy at high больших высот altitude Эмилио Спедикато 46 Emilio Spedicato О моделировании взаимодействия About modelling interaction of Earth Земли с крупным космическим with large space object: the script with объектом: сценарий взрыва Фаэтона explosion of Phaeton and the sub- и последующей эволюции sequent evolution of Mankind (part II) Человечества (часть II) М.В.Левский 76 M.V.Levskii Оптимальное по времени The time-optimal control of motion of a управление движением spacecraft with inertial executive космического аппарата с devices инерционными исполнительными органами В.А.Афанасьев, А.С.Мещанов, 99 V.A.Afanasyev, A.S.Meshchanov, Е.Ю.Самышева -
Application of Tetraether Membrane Lipids As Proxies for Continental Climate
Institut de Ciència i Tecnologia Ambientals Universitat Autònoma de Barcelona Application of tetraether membrane lipids as proxies for continental climate reconstruction in Iberian and Siberian lakes Marina Escala Pascual Tesi doctoral Institut de Ciència i Tecnologia Ambientals Universitat Autònoma de Barcelona Application of tetraether membrane lipids as proxies for continental climate reconstruction in Iberian and Siberian lakes Memòria presentada per Marina Escala Pascual per optar al títol de Doctor per la Universitat Autònoma de Barcelona, sota la direcció del doctor Antoni Rosell Melé. Marina Escala Pascual Abril 2009 Cover photograph: Lake Baikal (Jens Klump, Continent Project) Als meus pares i al meu germà. INDEX Acknowledgements .................................................................................i Abstract .................................................................................................iii Resum ....................................................................................................iv Chapter 1 Introduction 1.1. Paleoclimate and biomarker proxies ....................................................3 1.2. Distribution of Archaea in freshwater environments ........................5 1.3. Origin and significance of GDGTs .......................................................9 1.4. Calibration of GDGT-based proxies ..................................................14 1.5. Objective and outline of this thesis ....................................................19 Chapter 2 Methodology 2.1. -
March 21–25, 2016
FORTY-SEVENTH LUNAR AND PLANETARY SCIENCE CONFERENCE PROGRAM OF TECHNICAL SESSIONS MARCH 21–25, 2016 The Woodlands Waterway Marriott Hotel and Convention Center The Woodlands, Texas INSTITUTIONAL SUPPORT Universities Space Research Association Lunar and Planetary Institute National Aeronautics and Space Administration CONFERENCE CO-CHAIRS Stephen Mackwell, Lunar and Planetary Institute Eileen Stansbery, NASA Johnson Space Center PROGRAM COMMITTEE CHAIRS David Draper, NASA Johnson Space Center Walter Kiefer, Lunar and Planetary Institute PROGRAM COMMITTEE P. Doug Archer, NASA Johnson Space Center Nicolas LeCorvec, Lunar and Planetary Institute Katherine Bermingham, University of Maryland Yo Matsubara, Smithsonian Institute Janice Bishop, SETI and NASA Ames Research Center Francis McCubbin, NASA Johnson Space Center Jeremy Boyce, University of California, Los Angeles Andrew Needham, Carnegie Institution of Washington Lisa Danielson, NASA Johnson Space Center Lan-Anh Nguyen, NASA Johnson Space Center Deepak Dhingra, University of Idaho Paul Niles, NASA Johnson Space Center Stephen Elardo, Carnegie Institution of Washington Dorothy Oehler, NASA Johnson Space Center Marc Fries, NASA Johnson Space Center D. Alex Patthoff, Jet Propulsion Laboratory Cyrena Goodrich, Lunar and Planetary Institute Elizabeth Rampe, Aerodyne Industries, Jacobs JETS at John Gruener, NASA Johnson Space Center NASA Johnson Space Center Justin Hagerty, U.S. Geological Survey Carol Raymond, Jet Propulsion Laboratory Lindsay Hays, Jet Propulsion Laboratory Paul Schenk, -
Nd AAS Meeting Abstracts
nd AAS Meeting Abstracts 101 – Kavli Foundation Lectureship: The Outreach Kepler Mission: Exoplanets and Astrophysics Search for Habitable Worlds 200 – SPD Harvey Prize Lecture: Modeling 301 – Bridging Laboratory and Astrophysics: 102 – Bridging Laboratory and Astrophysics: Solar Eruptions: Where Do We Stand? Planetary Atoms 201 – Astronomy Education & Public 302 – Extrasolar Planets & Tools 103 – Cosmology and Associated Topics Outreach 303 – Outer Limits of the Milky Way III: 104 – University of Arizona Astronomy Club 202 – Bridging Laboratory and Astrophysics: Mapping Galactic Structure in Stars and Dust 105 – WIYN Observatory - Building on the Dust and Ices 304 – Stars, Cool Dwarfs, and Brown Dwarfs Past, Looking to the Future: Groundbreaking 203 – Outer Limits of the Milky Way I: 305 – Recent Advances in Our Understanding Science and Education Overview and Theories of Galactic Structure of Star Formation 106 – SPD Hale Prize Lecture: Twisting and 204 – WIYN Observatory - Building on the 308 – Bridging Laboratory and Astrophysics: Writhing with George Ellery Hale Past, Looking to the Future: Partnerships Nuclear 108 – Astronomy Education: Where Are We 205 – The Atacama Large 309 – Galaxies and AGN II Now and Where Are We Going? Millimeter/submillimeter Array: A New 310 – Young Stellar Objects, Star Formation 109 – Bridging Laboratory and Astrophysics: Window on the Universe and Star Clusters Molecules 208 – Galaxies and AGN I 311 – Curiosity on Mars: The Latest Results 110 – Interstellar Medium, Dust, Etc. 209 – Supernovae and Neutron -
Evidence for Crater Ejecta on Venus Tessera Terrain from Earth-Based Radar Images ⇑ Bruce A
Icarus 250 (2015) 123–130 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Evidence for crater ejecta on Venus tessera terrain from Earth-based radar images ⇑ Bruce A. Campbell a, , Donald B. Campbell b, Gareth A. Morgan a, Lynn M. Carter c, Michael C. Nolan d, John F. Chandler e a Smithsonian Institution, MRC 315, PO Box 37012, Washington, DC 20013-7012, United States b Cornell University, Department of Astronomy, Ithaca, NY 14853-6801, United States c NASA Goddard Space Flight Center, Mail Code 698, Greenbelt, MD 20771, United States d Arecibo Observatory, HC3 Box 53995, Arecibo 00612, Puerto Rico e Smithsonian Astrophysical Observatory, MS-63, 60 Garden St., Cambridge, MA 02138, United States article info abstract Article history: We combine Earth-based radar maps of Venus from the 1988 and 2012 inferior conjunctions, which had Received 12 June 2014 similar viewing geometries. Processing of both datasets with better image focusing and co-registration Revised 14 November 2014 techniques, and summing over multiple looks, yields maps with 1–2 km spatial resolution and improved Accepted 24 November 2014 signal to noise ratio, especially in the weaker same-sense circular (SC) polarization. The SC maps are Available online 5 December 2014 unique to Earth-based observations, and offer a different view of surface properties from orbital mapping using same-sense linear (HH or VV) polarization. Highland or tessera terrains on Venus, which may retain Keywords: a record of crustal differentiation and processes occurring prior to the loss of water, are of great interest Venus, surface for future spacecraft landings. -
Theoretical Study on Thermal Release of Helium-3 in Lunar Ilmenite
minerals Article Theoretical Study on Thermal Release of Helium-3 in Lunar Ilmenite Hongqing Song 1,*, Jie Zhang 1, Yueqiang Sun 2, Yongping Li 2, Xianguo Zhang 2, Dongyu Ma 1 and Jue Kou 1 1 School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China; [email protected] (J.Z.); [email protected] (D.M.); [email protected] (J.K.) 2 National Space Science Center, Chinese Academy of Science, Beijing 100190, China; [email protected] (Y.S.); [email protected] (Y.L.); [email protected] (X.Z.) * Correspondence: [email protected]; Tel.: +86-010-82376239 Abstract: The in-situ utilization of lunar helium-3 resource is crucial to manned lunar landings and lunar base construction. Ilmenite was selected as the representative mineral which preserves most of the helium-3 in lunar soil. The implantation of helium-3 ions into ilmenite was simulated to figure out the concentration profile of helium-3 trapped in lunar ilmenite. Based on the obtained concentration profile, the thermal release model for molecular dynamics was established to investigate the diffusion and release of helium-3 in ilmenite. The optimal heating temperature, the diffusion coefficient, and the release rate of helium-3 were analyzed. The heating time of helium-3 in lunar ilmenite under actual lunar conditions was also studied using similitude analysis. The results show that after the implantation of helium-3 into lunar ilmenite, it is mainly trapped in vacancies and interstitials of ilmenite crystal and the corresponding concentration profile follows a Gaussian distribution. -
Blocks Size Frequency Distribution in the Enceladus Tiger Stripes Area: Implications on Their Formative Processes
universe Article Blocks Size Frequency Distribution in the Enceladus Tiger Stripes Area: Implications on Their Formative Processes Maurizio Pajola 1,* , Alice Lucchetti 1 , Lara Senter 2 and Gabriele Cremonese 1 1 INAF-Astronomical Observatory of Padova, Vicolo dell’Osservatorio 5, 35122 Padova, Italy; [email protected] (A.L.); [email protected] (G.C.) 2 Department of Physics and Astronomy “G. Galilei”, Università di Padova, 35122 Padova, Italy; [email protected] * Correspondence: [email protected] Abstract: We study the size frequency distribution of the blocks located in the deeply fractured, geologically active Enceladus South Polar Terrain with the aim to suggest their formative mechanisms. Through the Cassini ISS images, we identify ~17,000 blocks with sizes ranging from ~25 m to 366 m, and located at different distances from the Damascus, Baghdad and Cairo Sulci. On all counts and for both Damascus and Baghdad cases, the power-law fitting curve has an index that is similar to the one obtained on the deeply fractured, actively sublimating Hathor cliff on comet 67P/Churyumov- Gerasimenko, where several non-dislodged blocks are observed. This suggests that as for 67P, sublimation and surface stresses favor similar fractures development in the Enceladus icy matrix, hence resulting in comparable block disaggregation. A steeper power-law index for Cairo counts may suggest a higher degree of fragmentation, which could be the result of localized, stronger tectonic disruption of lithospheric ice. Eventually, we show that the smallest blocks identified are located Citation: Pajola, M.; Lucchetti, A.; from tens of m to 20–25 km from the Sulci fissures, while the largest blocks are found closer to the Senter, L.; Cremonese, G. -
Saturn's Polar Atmosphere
12 Saturn's Polar Atmosphere K.M. SAYANAGI1, K.H. BAINES2, U.A. DYUDINA3, L.N. FLETCHER4, A. SANCHEZ-LAVEGA´ 5, R.A. WEST2 1Department of Atmospheric and Planetary Sciences, the northern winter solstice in 2002), through the equinox Hampton University, 23 E Tyler St., Hampton, VA 23668, in 2009, and approaching the next solstice in 2017. We con- USA clude the current review by listing unanswered questions and 2Jet Propulsion Laboratory, California Institute of Technol- describing the observations of the polar regions planned for ogy, 4800 Oak Grove Drive, Pasadena, CA 91109, USA the Grand Finale phase of the Cassini mission between 2016 3Division of Geological and Planetary Sciences, California and 2017. Institute of Technology, 1200 California Blvd, Pasadena, CA 91125, USA 4Department of Physics and Astronomy, University of Le- icester, University Road, Leicester, LE1 7RH 5Departamento de F´ısicaAplicada I, E.T.S. Ingenier´ıa,Uni- 12.1 Introduction: views of Saturn's poles from versidad del Pa´ısVasco, Bilbao, Spain the Cassini orbiter Copyright Notice The Cassini mission has explored the Saturnian system in The Chapter, Saturn's Polar Atmosphere, is to be pub- ways that are possible only from an orbiting spacecraft. lished by Cambridge University Press as part of a multi- Cassini is the fourth spacecraft to visit Saturn after Pio- volume work edited by Kevin Baines, Michael Flasar, Nor- neer 11 and Voyagers 1 & 2, and the first spacecraft to orbit bert Krupp, and Thomas Stallard, entitled \Saturn in the the planet. Cassini has been in orbit around Saturn since 21st Century" (`the Volume'). -
∫ K∫ K∫ Chaplygin Equations and an Infinite Set of Uniformly Divergent Gas-Dynamics Equations
Doklady Physics, Vol. 47, No. 3, 2002, pp. 173–175. Translated from Doklady Akademii Nauk, Vol. 383, No. 1, 2002, pp. 34–36. Original Russian Text Copyright © 2002 by Rylov. PHYSICS Chaplygin Equations and an Infinite Set of Uniformly Divergent Gas-Dynamics Equations A. I. Rylov Presented by Academician G.G. ChernyÏ September 19, 2001 Received September 24, 2001 1. We consider two-dimensional potential ideal-gas (ϕ and ψ) and, as a result, a conservation law in the flows. At the hodograph plane, they are described by physical plane: the Chaplygin equations kβϕ +0,αψ ==βψ –0;αϕ (3) ϕ ψ ϕ ψ z +0,k θ ==θ –0z (1) ()αρu + βv + ()αρv – βu or the Chaplygin equations of the second order for the x y ()ρ ()ρ stream function [1–4]: = f ug+ v x +0.f v – gu x = (4) ρ 1M– 2 Remark. The solutions ϕ = f = const and ψ = g = kψθθ +0,ψ ==z ---dq, k =----------------. (2) zz ∫ q ρ2 const also allow us to obtain certain conservation laws on the (x, y)-plane. For example, substituting either Hereafter, ϕ is the potential; ψ is the stream function; q, f = 1 and g = 0 or f = 0 and g = 1 into (4), we obtain the θ, u, and v are the modulus, angle of inclination, and conservation law for either mass or circulation, respec- horizontal and vertical components of the velocity vec- tively. tor, respectively; M is the Mach number; p is pressure; 2. We consider several tentative examples of exact and ρ is the density. -
Jovian Planets
Northeastern Illinois University Jovian Planets Greg Anderson Department of Physics & Astronomy Northeastern Illinois University Winter-Spring 2020 c 2012-2020 G. Anderson Universe: Past, Present & Future – slide 1 / 81 Northeastern Illinois Outline University Overview Jovian Planets Jovian Moons Ring Systems Review c 2012-2020 G. Anderson Universe: Past, Present & Future – slide 2 / 81 Northeastern Illinois University Outline Overview Orbital Periods Solar System Jovian Planets Jovian Moons Ring Systems Review Overview c 2012-2020 G. Anderson Universe: Past, Present & Future – slide 3 / 81 Northeastern Illinois Orbital Properties of Planets University Name Distance (AU) Period (years) Speed (AU/yr) Mercury 0.387 0.2409 10.09 Venus 0.723 0.6152 7.384 Earth 1.0 1.0 6.283 Mars 1.524 1.881 5.09 Jupiter 5.203 11.86 2.756 Saturn 9.539 29.42 2.037 Uranus 19.19 84.01 1.435 Neptune 30.06 164.8 1.146 c 2012-2020 G. Anderson Universe: Past, Present & Future – slide 4 / 81 M J S M J U S M J N Northeastern Illinois University Outline Overview Jovian Planets Jovian Planets Planetary Densities Composition Composition H & He Formation Escape Velocity Jovian Planets Formation 2 Q: Jovian Interiors Jovian Densities 02A 02 Q: Jupiter and Saturn Q: Jupiter’s composition Jovian Interiors Jovian Interiors Jupiter Jupiter Lithograph Jupiter Jupiter Jupiter from Io Interior c 2012-2020 G. Anderson Universe: Past, Present & Future – slide 6 / 81 Northeastern Illinois Jovian Planets University Jupiter Saturn Uranus Neptune 3 d⊙ R⊕ M⊕ ρ (g/cm ) tilt T (K) Jupiter 5.20 AU 11.21 317.9 1.33 3.1◦ 125 Saturn 9.54 AU 9.45 95.2 0.71 26.7◦ 75 Uranus 19.19 AU 4.01 14.5 1.24 97.9◦ 60 Neptune 30.06 AU 3.88 17.1 1.67 29.◦ 60 c 2012-2020 G.