Modeling Procedure of Coastal Protection Shaped Blocks with High Wave Suppressing and Interlocking Capacity
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Responses to Coastal Erosio in Alaska in a Changing Climate
Responses to Coastal Erosio in Alaska in a Changing Climate A Guide for Coastal Residents, Business and Resource Managers, Engineers, and Builders Orson P. Smith Mikal K. Hendee Responses to Coastal Erosio in Alaska in a Changing Climate A Guide for Coastal Residents, Business and Resource Managers, Engineers, and Builders Orson P. Smith Mikal K. Hendee Alaska Sea Grant College Program University of Alaska Fairbanks SG-ED-75 Elmer E. Rasmuson Library Cataloging in Publication Data: Smith, Orson P. Responses to coastal erosion in Alaska in a changing climate : a guide for coastal residents, business and resource managers, engineers, and builders / Orson P. Smith ; Mikal K. Hendee. – Fairbanks, Alaska : Alaska Sea Grant College Program, University of Alaska Fairbanks, 2011. p.: ill., maps ; cm. - (Alaska Sea Grant College Program, University of Alaska Fairbanks ; SG-ED-75) Includes bibliographical references and index. 1. Coast changes—Alaska—Guidebooks. 2. Shore protection—Alaska—Guidebooks. 3. Beach erosion—Alaska—Guidebooks. 4. Coastal engineering—Alaska—Guidebooks. I. Title. II. Hendee, Mikal K. III. Series: Alaska Sea Grant College Program, University of Alaska Fairbanks; SG-ED-75. TC330.S65 2011 ISBN 978-1-56612-165-1 doi:10.4027/rceacc.2011 © Alaska Sea Grant College Program, University of Alaska Fairbanks. All rights reserved. Credits This book, SG-ED-75, is published by the Alaska Sea Grant College Program, supported by the U.S. Department of Commerce, NOAA National Sea Grant Office, grant NA10OAR4170097, projects A/75-02 and A/161-02; and by the University of Alaska Fairbanks with state funds. Sea Grant is a unique partnership with public and private sectors combining research, education, and technology transfer for the public. -
Α Ρ Α Ρ Ρ Ρ Cot Cot 1 K H K H M ∆ = ⌋ ⌉
ARMOR POROSITY AND HYDRAULIC STABILITY OF MOUND BREAKWATERS Josep R. Medina1, Vicente Pardo2, Jorge Molines1, and M. Esther Gómez-Martín3 Armor porosity significantly affects construction costs and hydraulic stability of mound breakwaters; however, most hydraulic stability formulas do not include armor porosity or packing density as an explicative variable. 2D hydraulic stability tests of conventional randomly-placed double-layer cube armors with different armor porosities are analyzed. The stability number showed a significant 1.2-power relationship with the packing density, similar to what has been found in the literature for other armor units; thus, the higher the porosity, the lower the hydraulic stability. To avoid uncontrolled model effects, the packing density should be routinely measured and reported in small-scale tests and monitored at prototype scale. Keywords: mound breakwater; armor porosity; packing density; armor damage; armor unit; cubic block. INTRODUCTION When quarries are not able to provide stones of the adequate size and price, precast concrete armor units (CAUs) are required for the armor layer protecting large mound breakwaters. The first CAUs, introduced in the 19th century, were massive cubes and parallelepiped blocks with a very simple geometry. Since the invention of the Tetrapod in 1950, numerous precast CAUs with complex geometries have been invented to reduce the cost and to improve the armor layer performance. The overall breakwater construction cost depends on a variety of design and logistic factors, like armor material (reinforced concrete, quality of unreinforced concrete, granite rock, sandstone rock, etc.), armor unit geometry (cube, Tetrapod, etc.), armor unit mass (3, 10, 40, 150-tonne, etc.), casting, handling and stacking equipment, transportation and placement equipment, energy, materials and personnel costs. -
Feasibility Study of an Artifical Sandy Beach at Batumi, Georgia
FEASIBILITY STUDY OF AN ARTIFICAL SANDY BEACH AT BATUMI, GEORGIA ARCADIS/TU DELFT : MSc Report FEASIBILITY STUDY OF AN ARTIFICAL SANDY BEACH AT BATUMI, GEORGIA Date May 2012 Graduate C. Pepping Educational Institution Delft University of Technology, Faculty Civil Engineering & Geosciences Section Hydraulic Engineering, Chair of Coastal Engineering MSc Thesis committee Prof. dr. ir. M.J.F. Stive Delft University of Technology Dr. ir. M. Zijlema Delft University of Technology Ir. J. van Overeem Delft University of Technology Ir. M.C. Onderwater ARCADIS Nederland BV Company ARCADIS Nederland BV, Division Water PREFACE Preface This Master thesis is the final part of the Master program Hydraulic Engineering of the chair Coastal Engineering at the faculty Civil Engineering & Geosciences of the Delft University of Technology. This research is done in cooperation with ARCADIS Nederland BV. The report represents the work done from July 2011 until May 2012. I would like to thank Jan van Overeem and Martijn Onderwater for the opportunity to perform this research at ARCADIS and the opportunity to graduate on such an interesting subject with many different aspects. I would also like to thank Robbin van Santen for all his help and assistance for the XBeach model. Furthermore I owe a special thanks to my graduation committee for the valuable input and feedback: Prof. dr. ir. M.J.F. Stive (Delft University of Technology) for his support and interest in my graduation work; Dr. ir. M. Zijlema (Delft University of Technology) for his support and reviewing the report; ir. J. van Overeem (Delft University of Technology ) for his supervisions, useful feedback and help, support and for reviewing the report; and ir. -
Capability Statement Coastal Engineering Delta Marine Consultants Delta Marine Consultants
Capability Statement Coastal Engineering Delta Marine Consultants Delta Marine Consultants Delta Marine Consultants (DMC) was founded in 1978 for the purpose of providing consultancy, project management and engineering design services to clients on a worldwide basis. The company has expertise in the fields of urban infrastructure, large-scale transport infrastructure, ports and harbour development and coastal engineering. The company holds strong links with the construction industry through its parent company, the Royal BAM Group. This contributes to the ability to provide solutions to practical problems and to blend innovation with reliability in design. DMC has been rebranded into ‘BAM Infraconsult’ and is working under that name in the home market. DMC is still used as a trade name for international projects and referred to as such in this Design Capability Statement. DMC has well over 300 employees working in various offices worldwide. The head office is in Gouda (the Netherlands) and apart from several other offices in the Netherlands, local offices are also located in Singapore, Dubai, Jakarta and Perth. DMC is or has been active in a great number of other countries on project basis, often together with BAM contracting companies. Our Core Business Coastal engineering, is one of the core expertise areas of DMC. The interaction between land and water creates complex environments. Coastal areas and river banks have always been important to trade and are therefore vital links in the economic chain. Coastal works, just like ports, are very much influenced by natural phenomena such as tidal change, wave action and extreme weather conditions, which is why they call for specialized expertise. -
Adapting to Climate Change in Coastal Communities of the Atlantic Provinces, Canada: Land Use Planning and Engineering and Natural Approaches
ADAPTING TO CLIMATE CHANGE IN COASTAL COMMUNITIES OF THE ATLANTIC PROVINCES, CANADA: LAND USE PLANNING AND ENGINEERING AND NATURAL APPROACHES PART 3 ENGINEERING TOOLS ADAPTATION OPTIONS INCENT EYS NG V L , P.E . DANIEL BRYCE ATLANTIC CLIMATE ADAPTATION SOLUTIONS ASSOCIATION SOLUTIONS D'ADAPTATION AUX CHANGEMENTS CLIMATIQUES POUR L'ATLANTIQUE March 2016 Prepared by ISO 9001 Registered Company ADAPTING TO CLIMATE CHANGE IN COASTAL COMMUNITIES OF THE ATLANTIC PROVINCES, CANADA: LAND USE PLANNING AND ENGINEERING AND NATURAL APPROACHES Prepared for ACASA (Atlantic Climate Adaptation Solutions Association) No. AP291: Coastal Adaptation Guidance – Developing a Decision Key on Planning and Engineering Guidance for the Selection of Sustainable Coastal Adaptation Strategies. PART 1 GUIDANCE FOR SELECTING ADAPTATION OPTIONS Saint Mary’s University Lead: Dr. Danika van Proosdij Research Team and Authors: Danika van Proosdij, Brittany MacIsaac, Matthew Christian and Emma Poirier Contributor: Vincent Leys, P Eng., CBCL Limited PART 2 LAND USE PLANNING TOOLS ADAPTATION OPTIONS Dalhousie University Lead: Dr. Patricia Manuel, MCIP LPP Research Team and Authors: Dr. Patricia Manuel, MCIP LPP, Yvonne Reeves and Kevin Hooper Advisor: Dr. Eric Rapaport, MCIP LPP PART 3 ENGINEERING TOOLS ADAPTATION OPTIONS CBCL Limited Lead: Vincent Leys, P Eng. Research Team and Authors: Vincent Leys, P Eng. and Daniel Bryce (formerly CBCL) Reviewers: Alexander Wilson, P Eng., Archie Thibault, P Eng. and Victoria Fernandez, P Eng., CBCL Limited Editing Team: Dr. Patricia Manuel, MCIP, LPP and Penelope Kuhn, Dalhousie University ADAPTING TO CLIMATE CHANGE IN COASTAL COMMUNITIES OF THE ATLANTIC PROVINCES, CANADA: LAND USE PLANNING AND ENGINEERING AND NATURAL APPROACHES PART 3 ENGINEERING TOOLS ADAPTATION OPTIONS CBCL Limited Lead: Vincent Leys, P Eng. -
Formulation of Territorial Action Plans for Coastal Protection and Management
this project is co-funded by the European Regional Development Fund Eu project COASTANCE FINAL REPORT phase C Component 4 Territorial Action Plans for coastal protection and management Formulation of territorial Action Plans for coastal protection and management 96 95 94 93 PARTNERSHIP Region of Eastern Macedonia & Thrace (GR) - Lead Partner Regione Lazio (IT) Region of Crete (GR) Département de l’Hérault (FR) Regione Emlia-Romagna (IT) Junta de Andalucia (ES) The Ministry of Communications & Works of Cyprus (CY) Dubrovnik Neretva County Regional Development Agency (HR) a publication edit by Direzione Generale Ambiente e Difesa del Suolo e della Costa Servizio Difesa del Suolo, della Costa e Bonifica responsibles Roberto Montanari, Christian Marasmi - Servizio Difesa del Suolo, della Costa e Bonifica editor and graphic Christian Marasmi authors Roberto Montanari, Christian Marasmi - Regione Emilia-Romagna, Servizio Difesa del Suolo, della Costa e Bonifica Mentino Preti, Margherita Aguzzi, Nunzio De Nigris, Maurizio Morelli - ARPA Emilia-Romagna, Unità Specialistica Mare e Costa Maurizio Farina - Servizio Tecnico Bacino Po di Volano e della Costa Michael Aftias, Eleni Chouli - Ydronomi, Consulting Engineers Philippe Carbonnel, Alexandre Richard - Département de l’Hérault INDEX Background and strategic framework 2 The COASTANCE project 6 Component 4 strategy framework 8 Component 4 results: coastal and sediment management plans 10 Relevance of project’s outputs and results in the EU policy framework and perspectives 10 Limits and difficulties -
Coastal and Ocean Engineering
May 18, 2020 Coastal and Ocean Engineering John Fenton Institute of Hydraulic Engineering and Water Resources Management Vienna University of Technology, Karlsplatz 13/222, 1040 Vienna, Austria URL: http://johndfenton.com/ URL: mailto:[email protected] Abstract This course introduces maritime engineering, encompassing coastal and ocean engineering. It con- centrates on providing an understanding of the many processes at work when the tides, storms and waves interact with the natural and human environments. The course will be a mixture of descrip- tion and theory – it is hoped that by understanding the theory that the practicewillbemadeallthe easier. There is nothing quite so practical as a good theory. Table of Contents References ....................... 2 1. Introduction ..................... 6 1.1 Physical properties of seawater ............. 6 2. Introduction to Oceanography ............... 7 2.1 Ocean currents .................. 7 2.2 El Niño, La Niña, and the Southern Oscillation ........10 2.3 Indian Ocean Dipole ................12 2.4 Continental shelf flow ................13 3. Tides .......................15 3.1 Introduction ...................15 3.2 Tide generating forces and equilibrium theory ........15 3.3 Dynamic model of tides ...............17 3.4 Harmonic analysis and prediction of tides ..........19 4. Surface gravity waves ..................21 4.1 The equations of fluid mechanics ............21 4.2 Boundary conditions ................28 4.3 The general problem of wave motion ...........29 4.4 Linear wave theory .................30 4.5 Shoaling, refraction and breaking ............44 4.6 Diffraction ...................50 4.7 Nonlinear wave theories ...............51 1 Coastal and Ocean Engineering John Fenton 5. The calculation of forces on ocean structures ...........54 5.1 Structural element much smaller than wavelength – drag and inertia forces .....................54 5.2 Structural element comparable with wavelength – diffraction forces ..56 6. -
1 Single-Layer Breakwater Armouring: Feedback on The
SINGLE-LAYER BREAKWATER ARMOURING: FEEDBACK ON THE ACCROPODE™ TECHNOLOGY FROM SITE EXPERIENCE GIRAUDEL Cyril1, GARCIA Nicolas2, LEDOUX Sébastien3 The single-layer technique appeared at the beginning of the 1980s, with the ACCROPODE™ unit, and is thus entering its third decade. At the time, this solution was a real innovation, reducing the amount of concrete and steepening armour facing slopes, hence reducing the volume of materials required. After three decades in use and more than 200 projects to date, it was important to summarize the lessons learned during this period and to inspect (above and below water) some of these structures in order to assess their behaviour and particularly to confirm the validity of the unit placing rules. In addition to the aspects related to armour stability, the focus has been given to the colonization by marine life of the structures, including the bedding layers, toe berms, underlayer, armour units. The purpose of this paper is to share the experience gained throughout the inspections undertaken since 2010 on structures built more than 10 years ago. A large panel of structures has been inspected, of different ages and at various locations worldwide. Keywords: rubble-mound breakwater; single-layer armouring; ACCROPODE™ units; biodiversity INTRODUCTION The ACCROPODE™ armour unit, well known today, is a plain concrete unit designed to protect the breakwaters, in aiming to reducing considerably the use of material while implementing steeper slopes and a single layer of concrete units (Figure 1). Invented in 1981 thanks to the bases and knowledge acquired with the Tetrapod invented by the same engineering company in 1953, the technology is still currently used and more than 200 applications have been built worldwide. -
Hydraulic Structures General
Course CIE3330 Hydraulic Structures General November 2009 Faculty of Civil Engineering and Faculty Geosciences Contributions to these lecture notes were made by: dr. ir. S. van Baars ir. K.G. Bezuyen ir. W.Colenbrander ir. H.K.T. Kuijper ir. W.F. Molenaar ir. C. Spaargaren prof. ir. drs. J.K. Vrijling Delft University of Technology Artikelnummer 06917290037 CT3330 Hydraulic Structures 1 (empty page) ©Department of Hydraulic Engineering Faculty of Civil Engineering ii Nov 2009 Delft University of Technology CT3330 Hydraulic Structures 1 TABLE OF CONTENTS PREFACE..................................................................................................................................................... v READER TO THESE LECTURE NOTES .................................................................................................... v THE COURSE HYDRAULIC STRUCTURES 1 – CT3330 ......................................................................... vi 1. Introduction to Hydraulic Structures................................................................................................. 1-1 1.1 Piers ................................................................................................................................................. 1-2 1.2 Artificial islands ................................................................................................................................ 1-5 1.3 Breakwaters .................................................................................................................................... -
Offshore Wind Farms: Their Impacts, and Potential Habitat Gains As Artificial Reefs, in Particular for Fish
THE UNIVERSITY OF HULL Offshore wind farms: their impacts, and potential habitat gains as artificial reefs, in particular for fish being a dissertation submitted in partial fulfilment of the requirements for the Degree of MSc In Estuarine and Coastal Science and Management By Jennifer Claire Wilson BSc (Hons) Marine and Freshwater Biology, University of Hull September 2007 1 Abstract Due to both increased environmental concern and an increased reliance on energy imports, there has been a significant increase in investment in, and the use of, wind energy, including offshore wind farms, with twenty-nine developments built or proposed developments off the United Kingdom’s coastline alone. Despite the benefits of cleaner energy generation, since the earliest planning stages there have been concerns about the environmental impacts of wind farms, including fears for bird mortalities and noise affecting marine mammals. Many of these impacts have now been shown to have fewer detrimental effects that originally expected, and therefore the aim of this report is to try and determine whether another environmental concern – that of a loss of seabed due to turbine installation – is as significant as originally predicted. Using details of the most commonly used turbine foundation, the monopile, and the methods of scour protection used around their bases – gravel, boulders and synthetic fronds – calculations for net changes in the areas and types of habitat were produced. It was found that gravel and boulder protection provide the maximum increase in habitat surface area (650m2 and 577m2 respectively), and although the use of synthetic fronds results in a loss of surface area of 12.5m2, it would be expected that the ecological usefulness and carrying capacity of the area would increase, therefore it would still be environmentally beneficial. -
Stability Design of Coastal Structures (Seadikes, Revetments, Breakwaters and Groins)
Note: Stability of coastal structures Date: August 2016 www.leovanrijn-sediment.com STABILITY DESIGN OF COASTAL STRUCTURES (SEADIKES, REVETMENTS, BREAKWATERS AND GROINS) by Leo C. van Rijn, www.leovanrijn-sediment.com, The Netherlands August 2016 1. INTRODUCTION 2. HYDRODYNAMIC BOUNDARY CONDITIONS AND PROCESSES 2.1 Basic boundary conditions 2.2 Wave height parameters 2.2.1 Definitions 2.2.2 Wave models 2.2.3 Design of wave conditions 2.2.4 Example wave computation 2.3 Tides, storm surges and sea level rise 2.3.1 Tides 2.3.2 Storm surges 2.3.3 River floods 2.3.4 Sea level rise 2.4 Wave reflection 2.5 Wave runup 2.5.1 General formulae 2.5.2 Effect of rough slopes 2.5.3 Effect of composite slopes and berms 2.5.4 Effect of oblique wave attack 2.6 Wave overtopping 2.6.1 General formulae 2.6.2 Effect of rough slopes 2.6.3 Effect of composite slopes and berms 2.6.4 Effect of oblique wave attack 2.6.5 Effect of crest width 2.6.6 Example case 2.7 Wave transmission 1 Note: Stability of coastal structures Date: August 2016 www.leovanrijn-sediment.com 3 STABILITY EQUATIONS FOR ROCK AND CONCRETE ARMOUR UNITS 3.1 Introduction 3.2 Critical shear-stress method 3.2.1 Slope effects 3.2.2 Stability equations for stones on mild and steep slopes 3.3 Critical wave height method 3.3.1 Stability equations; definitions 3.3.2 Stability equations for high-crested conventional breakwaters 3.3.3 Stability equations for high-crested berm breakwaters 3.3.4 Stability equations for low-crested, emerged breakwaters and groins 3.3.5 Stability equations for submerged breakwaters -
Coastal Management Software to Support the Decision-Makers to Mitigate Coastal Erosion
Journal of Marine Science and Engineering Article Coastal Management Software to Support the Decision-Makers to Mitigate Coastal Erosion Carlos Coelho * , Pedro Narra, Bárbara Marinho and Márcia Lima RISCO & Civil Engineering Department, Aveiro University, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; [email protected] (P.N.); [email protected] (B.M.); [email protected] (M.L.) * Correspondence: [email protected] Received: 4 December 2019; Accepted: 8 January 2020; Published: 11 January 2020 Abstract: There are no sequential and integrated approaches that include the steps needed to perform an adequate management and planning of the coastal zones to mitigate coastal erosion problems and climate change effects. Important numerical model packs are available for users, but often looking deeply to the physical processes, demanding big computational efforts and focusing on specific problems. Thus, it is important to provide adequate tools to the decision-makers, which can be easily interpreted by populations, promoting discussions of optimal intervention scenarios in medium to long-term horizons. COMASO (coastal management software) intends to fill this gap, presenting a group of tools that can be applied in standalone mode, or in a sequential order. The first tool should map the coastal erosion vulnerability and risk, also including the climate change effects, defining a hierarchy of priorities where coastal defense interventions should be performed, or limiting/constraining some land uses or activities. In the locations identified as priorities, a more detailed analysis should consider the application of shoreline and cross-shore evolution models (second tool), allowing discussing intervention scenarios, in medium to long-term horizons. After the defined scenarios, the design of the intervention should be discussed, both in case of being a hard coastal structure or an artificial nourishment (third type of tools).