Master's Thesis
Total Page:16
File Type:pdf, Size:1020Kb
MASTER'S THESIS Titan’s Atmospheric Composition from the Analysis of Cassini/UVIS Stellar Occultation Ivan Lehocki 2014 Master of Science (120 credits) Space Engineering - Space Master Luleå University of Technology Department of Computer Science, Electrical and Space Engineering Titan’s atmospheric composition from the analysis of Cassini/UVIS stellar occultation Ivan Lehocki Luleå University of Technology, Sweden Paul Sabatier University, France Thesis carried out in: Laboratoire Interuniversitaire des Systèmes Atmosphériques, Créteil, France Supervised by: Professor Yves Bénilan University Paris-Est Créteil, France Dr. Fernando Javier Capalbo University Paris-Est Créteil, France Examined by: Dr. Mathias Milz Luleå University of Technology Kiruna, Sweden Abstract One of the fundamental questions concerning each and every human being is: are we alone in this Universe? This deceptively simple question, with potentially profound implications for the trajectory of civilization's development (regardless of the answer), is one of the principal driving forces for exploration of the Solar System and beyond. One of the primary candidates for the study of the origin of life beyond Earth is Titan, Saturn's largest moon. Unlike other natural satellites revolving around the Solar System's planets, Titan has an atmosphere. This atmosphere is thick and mostly dominated by molecular nitrogen (N2) and methane (CH4) to a lesser degree. The aforementioned molecules, coupled with the Sun's electromagnetic radiation (EMR) in the far ultraviolet (FUV) part of the spectrum (~110-190 nm), as well as charged particles stemming from Saturn’s strong magnetic field, are giving rise to higher complexity organic molecules, molecules that are very interesting from an astrobiological point of view. Identification of some of the molecules existing in Titan's upper atmosphere through the detection of well-defined absorption features, in an altitude range between 400-1400 km (above Titan's surface), is now possible with the Ultraviolet Imaging Spectrograph (UVIS) onboard Cassini. Its spectral resolution surpasses that of similar instruments in preceding missions (Vervack et al., 2004). Moreover, laboratory work providing higher spectral resolution absorption cross section (ACS) data can be used together with measured transmission spectra to further aid the identification of molecules. Beyond the detection, spatial distribution of species, their abundances as a function of altitude as well as temperature profiles, are deductible parameters from UVIS altitude-dependent transmission spectra. The interpretation of data is aided by the radiative transfer equation which describes the propagation of electromagnetic (EM) waves through a medium, for example an atmosphere. It serves as a link between measured and deduced quantities. Researchers throughout the world are trying to decipher UVIS data with their in-house softwares. One such software package was developed in the Space Organic Physicochemistry group I (Groupe de PhysicoChimie Organique Spatiale – GPCOS) of Inter-universittary Laboratory of Atmospheric Systems (Laboratoire Interuniversitaire des Systèmes Atmosphériques – LISA) in Créteil, France (Capalbo, 2014). The software incorporates several modules, one of which is called MPFIT (Markwardt, 2009). This is the heart of the software as it performs spectral inversion in order to obtain column densities from measured (altitude dependent) transmission spectra. Therefore, the outputs of the MPFIT routine, namely column densities of 8 species (CH4, C2H2 (acetylene), HCN (hydrogen cyanide), C2H4 (ethylene), C4H2 (diacetylene), HC3N (cyanoacetylene), C6H6 (benzene) and aerosols), were studiously examined in synthetic modelling tests where they were compared to input "true" column densities. Thus, the characterization of the MPFIT routine, i.e. the dependence of the final solutions on the initial guess factor multiplying the initial column densities, was one of two main tasks of this work. This was followed by in-depth search of Outer Planetary Universal Search (OPUS)1 online database with the aim of creating a stellar occultation list from which an occultation for further analysis was chosen. Finally, the retrieved abundances of T41 II occultation were compared to previously published results of T41 I occultation which was occurring on the same day, but some 6 hours earlier and on different latitude-longitude coordinates. The ultimate goal of this thesis was to contribute knowledge towards comprehending complex organic chemistry taking place in Titan’s atmosphere. By studying Titan, we are studying Earth and its atmosphere in its prebiotic stage of evolution. 1 OPUS search tool website: http://pds-rings.seti.org/search II Contents List of Figures ................................................................................................................................................. V List of Tables ................................................................................................................................................. IX 1. Introduction ........................................................................................................................................... 1 1.1. Titan and its atmosphere .............................................................................................................. 1 1.2. Photochemical models .................................................................................................................. 4 1.3. Observation and exploration ......................................................................................................... 5 1.3.1. Cassini-Huygens mission........................................................................................................ 6 1.3.2. UVIS instrument .................................................................................................................... 8 1.3.2.1. UVIS data ............................................................................................................................. 10 1.4. Project description ...................................................................................................................... 11 1.5. Report outline.............................................................................................................................. 12 2. Theory and methods ........................................................................................................................... 13 2.1. Stellar occultation ........................................................................................................................ 13 2.2. The equation of radiative transfer .............................................................................................. 15 2.3. Methods for analysis of stellar occultation data ......................................................................... 20 2.3.1. Column density and number density retrieval .................................................................... 20 2.3.2. Synthetic modeling .............................................................................................................. 21 2.3.2.1. Retrieval matrices ................................................................................................................ 23 2.3.3. Methods applied in real data analysis ................................................................................. 28 2.3.3.1. Ancillary data ....................................................................................................................... 29 2.3.3.2. Procedure ............................................................................................................................ 31 2.3.3.3. Uncertainties ....................................................................................................................... 35 3. Results ................................................................................................................................................. 38 3.1. Synthetic modelling – retrieval matrices ..................................................................................... 38 3.1.1. CH4 ....................................................................................................................................... 39 3.1.2. C2H2 ...................................................................................................................................... 40 3.1.3. HCN ...................................................................................................................................... 41 3.1.4. C2H4 ...................................................................................................................................... 42 3.1.5. C4H2 ...................................................................................................................................... 43 3.1.6. HC3N .................................................................................................................................... 44 III 3.1.7. C6H6 ...................................................................................................................................... 45 3.1.8. Aerosols ............................................................................................................................... 46 3.2. Real data analysis - T41 II stellar occultation .............................................................................. 47 Conclusions