Formulation of Territorial Action Plans for Coastal Protection and Management
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Responses to Coastal Erosio in Alaska in a Changing Climate
Responses to Coastal Erosio in Alaska in a Changing Climate A Guide for Coastal Residents, Business and Resource Managers, Engineers, and Builders Orson P. Smith Mikal K. Hendee Responses to Coastal Erosio in Alaska in a Changing Climate A Guide for Coastal Residents, Business and Resource Managers, Engineers, and Builders Orson P. Smith Mikal K. Hendee Alaska Sea Grant College Program University of Alaska Fairbanks SG-ED-75 Elmer E. Rasmuson Library Cataloging in Publication Data: Smith, Orson P. Responses to coastal erosion in Alaska in a changing climate : a guide for coastal residents, business and resource managers, engineers, and builders / Orson P. Smith ; Mikal K. Hendee. – Fairbanks, Alaska : Alaska Sea Grant College Program, University of Alaska Fairbanks, 2011. p.: ill., maps ; cm. - (Alaska Sea Grant College Program, University of Alaska Fairbanks ; SG-ED-75) Includes bibliographical references and index. 1. Coast changes—Alaska—Guidebooks. 2. Shore protection—Alaska—Guidebooks. 3. Beach erosion—Alaska—Guidebooks. 4. Coastal engineering—Alaska—Guidebooks. I. Title. II. Hendee, Mikal K. III. Series: Alaska Sea Grant College Program, University of Alaska Fairbanks; SG-ED-75. TC330.S65 2011 ISBN 978-1-56612-165-1 doi:10.4027/rceacc.2011 © Alaska Sea Grant College Program, University of Alaska Fairbanks. All rights reserved. Credits This book, SG-ED-75, is published by the Alaska Sea Grant College Program, supported by the U.S. Department of Commerce, NOAA National Sea Grant Office, grant NA10OAR4170097, projects A/75-02 and A/161-02; and by the University of Alaska Fairbanks with state funds. Sea Grant is a unique partnership with public and private sectors combining research, education, and technology transfer for the public. -
Coastal and Ocean Engineering
May 18, 2020 Coastal and Ocean Engineering John Fenton Institute of Hydraulic Engineering and Water Resources Management Vienna University of Technology, Karlsplatz 13/222, 1040 Vienna, Austria URL: http://johndfenton.com/ URL: mailto:[email protected] Abstract This course introduces maritime engineering, encompassing coastal and ocean engineering. It con- centrates on providing an understanding of the many processes at work when the tides, storms and waves interact with the natural and human environments. The course will be a mixture of descrip- tion and theory – it is hoped that by understanding the theory that the practicewillbemadeallthe easier. There is nothing quite so practical as a good theory. Table of Contents References ....................... 2 1. Introduction ..................... 6 1.1 Physical properties of seawater ............. 6 2. Introduction to Oceanography ............... 7 2.1 Ocean currents .................. 7 2.2 El Niño, La Niña, and the Southern Oscillation ........10 2.3 Indian Ocean Dipole ................12 2.4 Continental shelf flow ................13 3. Tides .......................15 3.1 Introduction ...................15 3.2 Tide generating forces and equilibrium theory ........15 3.3 Dynamic model of tides ...............17 3.4 Harmonic analysis and prediction of tides ..........19 4. Surface gravity waves ..................21 4.1 The equations of fluid mechanics ............21 4.2 Boundary conditions ................28 4.3 The general problem of wave motion ...........29 4.4 Linear wave theory .................30 4.5 Shoaling, refraction and breaking ............44 4.6 Diffraction ...................50 4.7 Nonlinear wave theories ...............51 1 Coastal and Ocean Engineering John Fenton 5. The calculation of forces on ocean structures ...........54 5.1 Structural element much smaller than wavelength – drag and inertia forces .....................54 5.2 Structural element comparable with wavelength – diffraction forces ..56 6. -
Economic Impact of the Cultural Routes of the Council of Europe in the EU Macro-Regions Routes4u | 15
Economic impact of the Cultural Routes of the Council of Europe in the EU macro-regions Routes4U | 15 Routes4U Council of Europe Routes4U | 15 Directorate General Democracy of Europe of the Council Routes impactEconomic of the Cultural F-67075 Strasbourg Enlarged Partial Agreement on Cultural Routes – Council of Europe European Institute of Cultural Routes 28 rue Münster in the EU macro-regions L-2160 Luxembourg Tel. +352 24 12 50 Routes4U www.coe.int/routes4u Cultural Routes of the Adriatic-Ionian, Alpine, Baltic Sea Council of Europe in the and Danube macro-regions PREMS 026120 ENG The Council of Europe is the continent’s leading The Member States of the European Union human rights organisation. It comprises 47 member have decided to link together their know- states, including all members of the European Union. how, resources and destinies. Together, they All Council of Europe member states have signed up have built a zone of stability, democracy and to the European Convention on Human Rights, sustainable development whilst maintaining a treaty designed to protect human rights, cultural diversity, tolerance and individual democracy and the rule of law. The European Court freedoms. The European Union is committed of Human Rights oversees the implementation to sharing its achievements and its values with of the Convention in the member states. countries and peoples beyond its borders. www.coe.int www.europa.eu Routes4U Project Routes4U Project Economic impact of the Cultural Routes of the Council of Europe in the European Union macro-regions Routes4U | 15 Council of Europe The opinions expressed in this work are the responsibility of the author(s) and do not necessarily reflect the official policy of the European Commission or the Council of Europe All requests concerning the reproduction or translation of all or part of this document should be addressed to the Directorate of Communication (F-67075 Strasbourg Cedex or [email protected]). -
Updated Groundwater Vulnerability Evaluation at a Coastal Aquifer System in NE Greece
European Water 57: 423-428, 2017. © 2017 E.W. Publications Updated groundwater vulnerability evaluation at a coastal aquifer system in NE Greece G. Eminoglou1, I. Gkiougkis1, A. Kallioras2 and F.-K. Pliakas1* 1 Engineering Geology Laboratory, Civil Engineering Department, Democritus University of Thrace, 67132 Xanthi, Greece 2 Engineering Geology and Hydrogeology Laboratory, School of Mining Engineering and Metallurgy, National Technical University of Athens, 157 80 Athens, Greece * e-mail: [email protected] Abstract: This paper presents the updated vulnerability assessment of Xilagani - Imeros aquifer system in the coastal plain region of Rhodope Prefecture, NE Greece, in the framework of the groundwater management in the region. Information regarding the geological and geomorphological environment, as well as data concerning the hydrologic and hydrogeological regime of the study area are stated. The paper presents the application of DRASTIC and GALDIT vulnerability indexes procedures and the design of easy to use vulnerability maps in order to identify the parts where there is a serious potential for groundwater resources qualitative degradation due to agricultural pollution (DRASTIC approach) or seawater intrusion (GALDIT approach). The research is based on the results of hydrogeological studies in the study area for the year 2015 compared to the year 2006, including field hydrogeological measurements and chemical analyses in the laboratory, as well as the design of groundwater piezometric maps and hydrochemical maps. It is worth mentioning that DRASTIC index values for the year 2015 do not differ substantially compared to the corresponding values for the year 2006. Instead, increase of GALDIT index values is recorded for the year 2015 indicating worsening of the groundwater salinization status due to seawater intrusion. -
Stability Design of Coastal Structures (Seadikes, Revetments, Breakwaters and Groins)
Note: Stability of coastal structures Date: August 2016 www.leovanrijn-sediment.com STABILITY DESIGN OF COASTAL STRUCTURES (SEADIKES, REVETMENTS, BREAKWATERS AND GROINS) by Leo C. van Rijn, www.leovanrijn-sediment.com, The Netherlands August 2016 1. INTRODUCTION 2. HYDRODYNAMIC BOUNDARY CONDITIONS AND PROCESSES 2.1 Basic boundary conditions 2.2 Wave height parameters 2.2.1 Definitions 2.2.2 Wave models 2.2.3 Design of wave conditions 2.2.4 Example wave computation 2.3 Tides, storm surges and sea level rise 2.3.1 Tides 2.3.2 Storm surges 2.3.3 River floods 2.3.4 Sea level rise 2.4 Wave reflection 2.5 Wave runup 2.5.1 General formulae 2.5.2 Effect of rough slopes 2.5.3 Effect of composite slopes and berms 2.5.4 Effect of oblique wave attack 2.6 Wave overtopping 2.6.1 General formulae 2.6.2 Effect of rough slopes 2.6.3 Effect of composite slopes and berms 2.6.4 Effect of oblique wave attack 2.6.5 Effect of crest width 2.6.6 Example case 2.7 Wave transmission 1 Note: Stability of coastal structures Date: August 2016 www.leovanrijn-sediment.com 3 STABILITY EQUATIONS FOR ROCK AND CONCRETE ARMOUR UNITS 3.1 Introduction 3.2 Critical shear-stress method 3.2.1 Slope effects 3.2.2 Stability equations for stones on mild and steep slopes 3.3 Critical wave height method 3.3.1 Stability equations; definitions 3.3.2 Stability equations for high-crested conventional breakwaters 3.3.3 Stability equations for high-crested berm breakwaters 3.3.4 Stability equations for low-crested, emerged breakwaters and groins 3.3.5 Stability equations for submerged breakwaters -
Ices Wgitmo Report 2013
ICES WGITMO REPORT 2013 ICES ADVISORY COMMITTEE ICES CM 2013/ACOM:30 Report of the ICES Working Group on Introduc- tion and Transfers of Marine Organisms (WGITMO) 20 - 22 March 2013 Montreal, Canada International Council for the Exploration of the Sea Conseil International pour l’Exploration de la Mer H. C. Andersens Boulevard 44–46 DK-1553 Copenhagen V Denmark Telephone (+45) 33 38 67 00 Telefax (+45) 33 93 42 15 www.ices.dk [email protected] Recommended format for purposes of citation: ICES. 2013. Report of the ICES Working Group on Introduction and Transfers of Ma- rine Organisms (WGITMO), 20 - 22 March 2013, Montreal, Canada. ICES CM 2013/ACOM:30. 149 pp. For permission to reproduce material from this publication, please apply to the Gen- eral Secretary. The document is a report of an Expert Group under the auspices of the International Council for the Exploration of the Sea and does not necessarily represent the views of the Council. © 2013 International Council for the Exploration of the Sea ICES WGITMO REPORT 2013 i Contents Executive summary ................................................................................................................ 1 1 Opening of the meeting ................................................................................................ 2 2 Adoption of the agenda ................................................................................................ 2 3 WGITMO Terms of Reference .................................................................................... 2 4 Progress in relation -
Nepiexomena/CONTENTS
nEPIEXOMENA/CONTENTS naAaJoVToAoyia • rTpWJ.laToypa<pia l{rWOToAoyia Paleontology - Stratigraphy - Sedimentology Bellas, S, Frydas, D. and Keupp, H. Late Miocene calcareous nannofossil stratigraphy and intra-Mediterranean bioevents correlation: Kalidonia Case section (NW Crete, Greece) Caus, E., Albrich, S., Berastegui, X, Bernaus, J.M., Boix, C. and Villalonga, R. 14 Biotic and Abiotic events in a shallow carbonate platform (Upper Cretaceous, South Pyrenean margin) Codrea, V, Barbu, 0 and Bedelean, H. 21 Middle Miocene Diatomite-bearing formations from western Romania Danelian, T., Galoyan, G., Rolland, Y. and Sosson, M. 31 Palaeontological (Radiolarian) late Jurassic age constraint for the Stepanavan ophiolite (Lesser Caucasus, Armenia) Drinia, H., Antonarakou, A., Kontakiotis, G., Tsaparas, N., Segou, M. and 39 Karakitsios, V. Paleobathymetric evolution of the early Late Miocene deposits of the Pre-Apulian zone, Levkas island, Ionian Sea Getsos, K., Pomoni-Papaioannou, F. and Zelilidis, A.A 53 Carbonate ramp evolution in the transition from the Apulia platform to the Ionian basin during Early to Late Cretaceous (NW Greece) latrou, M., Papatheodorou, G, Piper, D.J.W., Tripsanas, E. and Ferentinos, G.A 64 Debate on the similarity of panicle sizing results derived from the analysis of fine grained sediments by two different instrumentations Karakatsanis, S., Koukouzas, N., Pagonas, M. and Zelilidis, A. 76 Preliminary sedimentological results indicate a new detailed stratigraphy for the Florina sedimentary basin and relate them with CO2 presence Karakitsios, V. and Agiadi-Katsiaouni, K. 85 Regional correlation and cyclostratigraphy in the Mid-Cretaceous formations of the Ionian zone Kati, M., Zambetakis-Lekkas, A. and Skourtsos, E. 101 Carbonate succession of Tripolitza platform in Mari area, Parnon mountain, SE Peloponnesus, Greece Konstantopoulos, P., Maravelis, A., Nikolaidou, D., Pantopoulos, G. -
Geomorphological and Paleoenvironmental Changes of Ismarida Lake During Holocene (N
Bulletin of the Geological Society of Greece Vol. 50, 2016 GEOMORPHOLOGICAL AND PALEOENVIRONMENTAL CHANGES OF ISMARIDA LAKE DURING HOLOCENE (N. GREECE) Karadimou G. Aristotle University of Thessaloniki, School of Geology, Department of Physical and Environment al Geography Vouvalidis K. Aristotle University of Thessaloniki, School of Geology, Department of Physical and Environment al Geography Syrides G. Aristotle University of Thessaloniki, School of Geology, Department of Geology Koukousioura O. Aristotle University of Thessaloniki, School of Geology, Department of Geology Aidona E. Aristotle University of Thessaloniki, School of Geology, Department of Geophysics http://dx.doi.org/10.12681/bgsg.11743 Copyright © 2017 G. Karadimou, K. Vouvalidis, G. Syrides, O. Koukousioura, E. Aidona To cite this article: Karadimou, G., Vouvalidis, K., Syrides, G., Koukousioura, O., & Aidona, E. (2016). GEOMORPHOLOGICAL AND PALEOENVIRONMENTAL CHANGES OF ISMARIDA LAKE DURING HOLOCENE (N. GREECE). Bulletin of the Geological Society of Greece, 50(1), 424-433. doi:http://dx.doi.org/10.12681/bgsg.11743 http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 03/08/2019 12:20:16 | Δελτίο της Ελληνικής Γεωλογικής Εταιρίας, τόμος L, σελ. 424-433 Bulletin of the Geological Society of Greece, vol. L, p. 424-433 Πρακτικά 14ου Διεθνούς Συνεδρίου, Θεσσαλονίκη, Μάιος 2016 Proceedings of the 14th International Congress, Thessaloniki, May 2016 GEOMORPHOLOGICAL AND PALEOENVIRONMENTAL CHANGES OF ISMARIDA LAKE DURING HOLOCENE (N. GREECE) Karadimou G.1, Vouvalidis -
Chapter 3 Contents
3 Materials 1 2 3 4 5 6 7 8 9 10 CIRIA C683 63 3 Materials CHAPTER 3 CONTENTS 3.1 Introduction. 71 3.1.1 Materials considerations for concept stage. 72 3.1.1.1 Scale of project . 72 3.1.1.2 Planning and timescales . 73 3.1.1.3 Top sizes of armour . 73 3.1.1.4 Rock source and procurement options . 73 3.1.1.5 Holistic considerations . 74 3.1.1.6 Cost of project. 76 3.1.1.7 Towards preliminary design. 76 3.1.2 Important design functions and properties of materials. 79 3.1.2.1 Functions of materials in the structure . 79 3.1.2.2 Material properties . 81 3.1.3 Durability considerations . 82 3.1.3.1 Mitigation strategies for low-durability scenarios of rock armour . 83 3.1.3.2 Durability considerations for material other than armourstone. 83 3.1.4 Standards for armourstone. 84 3.2 Quarried rock – overview of properties and functions. 86 3.2.1 Introduction to quarried rock . 86 3.2.2 Introduction to engineering geology . 86 3.2.3 Quarry evaluation principles . 91 3.2.4 Properties and functions – general. 94 3.3 Quarried rock – intrinsic properties . 95 3.3.1 Aesthetic properties of armourstone . 95 3.3.2 Petrographic properties . 95 3.3.3 Mass density, porosity and water absorption . 95 3.3.3.1 Phase relations . 95 3.3.3.2 Density definitions . 96 3.3.3.3 Degree of saturation in stability calculations . 97 3.3.3.4 Density variation in a quarry . -
(Selido ΤΟϜϟϣ 4
Δελτίο της Ελληνικής Γεωλογικής Εταιρίας, 2010 Bulletin of the Geological Society of Greece, 2010 Πρακτικά 12ου Διεθνούς Συνεδρίου Proceedings of the 12th International Congress Πάτρα, Μάιος 2010 Patras, May, 2010 HYDROGEOLOGICAL ASSESSMENT OF GROUNDWATER DEGRADATION AT THE EASTERN NESTOS RIVER DELTA, N.E. GREECE. Gkiougkis I.1, Mwila, G.2, Pliakas F.3, Kallioras A.4, and Diamantis I.5 1 Democritus University of Thrace, Department of Civil Engineering, Laboratory of Engineering Geology, 67100 Xanthi, Greece, [email protected] 2 Technical University of Darmstadt, Institute of Applied Geosciences, Hydrogeology Group, 64287 Darm- stadt, Germany, [email protected] 3 Democritus University of Thrace, Department of Civil Engineering, Laboratory of Engineering Geology, 67100 Xanthi, Greece, [email protected] 4 Technical University of Darmstadt, Institute of Applied Geosciences, Hydrogeology Group, 64287 Darm- stadt, Germany, [email protected] 5 Democritus University of Thrace, Department of Civil Engineering, Laboratory of Engineering Geology, 67100 Xanthi, Greece, [email protected] Abstract This paper deals with the hydrogeological study of the evolution of groundwater salinisation - degra- dation at the eastern Nestos River Delta. Relevant field works including in-situ measurements of groundwater level, pH, Specific Electrical Conductivity (SEC) and temperature took place in the years 2008 and 2009. Groundwater samples were also collected for chemical analysis at the Engi- neering Geology Laboratory of the Department of Civil Engineering of D.U.Th. (July of 2009). Im- portant conclusions regarding the progress of the groundwater degradation at the study area were drawn based on the analysis of all the available data and the elaboration of the designed piezomet- ric maps and the various maps showing the distribution of SEC, Chloride, SAR (Sodium Absorption Ratio) and Revelle coefficient values. -
Nanni-Wws.Pdf
1 Worldwide Presence with guaranteed Service Nanni products are supported at every major port thanks to a worldwide network of independent distributor facilities and dealer locations, delivering the expertise and parts needed to keep customer's products running smoothly. By choosing a Nanni product, you gain an extensive Worldwide Sales and Service network to help you achieve maximum engine life and sustained reliability. Update 29/06/2017 2 Index NANNI NETWORK ........................ 3 La Réunion ................................. 47 Lituania ....................................... 48 Algeria ............................................ 5 Madagascar ................................ 48 Argentina ....................................... 5 Malaysia ..................................... 48 Australia ........................................ 5 Maldives ..................................... 48 Bahamas ........................................ 7 Malta ........................................... 48 Bangladesh .................................... 7 Marocco ...................................... 48 Belgium .......................................... 7 Martinique ................................... 49 Brazil .............................................. 7 Mexico ........................................ 49 Brunei ............................................ 8 Netherlands ................................ 49 Canada .......................................... 8 New Caledonia .................... 500 Chili ............................................... -
Riprap Slope Protection Phase 4 (Final)
Design Standards No. 13 Embankment Dams Chapter 7: Riprap Slope Protection Phase 4 (Final) U.S. Department of the Interior Bureau of Reclamation May 2014 Mission Statements The U.S. Department of the Interior protects America’s natural resources and heritage, honors our cultures and tribal communities, and supplies the energy to power our future. The mission of the Bureau of Reclamation is to manage, develop, and protect water and related resources in an environmentally and economically sound manner in the interest of the American public. Design Standards Signature Sheet Design Standards No. 13 Embankment Dams DS-13(7)-2.1: Phase 4 (Final) May 2014 Chapter 7: Riprap Slope Protection Revision Number OS-13(7)-2.1 Summary of revisions: In the rollout presentation of the Riprap Design Standard, Chapter 7, Bobby Rinehart of the labs commented that ASTM standards are now being used as much, or more than, USBR laboratory testing procedures. Therefore, the ASTM test procedure numbers should be included in the Design Standard. The ASTM Standard Test Numbers will be added to the Riprap Quality Tests along with the currently cited only with USBR designations test numbers. These are in section 7.2.5, pages 10 and 11, and will be rewritten as follows: o Specific gravity (ASTM C127, USBR 4127) o Absorption (ASTM C127, USBR 4127) o Sodium sulfate soundness (ASTM C88, ASTM D5240, USBR 4088) o Los Angeles abrasion (ASTM C131, ASTM C535, USBR 4131) o Freeze-thaw durability (ASTM D5312, USBR 4666) Prepared by: Robert L. Dewey, P. Date Technical Specialist, Geotechnical Engineering Group 3, 86-68313 Peer Review: Jack Gagliardi, P.E.