X-Ray Microanalysis of Chief Cells in Rat Parathyroid Gland

Total Page:16

File Type:pdf, Size:1020Kb

X-Ray Microanalysis of Chief Cells in Rat Parathyroid Gland Scanning Microscopy Volume 7 Number 3 Article 11 9-24-1993 X-Ray Microanalysis of Chief Cells in Rat Parathyroid Gland Romuald Wroblewski Karolinska Institute Follow this and additional works at: https://digitalcommons.usu.edu/microscopy Part of the Biology Commons Recommended Citation Wroblewski, Romuald (1993) "X-Ray Microanalysis of Chief Cells in Rat Parathyroid Gland," Scanning Microscopy: Vol. 7 : No. 3 , Article 11. Available at: https://digitalcommons.usu.edu/microscopy/vol7/iss3/11 This Article is brought to you for free and open access by the Western Dairy Center at DigitalCommons@USU. It has been accepted for inclusion in Scanning Microscopy by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. Scanning Microscopy, Vol. 7, No. 3, 1993 (Pages 875-880) 0891-7035/93$5.00+ .00 Scanning Microscopy International, Chicago (AMF O'Hare), IL 60666 USA X-RAY MICROANALYSIS OF CHIEF CELLS IN RAT PARATHYROID GLAND Romuald Wroblewski Department of Pathology, Karolinska Institute / Hospital, S-17176 Stockholm, Sweden Telephone number: 46-8- 729 35 97 / FAX 46-8-34 58 20 (Received for publication July 20, 1993, and in revised form September 24, 1993) Abstract Introduction X-ray microanalysis was used to study the The parathyroid gland was the last major organ elemental composition of the rat parathyroid gland. in the human body to be discovered. Since its Analyses were performed in morphologically defined discovery by Sandstrom (1880) the parathyroid tissue cells. Use of semi-thin cryosections allowed us to has been extensively studied because of its central selectively analyze cell nucleus, cytoplasm and role in calcium regulation. In man, three types of occasionally dense granules in the cytoplasm. cells can be distinguished in the parathyroid gland - The concentration of elements (mmol/kg dry chief cells, oxyphilic cells and fat cells which appear weight) in chief cells of parathyroid gland were as first around the puberty (Munger and Roth 1963, follows: Na 83, Mg 48, P 853, S 224, Cl 164, K 551 Grimelius et al. 1981). The chief cells synthesize and and Ca 10. Significantly higher phosphorus and release parathyroid hormone (PTH), which potassium concentrations were found in the dense maintains calcium homeostasis in the body through granules as compared to cytoplasm of the parathyroid its effects on target tissues, bone and kidney. In chief cells. Choosing rat parathyroid gland gave the contrary to most other secretory cells, in parathyroid possibility to exclusively analyze chief cells. Data cells decreasing calcium concentration stimulates obtained from such a homogenous cell population secretion of PTH while increasing concentrations of will be of interest when studying human parathyroid extracellular calcium inhibit PTH secretion. The in which chief cells are mixed together with other cellular mechanism responsible for PTH secretion types of cells. has not been fully investigated but it is established that besides the changes in extracellular calcium also other cations regulate PTH release (Muff et al. 1988, Nygren et al. 1988, Brown et al. 1992, Pocotte et al. 1992). The oxyphilic cells (Castleman and Mallory 1935) are densely packed with mitochondria and produce small quantities of PTH, however, their precise role is still unknown. They appear in human parathyroid gland a few years before puberty. It has been suggested that oxyphilic cells arise from chief cells. In the rat, only chief cells are present (Rosof 1934, Engfeld t 1950). Rosof (1934) and Lever (1958) described dark and light cells within the chief cell population and suggested that differences represent different phases of secretory activity. Boquist and Lundgren (1975) found differences in morphology Key Words: Parathyroid gland, microanalysis, ionic and intracellular distribution of calcium in composition, chief cells, sodium, potassium, calcium, parathyroid cells. Whereas active chief cells of magnesium, chlorine, phosphorus, sulphur. normal parathyroid glands showed only sparse calcium-containing precipitations, this was more pronounced in stimulated chief cells of hyperplastic parathyroid gland (Boquist and Lundgren 1975). Morphological differences found within chief cells have been explained as a fixation artifact or as 875 Romuald Wr6blewski being due to differences in activity of the cells (Lever sections were stained with hematoxylin-eosin or 1958, Svensson et al. 1989). To my knowledge no periodic-acid Schiff's reagent (PAS) for light morphological studies have been performed on thin microscopical examination. cryosectioned parathyroid tissue which would reveal The cryosections used for X-ray microanalysis the closest to in vivo existing morphology. were examined in a JEOL 1200CX TEMSCAN electron X-ray microanalysis of the homogenous cell microscope equipped with a scanning attachment and population in rat parathyroid makes it possible to analyzed with a TRACOR 5500 energy dispersive X­ establish the typical elemental composition of the ray spectrometer system. chief cells. This may give information making it The specimens were examined in the scanning easier to analyze a more complex normal or transmission mode at accelerating voltage of 100 or abnormal human parathyroid gland. In humans, 120 kV. The total counting time (life-time) was 50 both in normal and in pathological conditions, in seconds. Quantitative analysis was carried out by addition to chief-, oxyphilic- and fat cells, several cell using gelatin standards containing known types which have characteristics of both chief and concentrations of mineral salts (Wroblewski et al. oxyphilic cells are present (Grimelius et al. 1981). The 1983). basic knowledge of chief cells elemental composition For statistical analysis of the data, Student's t­ is therefore of special value as it is known that in test was used. parathyroid cells extracellular ionic changes affect intracellular ionic composition and hormone release Results and Discussion (Muff et al. 1988, Pocotte et al. 1992). The aim of specimen preparation for all Scanning-transmission images of 2-4 µm thick methods of elemental analysis should be to retain the cryosections (Fig. la-b) displayed several sheets of in vivo elemental composition and distribution. This chief cells of the parathyroid gland. Loose connective can be best achieved by the use of cryo preparation tissue and capillaries containing erythrocytes were methods such as used in the present study. The use of present between the sheets of chief cells. A delicate serially cut cryosections has allowed us to correlate connective tissue capsule separated the parathyroid the elemental contents of single cells with enzyme from the adjacent thyroid tissue. Morphological and substrate histochemistry of the same cell structures observed by electron microscopy could be (Wroblewski et al. 1978, 1983, 1984). This type of correlated with the simultaneously projected light analysis is a useful pathophysiological tool, also microscopical image (Fig. 2a-b). Parathyroid cells because various pathological conditions affect exhibited minor differences in the density of the different cell types within the tissue differently cytoplasm. In most chief cells the large nucleus (Edstrom et al. 1979). X-ray microanalytical data occupied most of the cell, leaving a relatively small obtained from single cells are not influenced by the rim of cytoplasm. The nucleus often appeared more elemental content of the extracellular space, the size electron dense than the cytoplasm. As our specimen and content of which often are affected in tissues preparation technique did not include chemical undergoing pathological changes. fixation or impregnation with heavy metals, the The aim of the present study was to analyze by observed differences in the electron density were X-ray microanalysis the parathyroid chief cells of rats, directly related to the density of the organelles and to provide basic data on their elemental content in cytoplasm in vivo. Dense granules were identified in normal conditions. Such data are of great importance some cells. The size and density of these granules in work with pathological and experimental tissues varied only slightly and were more likely to depend and with the cells in culture. It is possible that the on freeze-drying procedure rather than on the elemental characteristics of chief cells will help us to original structure and metabolic state of the cell. It define the elemental content of the oxyphilic cells in was difficult to elucidate if the differences in the human parathyroid. cytoplasm density could be related to described morphological differences among chief cells (Rosof Material and Methods 1934, Lever 1958, Svensson et al. 1989) or were a result of our preparation technique, where small differences Thyroid glands with adjacent parathyroid in the section thickness in combination with the glands were quickly dissected out from five Sprague­ small size of the cells (overlying structures) might Dawley (200-250 g) adult rats of both sexes. The result in the density differences. samples were plunged into liquid Freon 22, cooled by X-ray microanalysis (XRMA) of cryosections liquid nitrogen. Samples were mounted such that including parathyroid and thyroid gland could be parathyroid and thyroid glands were cut performed separately on nuclei, cytoplasm and simultaneously. Sections (2-4µm thick) were cut on a occasionally also on dense granules (Fig. 3 a-e). The cryostat at -30°C. The sections were picked up on analytical
Recommended publications
  • WO 2013/096741 A2 27 June 2013 (27.06.2013) P CT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2013/096741 A2 27 June 2013 (27.06.2013) P CT (51) International Patent Classification: (74) Agents: GEORGE, Nikolaos C. et al; Jones Day, 222 A61K 35/12 (2006.01) East 41st Street, New York, NY 10017-6702 (US). (21) International Application Number: (81) Designated States (unless otherwise indicated, for every PCT/US20 12/07 1192 kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (22) Date: International Filing BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, 2 1 December 2012 (21 .12.2012) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (25) Filing Language: English HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, (26) Publication Language: English ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, (30) Priority Data: NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, 61/579,942 23 December 201 1 (23. 12.201 1) US RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, 61/592,350 30 January 2012 (30.01.2012) US TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, 61/696,527 4 September 2012 (04.09.2012) us ZM, ZW. (71) Applicant: ANTHROGENESIS CORPORATION (84) Designated States (unless otherwise indicated, for every [US/US]; 33 Technology Drive, Warren, NJ 07059 (US).
    [Show full text]
  • The Fine Structure of the Parathyroid Gland*
    The Fine Structure of the Parathyroid Gland* BY JERRY STEVEN TRIER, M.D. (From the Department of Anatomy, University of Washington School of Medicine, Seattle) PLATES 3 TO 10 (Received for publication, July 29, 1957) ABSTRACT The fine structure of the parathyroid of the macaque is described, and is cor- related with classical parathyroid cytology as seen in the light microscope. The two parenchymal cell types, the chief cells and the oxyphil cells, have been recognized in electron mierographs. The chief cells contain within their cyto- plasm mitochondria, endoplasmic reticulum, and Golgi bodies similar to those found in other endocrine tissues as well as frequent PAS-positive granules. The juxtanuclear body of the light microscopists is identified with stacks of parallel lamellar elements of the endoplasmic rcticulum of the ergastoplasmic or granular type. Oxyphll cells are characterized by juxtanuclear bodies and by numerous mito- chondria found throughout their cytoplasm. Puzzling lamellar whorls are described in the cytoplasm of some oxyphil cells. The endothelium of parathyroid capillaries is extremely thin in some areas and contains numerous fenestrations as well as an extensive system of vesicles. The possible significance of these structures is discussed. The connective tissue elements found in the perivascular spaces of macaque parathyroid are described. INTRODUCTION Other contributions to the present concepts con cerning the human parathyroid can be found in the It is the purpose of the present paper to report some observations on the fine structure of the reports of Bergstrand (7), Morgan (34), Pappen- parathyroid gland employing the electron micro- heimer and Wilens (45), Castleman and Mallory (10), and Gilmour (20).
    [Show full text]
  • WO 2015/168656 A2 5 November 2015 (05.11.2015) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/168656 A2 5 November 2015 (05.11.2015) P O P C T (51) International Patent Classification: (72) Inventors: HSIAO, Sonny; 1985 Pleasant Valley Avenue, A61K 48/00 (2006.01) Apartment 7, Oakland, CA 9461 1 (US). LIU, Cheng; 24 N Hill Court, Oakland, CA 94618 (US). LIU, Hong; 5573 (21) International Application Number: Woodview Drive, El Sobrante, CA 94803 (US). PCT/US20 15/02895 1 (74) Agents: GIERING, Jeffery, C. et al; Wilson Sonsini (22) International Filing Date: Goodrich & Rosati, 650 Page Mill Road, Palo Alto, CA 1 May 2015 (01 .05.2015) 94304-1050 (US). (25) Filing Language: English (81) Designated States (unless otherwise indicated, for every (26) Publication Language: English kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (30) Priority Data: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, 61/988,070 2 May 2014 (02.05.2014) US DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (71) Applicant: ADHEREN INCORPORATED [US/US]; HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 1026 Rispin Drive, Berkeley, CA 94705 (US). KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (72) Inventors; and PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (71) Applicants : TWITE, Amy, A.
    [Show full text]
  • Nomenclatore Per L'anatomia Patologica Italiana Arrigo Bondi
    NAP Nomenclatore per l’Anatomia Patologica Italiana Versione 1.9 Arrigo Bondi Bologna, 2016 NAP v. 1.9, pag 2 Arrigo Bondi * NAP - Nomenclatore per l’Anatomia Patologica Italiana Versione 1.9 * Componente Direttivo Nazionale SIAPEC-IAP Società Italiana di Anatomia Patologica e Citodiagnostica International Academy of Pathology, Italian Division NAP – Depositato presso S.I.A.E. Registrazione n. 2012001925 Distribuito da Palermo, 1 Marzo 2016 NAP v. 1.9, pag 3 Sommario Le novità della versione 1.9 ............................................................................................................... 4 Cosa è cambiato rispetto alla versione 1.8 ........................................................................................... 4 I Nomenclatori della Medicina. ........................................................................................................ 5 ICD, SNOMED ed altri sistemi per la codifica delle diagnosi. ........................................................... 5 Codifica medica ........................................................................................................................... 5 Storia della codifica in medicina .................................................................................................. 5 Lo SNOMED ............................................................................................................................... 6 Un Nomenclatore per l’Anatomia Patologica Italiana ................................................................. 6 Il NAP .................................................................................................................................................
    [Show full text]
  • Wednesday Slide Conference 2008-2009
    PROCEEDINGS DEPARTMENT OF VETERINARY PATHOLOGY WEDNESDAY SLIDE CONFERENCE 2008-2009 ARMED FORCES INSTITUTE OF PATHOLOGY WASHINGTON, D.C. 20306-6000 2009 ML2009 Armed Forces Institute of Pathology Department of Veterinary Pathology WEDNESDAY SLIDE CONFERENCE 2008-2009 100 Cases 100 Histopathology Slides 249 Images PROCEEDINGS PREPARED BY: Todd Bell, DVM Chief Editor: Todd O. Johnson, DVM, Diplomate ACVP Copy Editor: Sean Hahn Layout and Copy Editor: Fran Card WSC Online Management and Design Scott Shaffer ARMED FORCES INSTITUTE OF PATHOLOGY Washington, D.C. 20306-6000 2009 ML2009 i PREFACE The Armed Forces Institute of Pathology, Department of Veterinary Pathology has conducted a weekly slide conference during the resident training year since 12 November 1953. This ever- changing educational endeavor has evolved into the annual Wednesday Slide Conference program in which cases are presented on 25 Wednesdays throughout the academic year and distributed to 135 contributing military and civilian institutions from around the world. Many of these institutions provide structured veterinary pathology resident training programs. During the course of the training year, histopathology slides, digital images, and histories from selected cases are distributed to the participating institutions and to the Department of Veterinary Pathology at the AFIP. Following the conferences, the case diagnoses, comments, and reference listings are posted online to all participants. This study set has been assembled in an effort to make Wednesday Slide Conference materials available to a wider circle of interested pathologists and scientists, and to further the education of veterinary pathologists and residents-in-training. The number of histopathology slides that can be reproduced from smaller lesions requires us to limit the number of participating institutions.
    [Show full text]
  • Differentiation of Human Parathyroid Cells in Culture
    417 Differentiation of human parathyroid cells in culture W Liu, P Ridefelt1, G Åkerström and P Hellman Department of Surgery, University Hospital, Uppsala, Sweden 1Clinical Chemistry, University Hospital, Uppsala, Sweden (Requests for offprints should be addressed to P Hellman, Department of Surgery, University Hospital, SE-751 85 Uppsala, Sweden; Email: [email protected]) Abstract Continuous culture of parathyroid cells has proven diffi- histochemistry for proliferating cell nuclear antigen and cult, regardless from which species the cells are derived. In cell counting. Signs of differentiation were present as the the present study, we have used a defined serum-free low set-points, defined as the external calcium concentration at 2+ calcium containing medium to culture human parathyroid which half-maximal stimulation of [Ca ]i (set-pointc), or cells obtained from patients with parathyroid adenomas half-maximal inhibition of PTH release (set-pointp) occur, due to primary hyperparathyroidism. No fibroblast over- were higher in not proliferating compared with prolifer- growth occurred, and the human parathyroid chief cells ating cells in P0. Inhibition of cell proliferation was proliferated until confluent. After the first passage the cells accompanied by signs of left-shifted set-points, indicating ceased to proliferate, but still retained their functional a link between proliferation and differentiation. capacity up to 60 days, demonstrated by Ca2+-sensitive The results demonstrate that human parathyroid chief changes in the release of parathyroid hormone (PTH) and cells cultured in a defined serum-free medium can be kept 2+ ff as adequate cytoplasmic calcium ([Ca ]i) responses to viable for a considerable time, and that signs of di er- changes in ambient calcium as measured by micro- entiation occur after proliferation has ceased.
    [Show full text]
  • Introduction to the Endocrine System: Mechanisms of Disease
    Introduction to the Endocrine System: Mechanisms of Disease Mark J. Hoenerhoff, DVM, PhD, DACVP Associate Professor, In Vivo Animal Core Unit for Laboratory Animal Medicine University of Michigan Medical School 1.1 Lairmore and Rosol, Vet Pathol. 2008 May;45(3):285-286. 1.2 HORMONES CONTROL EVERYTHING!! 1.3 quora.com “CAPEN’S TEN LAWS” OF ENDOCRINE DISEASE 1. Primary Hyperfunction 2. Secondary Hyperfunction 3. Primary Hypofunction 4. Secondary Hypofunction 5. Endocrine Hyperactivity 2o to Other Organ Disease 6. Hypersecretion of Hormones by Non-endocrine Tumors 7. Endocrine Dysfunction due to Failure of Target Cell Response 8. Failure of Fetal Endocrine Function 9. Endocrine Dysfunction 2o to Abnormal Hormone Degradation 10. Syndromes of Iatrogenic Hormone Excess 1.4 Capen CC. Endocrine Glands. In: Maxie G, ed. Jubb, Kennedy & Palmer’s Pathology of Domestic Animals. 5th ed. Elsevier; 2007:325-326. Papadopoulos and Cleare, Nat Rev Endocrinol. 2011 Sept 27;8(1):22-32 1.5 Bassett and Williams, Bone. 2008 Sep;43(3):418-426. 1. PRIMARY HYPERFUNCTION OF ENDOCRINE ORGANS • Often result of functional neoplastic disease of endocrine gland • Autonomous secretion of hormones – DIRECT effect on target organ • Outpaces body’s ability to utilize and degrade hormone • Functional disturbance of hormone excess • Parathyroid chief cell tumors Hyperparathyroidism • Thyroid follicular tumors Hyperthyroidism 1.6 1. PRIMARY HYPERFUNCTION • Parathyroid tumors Hyperparathyroidism Parathyroid PTH Solar Arias et al, Open Vet J. 2016;6(3):165-171. 1.7 Bassett and Williams, Bone. 2008 Sep;43(3):418-426. 1. PRIMARY HYPERFUNCTION • Parathyroid tumors Hyperparathyroidism Parathyroid PTH https://ntp.niehs.nih.gov/nnl/index.htmSolar Arias et al, Open Vet J, 2016 1.7 Bassett and Williams, Bone.
    [Show full text]
  • Thyroid Gland
    10/13/2020 STP Virtual Modular Course 1 Thyroid/Parathyroid: Normal, Background, Induced; Rodent/Nonrodent Terminology; Rodent-Specific Effects I and II Thomas J. Rosol, DVM, PhD, MBA, DACVP, Ohio University Heritage College of Medicine See INHAND: Endocrine (rodents, dog) 2 ©Rosol 2020 1 10/13/2020 Thyroid Gland • Evolution: Conservation of T4 and T3 (mammals, birds, and teleosts) • Structure: Similar • Physiology and metamorphosis: Similarities and dissimilarities • Cancer: Dissimilarities 3 4 ©Rosol 2020 2 10/13/2020 Thyroid Stimulating Hormone (TSH) • Glycoprotein: Alpha & Beta (novel) subunits • Short (~15 minute) half-life • Circulates free (unbound) in blood • Highly species-specific – Human, primate, rat, & dog assays – Little cross reactivity – Male rats greater than females 5 Negative Feedback of the Pituitary by Free T4 • Feedback is dependent on the free hormone – Hypothalamus – Pituitary •Pituitary – 5’ Deiodinase (D2) (intracellular on ER) – Converts T4 to T3 – Serum free T4 correlates with TSH secretion 6 ©Rosol 2020 3 10/13/2020 Relationship of TSH to Free T4 TSH (ng/ml) Free T4 (pM) 7 T4 dose and serum TSH in hypothyroid dog Ferguson DC, 2009, Vet Pharm & Ther 8 ©Rosol 2020 4 10/13/2020 Mouse: TSH Cell Hypertrophy & Hyperplasia (Inhibition of thyroxine synthesis) 9 NIS IHC: 2-month-old Mouse 10 ©Rosol 2020 5 10/13/2020 NIS IHC: 9-month-old Mouse 11 12 ©Rosol 2020 6 10/13/2020 Thyroid Hormone Deiodination • Circulating T3 is not useful to measure thyroid function –Source: liver & kidney plasma membrane deiodinase 1 (D1) • T3 is largely regulated at the cellular level in a tissue- dependent manner (by 5’ deiodinase, D2) 13 Free Serum T4 Between Species TT4 FT4 FT4 Half-life Species (g/dL) (%) (ng/dl) (hours) Rat 4.1 0.05 2.0 13 Dog 2.8 0.10 2.8 15 Cat 1.7 0.10 1.7 11 Human 6.8 0.03 2.0 120 TT4: Total T4, FT4: Free T4 14 ©Rosol 2020 7 10/13/2020 15 Thyroxine Pharmacokinetics Dog and Human (0.22 L/hr) (0.05 L/hr) Kaptein, Am.
    [Show full text]
  • W O 2017/180669 a L 1 9 October 2017 (19.10.2017) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date W O 2017/180669 A l 1 9 October 2017 (19.10.2017) P O P C T (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, C12N 15/90 (2006.01) C12N 15/09 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, C12N 15/87 (2006.01) C07H 21/04 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KH, KN, (21) International Application Number: KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, PCT/US20 17/027073 MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, (22) International Filing Date: NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, 11 April 2017 ( 11.04.2017) RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, (25) Filing Language: English ZA, ZM, ZW. (26) Publication Language: English (84) Designated States (unless otherwise indicated, for every (30) Priority Data: kind of regional protection available): ARIPO (BW, GH, 62/320,863 11 April 2016 ( 11.04.2016) US GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, (71) Applicant: APPLIED STEMCELL, INC.
    [Show full text]
  • Parsabiv H-3995
    15 September 2016 EMA/664198/2016 Committee for Medicinal Products for Human Use (CHMP) Assessment report Parsabiv International non-proprietary name: etelcalcetide Procedure No. EMEA/H/C/003995/0000 Note Assessment report as adopted by the CHMP with all information of a commercially confidential nature deleted. 30 Churchill Place ● Canary Wharf ● London E14 5EU ● United Kingdom Telephone +44 (0)20 3660 6000 Facsimile +44 (0)20 3660 5520 Send a question via our website www.ema.europa.eu/contact An agency of the European Union © European Medicines Agency, 2016. Reproduction is authorised provided the source is acknowledged. Table of contents 1. Background information on the procedure .............................................. 6 1.1. Submission of the dossier ..................................................................................... 6 1.2. Steps taken for the assessment of the product ........................................................ 7 2. Scientific discussion ................................................................................ 8 2.1. Introduction ........................................................................................................ 8 2.1.1. Problem statement ............................................................................................ 8 2.1.2. About the product ............................................................................................. 9 2.2. Quality aspects ...................................................................................................
    [Show full text]
  • The Role of Protein Kinase C in the Extracellular Ca2+-Regulated Secretion of Parathyroid Hormone
    Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 1384 The Role of Protein Kinase C in the Extracellular Ca2+-regulated Secretion of Parathyroid Hormone BY AMOS M. SAKWE ACTA UNIVERSITATIS UPSALIENSIS UPPSALA 2004 !" !# $ % & ' % % (& & ) % * +, -& . / '&, 0 1. 2 *, !#, -& 3 % ( 4 & / !56' 0 % ( & 7 , 2 , 8#, #6 p , , ISBN 96$$#6"96; ( & & )(-7+ & < & ' ' % & !5 !5 )= > + & , -& % & & &'& !5 = > , ( & . & '& ' % & & & &. % & )(-+ . % !5 6 ' & ' ) 3+, : & % (-7 & % (-7 & % (- & % (-7 & % (-7, -& '' & (- ? % & !5 % (-7 & & = > 6' % & & , - % (- . & !6@6 & 66 )-(2+ 1 & !5 &'& = > 6 36 % (-7 , - & % 2A6 1 )(4+ % & . & ' % (4 . & & ' % & B !5 & 3, (46C . &'& = > . %% . 6' !5 ' -(2 , : 36 % 7/4!; -(2 &'& = > & % /34D! & -(2 %% . 36 !56 , -& ' % 6 % !5 % % . ' & ' % (4 . & ' % & ' D & % & B & 3, : % % !5 % . ' % & 6 & , @6 % . (46C 6E (- ' & - 6@ ' & & %% !5 % -(2 (-7 &'& = > . & 6 ' . (46C & ' % & !5 ' (-7 . & & ' % & (4 % & 3, & & !5 1 ' /34D! & ! " # $ %" #& '()" " *+,'-). " F 2 *, 0 1. !# :00 !8!69#9" :0 ;6$$#6"96; 6#"9 )& DD ,1,D G H 6#"9+ In memory of
    [Show full text]
  • Water-Clear Cell Adenoma of the Mediastinal Parathyroid Gland
    Case Report doi: 10.5146/tjpath.2017.01407 Water-Clear Cell Adenoma of the Mediastinal Parathyroid Gland Deniz ARIK1, Emine DÜNDAR1, Evrim YILMAZ1, Cumhur SİVRİKOZ2 Department of 1Pathology and 2Thorax Surgery, Eskisehir Osmangazi University, Medicine Faculty, ESKİŞEHİR, TURKEY ABSTRACT Water-clear cell adenoma of the parathyroid gland is a rare neoplasm that consists of cells with abundant clear-pink cytoplasm. There have only been 19 cases reported in the English literature. Here we report a case of water-clear cell adenoma of the mediastinal parathyroid gland. A 70-year-old male patient presented to the hospital with back pain and a mediastinal mass 6 cm in size was detected. After excision and microscopic evaluation, uniform, large clear cells with fine cytoplasmic vacuolization, without nuclear atypia, and arranged in solid and acinar patterns were revealed. The cells formed nests that were separated by fine fibrovascular septae and stained positively with anti-parathyroid hormone. To the best of our knowledge, this has not been previously reported in this location. In the differential diagnosis of clear cell lesions of the mediastinum, water-clear cell parathyroid adenoma should be considered. Key Words: Water-clear cell, Adenoma, Ectopic tissue, Mediastinum, Parathyroid gland INTRODUCTION did not have high glycolytic activity. The serum calcium and parathyroid hormone levels were not evaluated. Surgical Water-clear cell parathyroid adenoma (WCCA) is very excision was planned by the initial diagnosis of a bronchial rare. Only nineteen cases have been reported in the English cyst, pathological lymph node or low-grade malignancy. literature (1-17). Water-clear cells (WCCs) are large In open surgery, by intraoperative consultation (frozen polygonal cells with a small nucleus and large optically section) of the biopsy, a lesion with clear cells was seen, but clear cytoplasm.
    [Show full text]