Chapter 3 Contents

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 3 Contents 3 Materials 1 2 3 4 5 6 7 8 9 10 CIRIA C683 63 3 Materials CHAPTER 3 CONTENTS 3.1 Introduction. 71 3.1.1 Materials considerations for concept stage. 72 3.1.1.1 Scale of project . 72 3.1.1.2 Planning and timescales . 73 3.1.1.3 Top sizes of armour . 73 3.1.1.4 Rock source and procurement options . 73 3.1.1.5 Holistic considerations . 74 3.1.1.6 Cost of project. 76 3.1.1.7 Towards preliminary design. 76 3.1.2 Important design functions and properties of materials. 79 3.1.2.1 Functions of materials in the structure . 79 3.1.2.2 Material properties . 81 3.1.3 Durability considerations . 82 3.1.3.1 Mitigation strategies for low-durability scenarios of rock armour . 83 3.1.3.2 Durability considerations for material other than armourstone. 83 3.1.4 Standards for armourstone. 84 3.2 Quarried rock – overview of properties and functions. 86 3.2.1 Introduction to quarried rock . 86 3.2.2 Introduction to engineering geology . 86 3.2.3 Quarry evaluation principles . 91 3.2.4 Properties and functions – general. 94 3.3 Quarried rock – intrinsic properties . 95 3.3.1 Aesthetic properties of armourstone . 95 3.3.2 Petrographic properties . 95 3.3.3 Mass density, porosity and water absorption . 95 3.3.3.1 Phase relations . 95 3.3.3.2 Density definitions . 96 3.3.3.3 Degree of saturation in stability calculations . 97 3.3.3.4 Density variation in a quarry . 98 3.3.3.5 Mass density as a durability indicator . 98 3.3.3.6 Mass density as a design parameter. 98 3.3.4 Resistance to breakage and armourstone integrity . 98 3.3.5 Armourstone resistance to wear . 101 3.4 Quarried rock – production-induced properties . 101 3.4.1 Shape . 101 3.4.1.1 Length-to-thickness ratio (LT) . 102 3.4.1.2 Blockiness (BLc) . 102 3.4.1.3 Cubicity . 103 3.4.1.4 Roundness. 103 3.4.1.5 Proportion of crushed or broken surfaces. 104 3.4.1.6 Shape for specification purposes . 104 64 CIRIA C683 Contents 3.4.1.7 Shape for design and dimensioning purposes . 104 1 3.4.1.8 Factors controlling armourstone shape during quarry production . 106 3.4.2 Dimensions of pieces of armourstone. 107 3.4.3 Size and mass distribution of armourstone gradings. 107 3.4.3.1 Grading width and common terminology . 108 3.4.3.2 EN 13383 system for standardisation of gradings. 109 2 3.4.3.3 Rosin-Rammler curves for mass and size distributions and idealised gradings. 112 3.4.3.4 Graphical illustration of EN 13383 standard grading curves . 114 3.4.3.5 Fragments and effective mean mass, Mem . 114 3.4.3.6 Requirements and compliance of EN 13383 standard gradings . 114 3 3.4.3.7 Additional information on EN 13383 standard gradings . 115 3.4.3.8 Relationship between Mem and M50 , and grading widths including practical experience . 116 3.4.3.9 Non-standard gradings. 117 3.4.4 Core materials . 119 4 3.4.4.1 Core materials terminology . 120 3.4.4.2 Core materials in a design context. 120 3.4.4.3 Calculating the porosity of bulk-placed materials . 121 3.5 Quarried rock – construction-induced properties . 123 3.5.1 Layer thickness and porosity of individually placed armourstone . 123 5 3.5.1.1 Importance of layer thickness coefficient kt and porosity nv. 125 3.5.2 Effect of rock density on design parameters . 129 3.6 Rock quality, durability and service-life prediction . 131 3.6.1 Introduction . 131 6 3.6.2 Durability and degradation. 132 3.6.3 Procedure for source evaluation of rock quality . 133 3.6.4 Principles of degradation modelling . 139 3.6.5 In-service degradation models for general wear of armourstone. 140 3.6.5.1 Micro-Deval (MDE) method. 141 7 3.6.5.2 Armourstone quality designation (AQD) method . 142 3.6.5.3 Comparison between MDE and AQD methods. 145 3.6.6 Modelling degradation due to breakages. 147 3.6.6.1 Effects of minor breakages and major breakage . 147 3.6.6.2 Quantitative effect of breakages on armourstone grading using 8 statistical model. 150 3.6.6.3 Prediction of the effect of major breakages using a dedicated degradation model specific for breakage. 151 3.6.7 Summary of recommendations for degradation modelling . 154 9 3.7 Preparing the armourstone specification . 155 3.7.1 EU context. 156 3.7.2 Non-EU context . 160 3.8 Testing and measuring . 160 3.8.1 Sampling . 161 10 CIRIA C683 65 3 Materials 3.8.2 Testing of physical properties . 164 3.8.2.1 Petrography . 164 3.8.2.2 Aesthetic properties . 164 3.8.2.3 Rock density, water absorption and porosity. 164 3.8.3 Testing properties of individual pieces of armourstone . 165 3.8.3.1 Shape. 165 3.8.3.2 Mass and size. 165 3.8.4 Testing geometrical properties of armourstone as a granular material . 167 3.8.4.1 Shape. 167 3.8.4.2 Mass distribution. 168 3.8.5 Mechanical properties. 171 3.8.5.1 Resistance to breakage . 171 3.8.5.2 Armourstone integrity . 172 3.8.6 Durability and accelerated weathering tests. ..
Recommended publications
  • Responses to Coastal Erosio in Alaska in a Changing Climate
    Responses to Coastal Erosio in Alaska in a Changing Climate A Guide for Coastal Residents, Business and Resource Managers, Engineers, and Builders Orson P. Smith Mikal K. Hendee Responses to Coastal Erosio in Alaska in a Changing Climate A Guide for Coastal Residents, Business and Resource Managers, Engineers, and Builders Orson P. Smith Mikal K. Hendee Alaska Sea Grant College Program University of Alaska Fairbanks SG-ED-75 Elmer E. Rasmuson Library Cataloging in Publication Data: Smith, Orson P. Responses to coastal erosion in Alaska in a changing climate : a guide for coastal residents, business and resource managers, engineers, and builders / Orson P. Smith ; Mikal K. Hendee. – Fairbanks, Alaska : Alaska Sea Grant College Program, University of Alaska Fairbanks, 2011. p.: ill., maps ; cm. - (Alaska Sea Grant College Program, University of Alaska Fairbanks ; SG-ED-75) Includes bibliographical references and index. 1. Coast changes—Alaska—Guidebooks. 2. Shore protection—Alaska—Guidebooks. 3. Beach erosion—Alaska—Guidebooks. 4. Coastal engineering—Alaska—Guidebooks. I. Title. II. Hendee, Mikal K. III. Series: Alaska Sea Grant College Program, University of Alaska Fairbanks; SG-ED-75. TC330.S65 2011 ISBN 978-1-56612-165-1 doi:10.4027/rceacc.2011 © Alaska Sea Grant College Program, University of Alaska Fairbanks. All rights reserved. Credits This book, SG-ED-75, is published by the Alaska Sea Grant College Program, supported by the U.S. Department of Commerce, NOAA National Sea Grant Office, grant NA10OAR4170097, projects A/75-02 and A/161-02; and by the University of Alaska Fairbanks with state funds. Sea Grant is a unique partnership with public and private sectors combining research, education, and technology transfer for the public.
    [Show full text]
  • Formulation of Territorial Action Plans for Coastal Protection and Management
    this project is co-funded by the European Regional Development Fund Eu project COASTANCE FINAL REPORT phase C Component 4 Territorial Action Plans for coastal protection and management Formulation of territorial Action Plans for coastal protection and management 96 95 94 93 PARTNERSHIP Region of Eastern Macedonia & Thrace (GR) - Lead Partner Regione Lazio (IT) Region of Crete (GR) Département de l’Hérault (FR) Regione Emlia-Romagna (IT) Junta de Andalucia (ES) The Ministry of Communications & Works of Cyprus (CY) Dubrovnik Neretva County Regional Development Agency (HR) a publication edit by Direzione Generale Ambiente e Difesa del Suolo e della Costa Servizio Difesa del Suolo, della Costa e Bonifica responsibles Roberto Montanari, Christian Marasmi - Servizio Difesa del Suolo, della Costa e Bonifica editor and graphic Christian Marasmi authors Roberto Montanari, Christian Marasmi - Regione Emilia-Romagna, Servizio Difesa del Suolo, della Costa e Bonifica Mentino Preti, Margherita Aguzzi, Nunzio De Nigris, Maurizio Morelli - ARPA Emilia-Romagna, Unità Specialistica Mare e Costa Maurizio Farina - Servizio Tecnico Bacino Po di Volano e della Costa Michael Aftias, Eleni Chouli - Ydronomi, Consulting Engineers Philippe Carbonnel, Alexandre Richard - Département de l’Hérault INDEX Background and strategic framework 2 The COASTANCE project 6 Component 4 strategy framework 8 Component 4 results: coastal and sediment management plans 10 Relevance of project’s outputs and results in the EU policy framework and perspectives 10 Limits and difficulties
    [Show full text]
  • Coastal and Ocean Engineering
    May 18, 2020 Coastal and Ocean Engineering John Fenton Institute of Hydraulic Engineering and Water Resources Management Vienna University of Technology, Karlsplatz 13/222, 1040 Vienna, Austria URL: http://johndfenton.com/ URL: mailto:[email protected] Abstract This course introduces maritime engineering, encompassing coastal and ocean engineering. It con- centrates on providing an understanding of the many processes at work when the tides, storms and waves interact with the natural and human environments. The course will be a mixture of descrip- tion and theory – it is hoped that by understanding the theory that the practicewillbemadeallthe easier. There is nothing quite so practical as a good theory. Table of Contents References ....................... 2 1. Introduction ..................... 6 1.1 Physical properties of seawater ............. 6 2. Introduction to Oceanography ............... 7 2.1 Ocean currents .................. 7 2.2 El Niño, La Niña, and the Southern Oscillation ........10 2.3 Indian Ocean Dipole ................12 2.4 Continental shelf flow ................13 3. Tides .......................15 3.1 Introduction ...................15 3.2 Tide generating forces and equilibrium theory ........15 3.3 Dynamic model of tides ...............17 3.4 Harmonic analysis and prediction of tides ..........19 4. Surface gravity waves ..................21 4.1 The equations of fluid mechanics ............21 4.2 Boundary conditions ................28 4.3 The general problem of wave motion ...........29 4.4 Linear wave theory .................30 4.5 Shoaling, refraction and breaking ............44 4.6 Diffraction ...................50 4.7 Nonlinear wave theories ...............51 1 Coastal and Ocean Engineering John Fenton 5. The calculation of forces on ocean structures ...........54 5.1 Structural element much smaller than wavelength – drag and inertia forces .....................54 5.2 Structural element comparable with wavelength – diffraction forces ..56 6.
    [Show full text]
  • Stability Design of Coastal Structures (Seadikes, Revetments, Breakwaters and Groins)
    Note: Stability of coastal structures Date: August 2016 www.leovanrijn-sediment.com STABILITY DESIGN OF COASTAL STRUCTURES (SEADIKES, REVETMENTS, BREAKWATERS AND GROINS) by Leo C. van Rijn, www.leovanrijn-sediment.com, The Netherlands August 2016 1. INTRODUCTION 2. HYDRODYNAMIC BOUNDARY CONDITIONS AND PROCESSES 2.1 Basic boundary conditions 2.2 Wave height parameters 2.2.1 Definitions 2.2.2 Wave models 2.2.3 Design of wave conditions 2.2.4 Example wave computation 2.3 Tides, storm surges and sea level rise 2.3.1 Tides 2.3.2 Storm surges 2.3.3 River floods 2.3.4 Sea level rise 2.4 Wave reflection 2.5 Wave runup 2.5.1 General formulae 2.5.2 Effect of rough slopes 2.5.3 Effect of composite slopes and berms 2.5.4 Effect of oblique wave attack 2.6 Wave overtopping 2.6.1 General formulae 2.6.2 Effect of rough slopes 2.6.3 Effect of composite slopes and berms 2.6.4 Effect of oblique wave attack 2.6.5 Effect of crest width 2.6.6 Example case 2.7 Wave transmission 1 Note: Stability of coastal structures Date: August 2016 www.leovanrijn-sediment.com 3 STABILITY EQUATIONS FOR ROCK AND CONCRETE ARMOUR UNITS 3.1 Introduction 3.2 Critical shear-stress method 3.2.1 Slope effects 3.2.2 Stability equations for stones on mild and steep slopes 3.3 Critical wave height method 3.3.1 Stability equations; definitions 3.3.2 Stability equations for high-crested conventional breakwaters 3.3.3 Stability equations for high-crested berm breakwaters 3.3.4 Stability equations for low-crested, emerged breakwaters and groins 3.3.5 Stability equations for submerged breakwaters
    [Show full text]
  • Riprap Slope Protection Phase 4 (Final)
    Design Standards No. 13 Embankment Dams Chapter 7: Riprap Slope Protection Phase 4 (Final) U.S. Department of the Interior Bureau of Reclamation May 2014 Mission Statements The U.S. Department of the Interior protects America’s natural resources and heritage, honors our cultures and tribal communities, and supplies the energy to power our future. The mission of the Bureau of Reclamation is to manage, develop, and protect water and related resources in an environmentally and economically sound manner in the interest of the American public. Design Standards Signature Sheet Design Standards No. 13 Embankment Dams DS-13(7)-2.1: Phase 4 (Final) May 2014 Chapter 7: Riprap Slope Protection Revision Number OS-13(7)-2.1 Summary of revisions: In the rollout presentation of the Riprap Design Standard, Chapter 7, Bobby Rinehart of the labs commented that ASTM standards are now being used as much, or more than, USBR laboratory testing procedures. Therefore, the ASTM test procedure numbers should be included in the Design Standard. The ASTM Standard Test Numbers will be added to the Riprap Quality Tests along with the currently cited only with USBR designations test numbers. These are in section 7.2.5, pages 10 and 11, and will be rewritten as follows: o Specific gravity (ASTM C127, USBR 4127) o Absorption (ASTM C127, USBR 4127) o Sodium sulfate soundness (ASTM C88, ASTM D5240, USBR 4088) o Los Angeles abrasion (ASTM C131, ASTM C535, USBR 4131) o Freeze-thaw durability (ASTM D5312, USBR 4666) Prepared by: Robert L. Dewey, P. Date Technical Specialist, Geotechnical Engineering Group 3, 86-68313 Peer Review: Jack Gagliardi, P.E.
    [Show full text]
  • Concrete Armour Units for Rubble Mound
    ftt*attlsReserctt Mhlingrford CONCRETEARMOUR UNITS FOR RUBBLE MOUNDBREAKWATERS AND SEA WALLS: RECENTPROGRESS N I.f H Allsop BSc, C Eng, MICE Report SR 100 March 1988 Registered Office: Hydriulics Research Wallingford, Oxfordshire OXIO 8BA. Telephone: (X91 35381. Telex: 84.8552 This report describes work jointly funded by the Department of the Environment and the l,linistry of Agriculture Fisheries and Food. The Department of the Environment contract number was PECD7 16152 for which the nominated officer rras Dr R P Thorogood. The Ministry of Agriculture Fisheries and Food contribution was lrithin the Research Connission (Marine Flooding) CSA 557 for which the nominated officer was l{r A J ALlison. The work was carried out in the Maritime Engineering Department of Hydraulice Research, lfall-ingford under the rnanagementof Dr S I,l Huntington. The report is published on behalf of both DoE and I'|AFF, but any opinions expressed in this report are not necesearily those of the funding Departments. @ Crown copyright 1988 Publiehed by permission of the Controller of lter Majestyts Stationery Office. Goncrete,armour "unite.for' rubble mound breakwaters, sea val,ls and. revetuentsS recent :pfogf,eas, N lJ H Alleop Report SR 100, ilarch 1988 Eydraulics Reeearch, Wallingford Abetract ilany deep water breakrvatera constructed in,the laet 2O-50 years are of rubble sound construction, proteeted againat the effects of rave aetion by concrete armour nnite. Ttrese units are oftea of complex ehape; Ttrey are generally produced in unreinforced concrete ia eizee between around 2-50 tonnea depending apon the local water depth, the eeverity of the locel save eonditione, and on the efficiencl and: stsbiiity of the unit type selected.
    [Show full text]
  • Managing Climate Change Hazards in Coastal Areas
    CATALOGUE OF HAZARD MANAGEMENT OPTIONS CI-12 CI-11 CI-10 TSR CI-9 CI-8 PL-1 PL-2 PL-3 CI-7 PL-4 CI-6 PL-5 4 4 3 PL-6 CI-5 2 4 2 4 3 PL-7 CI-4 4 4 PL-8 2 4 4 3 3 PL-9 4 3 2 3 2 3 CI-3 3 3 3 2 PL-10 2 2 3 3 2 3 CI-2 4 2 3 3 4 PL-11 4 3 4 3 2 3 3 2 3 3 3 2 1 PL-12 CI-1 4 4 4 3 3 2 2 1 1 3 3 3 4 4 3 2 3 PL-13 2 3 3 4 2 1 1 3 3 2 R-4 3 4 3 4 4 Tidal inlet/Sand spit/River mouth 1 1 2 2 2 2 2 4 3 3 4 4 4 2 4 2 4 PL-14 R-3 3 4 4 4 2 2 4 3 4 3 4 2 3 3 PL-15 R-2 1 3 4 4 N Y N 4 2 4 4 Y N Y Y N 4 2 3 3 3 PL-16 R-1 1 2 4 N Y N 2 4 Y Y 4 2 2 2 PL-17 1 1 1 4 4 N N 2 FR-22 Y Y 4 4 3 2 3 1 2 1 2 4 N N PL-18 FR-21 1 4 Y Y 4 2 2 3 1 1 N N 2 2 1 2 4 2 2 3 3 PL-19 FR-20 1 Y Sur B/D Sur Y 2 4 3 3 1 1 A B/D B/D N 2 PL-20 2 Sur Sur 4 1 FR-19 1 3 1 A B/D Y 4 2 2 2 A B/D N 4 3 1 PL-21 1 3 4 Sur Sur 2 2 3 FR-18 3 2 A Y 2 3 1 3 4 B/D N 2 PL-22 2 N B B/D 2 3 2 FR-17 2 3 NB Y 4 3 1 3 Y Sur 4 2 PL-23 2 3 N B Any N 3 FR-16 3 3 NB Any Any 4 1 1 Y Any Intermit B/D Y 4 3 2 PL-24 2 2 1 2 1 FR-15 3 Any Any marsh N 2 BA-1 2 1 N Intermit Sur 2 4 2 C 2 4 3 2 3 Y Any mangr Y 2 FR-14 2 4 A 4 BA-2 3 Marsh/ B/D N 2 3 2 4 N C Any Any 1 3 1 Any Any Any tidal at Y 3 FR-13 2 3 Y 1 2 4 BA-3 3 4 M/M Any Sur 3 1 Micro N 4 BA-4 FR-12 2 3 N B Mangr/ 1 1 3 2 4 No Any B/D 2 2 2 2 Y tidal at Y 1 1 BA-5 FR-11 3 1 P Ex Meso/ 3 4 3 N NB Mx Mx N 4 2 2 3 Any Ex macro Sur 2 3 1 C A Y 3 BA-6 FR-10 Y P Any 3 3 2 1 2 B 2 3 3 1 B/D N N P Coral Any 4 3 3 BA-7 FR-9 3 1 R 2 2 2 3 1 NB Any Any isl Sediment Y Y Ex Any Sur 2 2 2 1 2 BA-8 FR-8 2 2 2 3 4 Mx plain Any N N Flat Mx B Y 4 4 4 3 4 BA-9 FR-7 3 2
    [Show full text]
  • North Slope Borough Federal Tax ID: 92-0042378 Project Title: Project Type: Maintenance and Repairs North Slope Borough - Critical Infrastructure Protection
    Total Project Snapshot Report 2013 Legislature TPS Report 60238v1 Agency: Commerce, Community and Economic Development Grants to Municipalities (AS 37.05.315) Grant Recipient: North Slope Borough Federal Tax ID: 92-0042378 Project Title: Project Type: Maintenance and Repairs North Slope Borough - Critical Infrastructure Protection State Funding Requested: $6,000,000 House District: 40 / T Future Funding May Be Requested Brief Project Description: This project will provide funding for the design and permitting of revetment to protect essential infrastructure in Barrow and Point Hope. Funding Plan: Total Project Cost: $80,000,000 Funding Already Secured: ($0) FY2014 State Funding Request: ($6,000,000) Project Deficit: $74,000,000 Funding Details: No funds have been appropriated in prior years. Detailed Project Description and Justification: This project will provide beginning funding for the design, permitting, and construction of revetment to protect essential infrastructure in Barrow and Point Hope. The North Slope Borough has an established beach nourishment program, however more permanent solutions need to be pursued in order to continue providing critical services to residents. The extended periods of open water and increased number of severe storms are overtaking current efforts, leading to flooding of low lying areas, and potential permanent damage to assets essential in provision of public services. Revetment off the coast of Barrow will provide additional protection to the coast line, reducing flood related damage and protecting public and private property. The 12-foot option was determined as the best course of action based on the 100 year storm mark, where in 1963 12-foot swells did significant damage to the city.
    [Show full text]
  • Lessons Learned
    Service contract B4-3301/2001/329175/MAR/B3 “Coastal erosion – Evaluation of the needs for action” Directorate General Environment European Commission A guide to coastal erosion management practices in Europe: lessons learned January 2004 Prepared by the National Institute of Coastal and Marine Management of the Netherlands 2 LESSONS LEARNED FROM THE CASE STUDIES Lesson 1 Human influence, particularly urbanisation and economic activities, in the coastal zone has turned coastal erosion from a natural phenomenon into a problem of growing intensity. Adverse impacts of coastal erosion most frequently encountered in Europe can be grouped in four categories: (i) coastal flooding as a result of complete dune erosion, (ii) destruction of assets located on retreating cliffs, beaches and dunes (iii) undermining of sea defence associated to foreshore erosion and coastal squeeze, and (iv) loss of lands of economical and ecological values. Coastal erosion is a natural phenomenon, which has always existed and has contributed throughout history to shape European coastal landscapes. Coastal erosion, as well as soil erosion in water catchments, is the main processes which provides terrestrial sediment to the coastal systems including beaches, dunes, reefs, mud flats, and marshes. In turn, coastal systems provide a wide range of functions including absorption of wave energies, nesting and hatching of fauna, protection of fresh water, or siting for recreational activities. However, migration of human population towards the coast, together with its ever growing interference in the coastal zone has also turned coastal erosion into a problem of growing intensity. Among the problems most commonly encountered in Europe are: • the destruction of the dune system as a result of a single storm event, which in turn results in flooding of the hinterland.
    [Show full text]
  • A Guide to Coastal Erosion Management Practices in Europe
    Service contract B4-3301/2001/329175/MAR/B3 “Coastal erosion – Evaluation of the needs for action” Directorate General Environment European Commission A guide to coastal erosion management practices in Europe January 2004 Prepared by the National Institute of Coastal and Marine Management of the Netherlands TABLE OF CONTENT INTRODUCTION 4 SECTION 1 LESSONS LEARNED FROM THE CASE STUDIES 14 SECTION 2 DETAILED ANALYSIS OF THE CASE STUDIES 28 INTRODUCTION 28 SUMMARY 29 1. REGIONAL SEAS 37 1.1 Introduction 37 1.2 Coastal classification 37 1.3 Erosion 39 1.4 Baltic Sea 40 1.5 North Sea 46 1.6 Atlantic Ocean 54 1.7 Mediterranean Sea 61 1.8 Black Sea 69 2. SOCIO-ECONOMICS AND ENVIRONMENT 75 2.1 Introduction 75 2.2 Baltic Sea 76 2.3 North Sea 80 2.4 Atlantic Ocean 85 2.5 Mediterranean Sea 89 2.6 Black Sea 91 3. POLICY OPTIONS 96 3.1 Introduction 96 3.2 Integrated Coastal Zone Management (ICZM) 98 3.3 Baltic Sea 99 3.4 North Sea 105 3.5 Atlantic Ocean 115 3.6 Mediterranean Sea 124 3.7 Black Sea 129 4. TECHNICAL ANALYSIS 134 4.1 Introduction 134 4.2 Baltic Sea 140 4.3 North Sea 146 4.4 Atlantic Ocean 153 4.5 Mediterranean Sea 160 4.6 Black Sea 167 ANNEX 1 - OVERVIEW OF COMMONLY USED MODELS OF COASTAL PROCESSES THROUGHOUT EUROPE 170 ANNEX 2 - OVERVIEW OF COASTAL EROSION MANAGEMENT TECHNIQUES 173 ANNEX 3 - OVERVIEW OF MONITORING TECHNIQUES COMMONLY US ED IN EUROPE 175 - 3 - INTRODUCTION This Shoreline Management Guide has been undertaken in the framework of the service contract B4-3301/2001/329175/MAR/B3 “Coastal erosion – Evaluation of the needs for action” signed between the Directorate General Environment of the European Commission and the National Institute of Coastal and Marine Management of the Netherlands (RIKZ).
    [Show full text]
  • Placement Effect on the Stability of Tetrapod Armor Unit On
    China Ocean Eng., 2017, Vol. 31, No. 6, P. 747–753 DOI: 10.1007/s13344-017-0085-3, ISSN 0890-5487 http://www.chinaoceanengin.cn/ E-mail: [email protected] Placement Effect on the Stability of Tetrapod Armor Unit on Breakwaters in Irregular Waves Yeşim ÇELIKOĞLU*, Demet ENGIN Yildiz Technical University, Department of Civil Engineering, Hydraulics and Coastal Engineering Laboratory, Davutpasa, 34210 Esenler-Istanbul, Turkey Received April 7, 2016; revised March 7, 2017; accepted June 6, 2017 ©2017 Chinese Ocean Engineering Society and Springer-Verlag GmbH Germany, part of Springer Nature Abstract Tetrapod, one of the well-known artificial concrete units, is frequently used as an armor unit on breakwaters. Two layers of tetrapod units are normmaly placed on the breakwaters with different placement methods. In this study, the stability of tetrapod units with two different regularly placement methods are investigated experimentally in irregular waves. Stability coefficients of tetrapod units for both placement methods are obtained. The important characteristic wave parameters of irregular waves causing the same damage ratio as those of the regular waves are also determined. It reveals that the average of one-tenth highest wave heights within the wave train (H1/10) causes the similar damage as regular waves. Key words: breakwaters, tetrapod unit, stability, placement methods, irregular waves Citation: Çelikoğlu, Y., Engin, D., 2017. Placement effect on the stability of tetrapod armor unit on breakwaters in irregular waves. China Ocean Eng., 31(6): 747–753, doi: 10.1007/s13344-017-0085-3 1 Introduction second placement method, respectively. Concrete armor units are now widely used to protect The stability of concrete armor units is described by sev- breakwaters.
    [Show full text]
  • Final Independent External Peer Review Report Columbia River at the Mouth, Oregon and Washington Major Rehabilitation Evaluation Report
    Final Independent External Peer Review Report Columbia River at the Mouth, Oregon and Washington Major Rehabilitation Evaluation Report Prepared by Battelle Memorial Institute Prepared for Department of the Army U.S. Army Corps of Engineers Deep Draft Navigation Planning Center of Expertise Mobile District Contract No. W912HQ-10-D-0002 Task Order: 0007 March 9, 2011 Final Independent External Peer Review Report Columbia River at the Mouth, Oregon and Washington Major Rehabilitation Evaluation Report by Battelle 505 King Avenue Columbus, OH 43201 for Department of the Army U.S. Army Corps of Engineers Deep Draft Navigation Planning Center of Expertise Mobile District March 9, 2011 Contract Number W912HQ-10-D-0002 Task Order Number: 0007 This page is intentionally left blank. FINAL INDEPENDENT EXTERNAL PEER REVIEW REPORT for the Columbia River at the Mouth, Oregon and Washington Major Rehabilitation Evaluation Report EXECUTIVE SUMMARY Project Background and Purpose The Mouth of the Columbia River (MCR) navigation project is located at the confluence of the Columbia River with the Pacific Ocean on the border between Washington and Oregon. Navigation is maintained by three primary navigation structures, North Jetty, South Jetty, and Jetty A. The North Jetty and Jetty A are located in Pacific County, Washington, near Ilwaco and Long Beach on the Long Beach Peninsula. The North Jetty was completed in 1917. Jetty A, positioned on the south side of the North Jetty, was constructed in 1939 to a length of 1.1 miles. Jetty A was constructed to direct river and tidal currents away from the North Jetty foundation. The South Jetty is located in Clatsop County, Oregon near Warrenton/Hammond and Astoria.
    [Show full text]