The Regulation of Parathyroid Hormone Secretion and Synthesis

Total Page:16

File Type:pdf, Size:1020Kb

The Regulation of Parathyroid Hormone Secretion and Synthesis BRIEF REVIEW www.jasn.org The Regulation of Parathyroid Hormone Secretion and Synthesis Rajiv Kumar* and James R. Thompson† *Division of Nephrology and Hypertension, Department of Internal Medicine, Biochemistry and Molecular Biology, and †Department of Physiology, Biophysics and Bioengineering, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota ABSTRACT Secondary hyperparathyroidism classically appears during the course of chronic renal basis of these observations regarding failure and sometimes after renal transplantation. Understanding the mechanisms by pathogenesis, therapy for 2°HPT in the which parathyroid hormone (PTH) synthesis and secretion are normally regulated is context of CKD and ESRD includes the important in devising methods to regulate overactivity and hyperplasia of the para- control of serum phosphate concentra- ϩ thyroid gland after the onset of renal insufficiency. Rapid regulation of PTH secretion tions, the administration of Ca2 and in response to variations in serum calcium is mediated by G-protein coupled, calcium- vitamin D analogs, and the administra- sensing receptors on parathyroid cells, whereas alterations in the stability of mRNA- tion of calcimimetics.33,34,16,35,36 encoding PTH by mRNA-binding proteins occur in response to prolonged changes in Nevertheless, 2°HPT remains a signifi- serum calcium. Independent of changes in intestinal calcium absorption and serum cant clinical problem and additional meth- calcium, 1␣,25-dihydroxyvitamin D also represses the transcription of PTH by associ- ods for the treatment of this condition would ating with the vitamin D receptor, which heterodimerizes with retinoic acid X receptors be helpful, especially in refractory situations, to bind vitamin D-response elements within the PTH gene. 1␣,25-Dihydroxyvitamin D where other measures have failed or are only additionally regulates the expression of calcium-sensing receptors to indirectly alter partially effective. Knowledge about the mec- PTH secretion. In 2°HPT seen in renal failure, reduced concentrations of calcium- hanisms by which parathyroid hormone se- sensing and vitamin D receptors, and altered mRNA-binding protein activities within cretion and synthesis occur is therefore of the parathyroid cell, increase PTH secretion in addition to the more widely recognized value in designing new approaches to the changes in serum calcium, phosphorus, and 1␣,25-dihydroxyvitamin D. The treatment treatment of this condition. Here we briefly of secondary hyperparathyroidism by correction of serum calcium and phosphorus review the mechanisms that modulate PTH concentrations and the administration of vitamin D analogs and calcimimetic agents release and secretion and identify abnormal- may be augmented in the future by agents that alter the stability of mRNA-encoding ities that are present in progressive renal dis- PTH. ease. J Am Soc Nephrol 22: ●●●–●●●, 2011. doi: 10.1681/ASN.2010020186 PTH RELEASE AND SYNTHESIS DETERMINE SERUM PTH The central role of the parathyroid creased incidence of fractures and mor- CONCENTRATIONS ϩ glands in regulating Ca2 homeostasis tality.13–16 by modulating bone metabolism, the The pathogenesis of 2°HPT in CKD is Serum PTH concentrations are depen- synthesis of 1␣,25-dihydroxyvitamin complex. Phosphate retention, hyperphos- dent upon the release of PTH stored in ␣ 2ϩ 2ϩ D(1 ,25(OH)2D) in proximal tubules, phatemia, low serum Ca (sCa ), elevated 2ϩ and the reabsorption of Ca in the levels of parathyroid hormone (PTH), Published online ahead of print. Publication date ␣ 2ϩ distal nephron is widely appreciated by 1 ,25(OH)2D deficiency, intestinal Ca available at www.jasn.org. 1–5 the readers of this journal. Second- malabsorption, the reduction of vitamin D Correspondence: Dr. Rajiv Kumar, Division of Ne- ary hyperparathyroidism (2°HPT) fre- receptors (VDR) and calcium-sensing recep- phrology and Hypertension, Departments of Medi- quently occurs in the setting of chronic tors (CaSR) in the parathyroid glands, and cine, Biochemistry and Molecular Biology, Mayo Clinic and Foundation, 200 1st Street SW, Roches- kidney disease (CKD), of end-stage re- altered mRNA-binding protein activities ter, MN 55905. Phone: 507-284-0020; Fax: 507-538- nal disease (ESRD), or after renal trans- modulating PTH transcripts play a role in the 9536; E-mail: [email protected] 6–12 17–30 plantation, and uncontrolled 2°HPT development of 2°HPT. Parathyroid hy- Copyright © ●●●● by the American Society of in CKD and ESRD associates with an in- perplasia is often present as well.31,32 On the Nephrology J Am Soc Nephrol 22: ●●●–●●●, 2011 ISSN : 1046-6673/2202-●●● 1 BRIEF REVIEW www.jasn.org secretory granules within the parathy- roid gland and by the synthesis of new ϩ PTH.1,37 sCa2 , phosphorus, and vita- min D metabolites play a role in regulat- ing PTH release and synthesis.1,3,28,38–41 Rapid PTH release from secretory granules in hypocalcemic states is modulated by the binding of Ca2ϩ to CaSRs on chief cells, Figure 1. A hypothetical dimeric model of residues D23 (blue) to I528 (red) of the human whereas long-term replenishment of PTH calcium sensing receptor extracellular domain (CaSR ECD). (A) Both monomers contain- stores is dependent on new PTH synthesis ing just the Venus flytrap region of the CaSR ECD are shown in a closed and presumably that is controlled by the availability of active conformation as was reported for the extracellular domain of the glutamate mRNA-encoding PTH for ribosomal trans- receptor with glutamate bound. The two yellow spheres (yellow arrows) indicate putative ϩ lation into prepro-PTH.2,42,43,27,44–49 Hy- Ca2 -binding sites, found at the nexus of where both lobes of a monomer meet. Most pocalcemia also retards the rate of degrada- residues forming this cation-binding site are not conserved in glutamate receptor. The tion of PTH within the parathyroid gland, additional cyan spheres within the topmost lobes of the dimer designate possible 2ϩ thus making more PTH available for re- Mg -binding sites (green spheres indicated by green arrows) brought over from gluta- 2ϩ lease,50,51 and increases cell division in the mate receptor coordinates. These Mg sites are completely conserved in CaSR. The parathyroid gland possibly through the ac- dimer interface of the portion of CaSR shown is completely formed from interactions between these two upper lobes. There are no intermolecular disulfide bridges linking the tion of the CaSR.1,42,45,52 Phosphorus addi- dimer together within this portion of the ECD of CaSR, although two intramolecular tionally alters PTH synthesis, although the disulfides exist. (B) A model of the apo-CaSR dimer is portrayed. Again, the color ramps ϩ precise mechanisms by which changes in from blue to red from D23 to I528. The Mg2 sites are present, although there is no phosphate concentrations are detected experimental basis for this premise. Of note is the significant opening and expansion or sensed by the parathyroid gland are of the cavities between the upper and lower lobes of each monomer, the areas unknown.28 1␣,25-Dihydroxyvitamin indicated by the two yellow ovals. (C) The upper lobes of the CaSR atomic coordi- ␣ 2ϩ D(1 ,25(OH)2D) alters the transcrip- nates shown above in (A) (with Ca bound, now made gray in color) are superim- tion of PTH and may have an indirect posed on the apo-form model for the CaSR dimer drawn in rainbow as in (B). The red effect on PTH release by increasing the arrows point to a large displacement in the orientation and position of the carboxy- expression of CaSR.38–41,45,53–56 terminal end of the structure near where the CaSR cysteine-rich domains (not shown) might be found. Significant conformational changes within parts of the CaSR ECD connecting with the transmembrane domains probably occur on Ca binding. ROLE OF THE CASR IN MEDIATING PTH RELEASE meostasis is demonstrated by the bio- 1ewk)78 as the template for main chain logic consequences of inactivating or atoms. The atomic coordinates within Changes in concentrations of sCa2ϩ are activating mutations of the receptor. the model were inspected and manually sensed by chief cells through a cell-sur- Inactivating mutations of the CaSR result corrected for steric clashes, for alterna- face, seven-transmembrane, G protein– in familial benign hypercalcemia or neona- tive residue rotamer choices that im- coupled receptor, the CaSR,42,57–59 and tal severe hyperparathyroidism, whereas prove hydrogen bonding, and for Ram- receptor activity results in rapid alter- activating mutations result in autosomal achandran and other conformational ations in PTH secretion.37 After the in- dominant hypocalcemia.62,63,53,64–68 outliers. The CaSR dimer from D23 to duction of abrupt and sustained hy- The CaSR has a large extracellular do- I528 displays perfect twofold symmetry pocalcemia, plasma concentrations of main of approximately 600 amino acids, similar to that of the glutamate receptor PTH increase within 1 minute, peak at 4 a seven-pass transmembrane domain, bound with both glutamate and gadolin- ϩ to 10 minutes, and thereafter decline and an intracellular carboxyl-terminal ium ions.79 The putative Ca2 -binding gradually to approximately 60% of the domain that has several phosphorylation sites were included in our CaSR model ϩ ϩ maximum at 60 minutes, despite ongo- sites.69 The receptor binds Ca2 in its ex- based on the presence of Gd2 atomic ing and constant hypocalcemia. Abrupt tracellular domain, most likely as a dimer coordinates within other glutamate re- restoration of normocalcemia from the in the so-called “Venus flytrap” configu- ceptor structures (PDBs 1ewk and 1isr). ϩ hypocalcemic state causes levels of PTH ration (Figure 1, A through C).70–73 Our In the glutamate receptor, the Gd2 lo- to decrease with an apparent half-life of model of the human CaSR shown in Fig- cation occurs at an acidic patch, includ- approximately 3 minutes. In addition to ure 1 was obtained using multiple se- ing the ligating residues E238, D215, and its role in the parathyroid gland, the quence alignments and initial coordinate E224 with one standout residue R220.
Recommended publications
  • WO 2013/096741 A2 27 June 2013 (27.06.2013) P CT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2013/096741 A2 27 June 2013 (27.06.2013) P CT (51) International Patent Classification: (74) Agents: GEORGE, Nikolaos C. et al; Jones Day, 222 A61K 35/12 (2006.01) East 41st Street, New York, NY 10017-6702 (US). (21) International Application Number: (81) Designated States (unless otherwise indicated, for every PCT/US20 12/07 1192 kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (22) Date: International Filing BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, 2 1 December 2012 (21 .12.2012) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (25) Filing Language: English HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, (26) Publication Language: English ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, (30) Priority Data: NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, 61/579,942 23 December 201 1 (23. 12.201 1) US RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, 61/592,350 30 January 2012 (30.01.2012) US TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, 61/696,527 4 September 2012 (04.09.2012) us ZM, ZW. (71) Applicant: ANTHROGENESIS CORPORATION (84) Designated States (unless otherwise indicated, for every [US/US]; 33 Technology Drive, Warren, NJ 07059 (US).
    [Show full text]
  • Thyroid Gland Parathyroid Glands
    Human Physiology Course Thyroid Gland Parathyroid Glands Assoc. Prof. Mária Pallayová, MD, PhD [email protected] Department of Human Physiology, UPJŠ LF April 13, 2020 (10th week – Summer Semester 2019/2020) Hormones and Functions Thyroid gland Parathyroids Thymus Adrenal glands Endocrine pancreas Ovaries, Testes Pineal Pituitary Hypothalamus-Pituitary Axis GIT, adipose tissue, brain, heart, kidney, ... Hormones and Functions Thyroid gland Parathyroids Thymus Adrenal glands Endocrine pancreas Ovaries, Testes Pineal Pituitary Hypothalamus-Pituitary Axis GIT, adipose tissue, brain, heart, kidney, ... Lecture Outline Functional anatomy of the thyroid gland Synthesis, secretion, and metabolism of the thyroid hormones The mechanism of thyroid action Role of the thyroid hormones in development, growth, and metabolism Thyroid hormone deficiency and excess in adults Physiology of the parathyroids Functional Anatomy of the Thyroid Gland two lobes + isthmus (just below the cricoid cartilage) attached to the trachea by connective tissue A normal THGL in a healthy adult weighs about 15-20 g. Functional Anatomy of the Thyroid Gland arterial blood supply: from a superior and an inferior thyroid a., which arise from the external carotid and subclavian a., respectively. venous blood supply: a series of thyroid veins drain into the ext. jugular and innominate vv. ( a rich blood supply to the thyroid gland w/ a higher rate of blood flow per gram than even that of the kidneys). innervation: adrenergic innervation from the cervical ganglia; cholinergic innervation from the n. vagus (regulation of vasomotor function to increase the delivery of TSH, iodide, and metabolic substrates to the THGL). Functional Anatomy of the Thyroid Gland The colloid (a thick, gel-like substance) is a solution composed primarily of thyroglobulin (10-25% the high viscosity), a large protein that is a storage form of the thyroid hormones.
    [Show full text]
  • The Fine Structure of the Parathyroid Gland*
    The Fine Structure of the Parathyroid Gland* BY JERRY STEVEN TRIER, M.D. (From the Department of Anatomy, University of Washington School of Medicine, Seattle) PLATES 3 TO 10 (Received for publication, July 29, 1957) ABSTRACT The fine structure of the parathyroid of the macaque is described, and is cor- related with classical parathyroid cytology as seen in the light microscope. The two parenchymal cell types, the chief cells and the oxyphil cells, have been recognized in electron mierographs. The chief cells contain within their cyto- plasm mitochondria, endoplasmic reticulum, and Golgi bodies similar to those found in other endocrine tissues as well as frequent PAS-positive granules. The juxtanuclear body of the light microscopists is identified with stacks of parallel lamellar elements of the endoplasmic rcticulum of the ergastoplasmic or granular type. Oxyphll cells are characterized by juxtanuclear bodies and by numerous mito- chondria found throughout their cytoplasm. Puzzling lamellar whorls are described in the cytoplasm of some oxyphil cells. The endothelium of parathyroid capillaries is extremely thin in some areas and contains numerous fenestrations as well as an extensive system of vesicles. The possible significance of these structures is discussed. The connective tissue elements found in the perivascular spaces of macaque parathyroid are described. INTRODUCTION Other contributions to the present concepts con cerning the human parathyroid can be found in the It is the purpose of the present paper to report some observations on the fine structure of the reports of Bergstrand (7), Morgan (34), Pappen- parathyroid gland employing the electron micro- heimer and Wilens (45), Castleman and Mallory (10), and Gilmour (20).
    [Show full text]
  • WO 2015/168656 A2 5 November 2015 (05.11.2015) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/168656 A2 5 November 2015 (05.11.2015) P O P C T (51) International Patent Classification: (72) Inventors: HSIAO, Sonny; 1985 Pleasant Valley Avenue, A61K 48/00 (2006.01) Apartment 7, Oakland, CA 9461 1 (US). LIU, Cheng; 24 N Hill Court, Oakland, CA 94618 (US). LIU, Hong; 5573 (21) International Application Number: Woodview Drive, El Sobrante, CA 94803 (US). PCT/US20 15/02895 1 (74) Agents: GIERING, Jeffery, C. et al; Wilson Sonsini (22) International Filing Date: Goodrich & Rosati, 650 Page Mill Road, Palo Alto, CA 1 May 2015 (01 .05.2015) 94304-1050 (US). (25) Filing Language: English (81) Designated States (unless otherwise indicated, for every (26) Publication Language: English kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (30) Priority Data: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, 61/988,070 2 May 2014 (02.05.2014) US DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (71) Applicant: ADHEREN INCORPORATED [US/US]; HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 1026 Rispin Drive, Berkeley, CA 94705 (US). KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (72) Inventors; and PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (71) Applicants : TWITE, Amy, A.
    [Show full text]
  • Nomenclatore Per L'anatomia Patologica Italiana Arrigo Bondi
    NAP Nomenclatore per l’Anatomia Patologica Italiana Versione 1.9 Arrigo Bondi Bologna, 2016 NAP v. 1.9, pag 2 Arrigo Bondi * NAP - Nomenclatore per l’Anatomia Patologica Italiana Versione 1.9 * Componente Direttivo Nazionale SIAPEC-IAP Società Italiana di Anatomia Patologica e Citodiagnostica International Academy of Pathology, Italian Division NAP – Depositato presso S.I.A.E. Registrazione n. 2012001925 Distribuito da Palermo, 1 Marzo 2016 NAP v. 1.9, pag 3 Sommario Le novità della versione 1.9 ............................................................................................................... 4 Cosa è cambiato rispetto alla versione 1.8 ........................................................................................... 4 I Nomenclatori della Medicina. ........................................................................................................ 5 ICD, SNOMED ed altri sistemi per la codifica delle diagnosi. ........................................................... 5 Codifica medica ........................................................................................................................... 5 Storia della codifica in medicina .................................................................................................. 5 Lo SNOMED ............................................................................................................................... 6 Un Nomenclatore per l’Anatomia Patologica Italiana ................................................................. 6 Il NAP .................................................................................................................................................
    [Show full text]
  • Thyroid & Parathyroid Glands
    THYROID & PARATHYROID GLANDS Objectives: ◧ Editing file • Describe the histological structure of ◧ thyroid & parathyroid glands. Important • Identify and correlate between the different ◧ Doctor notes / Extra endocrine cells in thyroid gland and their functions. • Describe the functional structure of the parathyroid cells. 438 Histology Team Endocrine Block THYROID GLAND STROMA 1- Capsule: dense irregular collagenous C.T. 2- Septa (Interlobular septa) 3- Reticular fibers: Thin C.T. composed mostly of reticular fibers with rich capillary plexus surrounds each thyroid follicle. PARENCHYMA Are the structural and functional units of the thyroid gland. 1- Simple cuboidal epithelium: 2- Colloid: central colloid-filled lumen. a- Follicular (principal) cells b- Parafollicular cells (C cells) (Clear cells) - Pale-stained cells (Clear Cells). (Polygonal/pyramidal cells) N.B. Each follicle is - Simple cuboidal cells. - Found singly or in clusters in between the follicular cells. - Round nucleus with prominent nucleoli. surrounded by thin - Their apices do not reach the lumen of the follicle. L/M: - Basophilic cytoplasm. basal lamina. - Are larger than follicular cells (2-3 times).(larger but less in number) - Apical surface reaches the lumen of the (Acidophilic) - Only 0.1% of the epithelial cells. thyroid follicle. - Have round nucleus - Mitochondria. - RER. (synthesis of thyroglobulin) - Supranuclear Golgi Complex. - Mitochondria. E/M: - Numerous apically-located lysosomes. - RER (moderate). - Numerous dispersed small vesicles - Well-developed Golgi. - The vesicles contain newly formed thyroglobulin. - Numerous apical short microvilli. Function: Synthesis of thyroid hormones (T4 & T3). Secrete calcitonin. 438 Histology Team - Endocrine Block 2 PARATHYROID GLAND They are 4 glands on the posterior of thyroid gland. STROMA 1- Capsule: Each gland has its Thin capsule.
    [Show full text]
  • Primary Hyperparathyroidism
    Primary Hyperparathyroidism The parathyroid glands are 4 glands that reside within the thyroid glands: there are two parathyroid glands attached to each thyroid gland. The thyroid/parathyroid glands lie on either side of the trachea (wind pipe) about midway down the neck. The job of the parathyroid glands is to regulate calcium in the body. They secrete a hormone called parathyroid hormone (PTH), and this hormone draws calcium out of the bone where it is stored, as well as acting on the kidney and intestine to increase blood calcium. This is a normal process in response to fluctuations in blood calcium levels. The calcium in the blood is regulated by PTH (increases blood calcium) and calcitonin (a hormone secreted by the thyroid gland to decrease calcium) in order to keep it within a normal range. When the calcium gets too high or too low, symptoms arise. The most common symptoms of high calcium are increased thirst and urination. Other signs include: lethargy, weakness, diarrhea, inappetance, weight loss, tremors or stiffness. In about 50% of dogs with high calcium, urinary stones +/- urinary tract infection is present. Tumors (enlargement) of the parathyroid gland are typically not malignant, but they do over-secrete PTH. In 90% of cases only one of the four glands is enlarged. By one gland enlarging and over-secreting PTH, the three other glands typically shrink and temporarily stop functioning. Parathyroid tumors are suspected based on consistent blood work that shows elevated or normal PTH in the face of elevated calcium (the normal feedback mechanism would mean that when calcium is high, PTH is not needed and therefore is low).
    [Show full text]
  • Wednesday Slide Conference 2008-2009
    PROCEEDINGS DEPARTMENT OF VETERINARY PATHOLOGY WEDNESDAY SLIDE CONFERENCE 2008-2009 ARMED FORCES INSTITUTE OF PATHOLOGY WASHINGTON, D.C. 20306-6000 2009 ML2009 Armed Forces Institute of Pathology Department of Veterinary Pathology WEDNESDAY SLIDE CONFERENCE 2008-2009 100 Cases 100 Histopathology Slides 249 Images PROCEEDINGS PREPARED BY: Todd Bell, DVM Chief Editor: Todd O. Johnson, DVM, Diplomate ACVP Copy Editor: Sean Hahn Layout and Copy Editor: Fran Card WSC Online Management and Design Scott Shaffer ARMED FORCES INSTITUTE OF PATHOLOGY Washington, D.C. 20306-6000 2009 ML2009 i PREFACE The Armed Forces Institute of Pathology, Department of Veterinary Pathology has conducted a weekly slide conference during the resident training year since 12 November 1953. This ever- changing educational endeavor has evolved into the annual Wednesday Slide Conference program in which cases are presented on 25 Wednesdays throughout the academic year and distributed to 135 contributing military and civilian institutions from around the world. Many of these institutions provide structured veterinary pathology resident training programs. During the course of the training year, histopathology slides, digital images, and histories from selected cases are distributed to the participating institutions and to the Department of Veterinary Pathology at the AFIP. Following the conferences, the case diagnoses, comments, and reference listings are posted online to all participants. This study set has been assembled in an effort to make Wednesday Slide Conference materials available to a wider circle of interested pathologists and scientists, and to further the education of veterinary pathologists and residents-in-training. The number of histopathology slides that can be reproduced from smaller lesions requires us to limit the number of participating institutions.
    [Show full text]
  • Parathyroid Disorders THOMAS C
    Parathyroid Disorders THOMAS C. MICHELS, MD, MPH, Madigan Army Medical Center, Tacoma, Washington KEVIN M. KELLY, MD, MBA, Carl R. Darnall Army Community Hospital, Fort Hood, Texas Disorders of the parathyroid glands most commonly present with abnormalities of serum calcium. Patients with primary hyperparathyroidism, the most common cause of hypercalcemia in outpatients, are often asymptomatic or may have bone disease, nephrolithiasis, or neuromuscular symptoms. Patients with chronic kidney disease may develop secondary hyperparathyroidism with resultant chronic kidney disease-mineral and bone disorder. Hypo- parathyroidism most often occurs after neck surgery; it can also be caused by autoimmune destruction of the glands and other less common problems. Evaluation of patients with abnormal serum calcium levels includes a history and physical examination; repeat measurement of serum calcium level; and measurement of creatinine, magne- sium, vitamin D, and parathyroid hormone levels. The treatment for symptomatic primary hyperparathyroidism is parathyroidectomy. Management of asymptomatic primary hyperparathyroidism includes monitoring symptoms; serum calcium and creatinine levels; and bone mineral density. Patients with hypoparathyroidism require close monitoring and vitamin D (e.g., calcitriol) replacement. (Am Fam Physician. 2013;88(4):249-257. Copyright © 2013 American Academy of Family Physicians.) CME This clinical content he four parathyroid glands, located 84-amino acid peptide. PTH increases serum conforms to AAFP criteria posterior to the thyroid gland, reg- calcium levels through direct action on bone for continuing medical education (CME). See CME ulate calcium homeostasis through and the kidneys. It stimulates osteoclasts to Quiz on page 227. release of parathyroid hormone resorb bone and mobilize calcium into the T (PTH). Because most parathyroid disorders blood.
    [Show full text]
  • Differentiation of Human Parathyroid Cells in Culture
    417 Differentiation of human parathyroid cells in culture W Liu, P Ridefelt1, G Åkerström and P Hellman Department of Surgery, University Hospital, Uppsala, Sweden 1Clinical Chemistry, University Hospital, Uppsala, Sweden (Requests for offprints should be addressed to P Hellman, Department of Surgery, University Hospital, SE-751 85 Uppsala, Sweden; Email: [email protected]) Abstract Continuous culture of parathyroid cells has proven diffi- histochemistry for proliferating cell nuclear antigen and cult, regardless from which species the cells are derived. In cell counting. Signs of differentiation were present as the the present study, we have used a defined serum-free low set-points, defined as the external calcium concentration at 2+ calcium containing medium to culture human parathyroid which half-maximal stimulation of [Ca ]i (set-pointc), or cells obtained from patients with parathyroid adenomas half-maximal inhibition of PTH release (set-pointp) occur, due to primary hyperparathyroidism. No fibroblast over- were higher in not proliferating compared with prolifer- growth occurred, and the human parathyroid chief cells ating cells in P0. Inhibition of cell proliferation was proliferated until confluent. After the first passage the cells accompanied by signs of left-shifted set-points, indicating ceased to proliferate, but still retained their functional a link between proliferation and differentiation. capacity up to 60 days, demonstrated by Ca2+-sensitive The results demonstrate that human parathyroid chief changes in the release of parathyroid hormone (PTH) and cells cultured in a defined serum-free medium can be kept 2+ ff as adequate cytoplasmic calcium ([Ca ]i) responses to viable for a considerable time, and that signs of di er- changes in ambient calcium as measured by micro- entiation occur after proliferation has ceased.
    [Show full text]
  • Primary Hyperparathyroidism
    Primary Hyperparathyroidism National Endocrine and Metabolic Diseases Information Service What is primary What are the parathyroid hyperparathyroidism? glands? Primary hyperparathyroidism is a disorder The parathyroid glands are four pea-sized U.S. Department of the parathyroid glands, also called glands located on or near the thyroid gland of Health and parathyroids. “Primary” means this disorder in the neck. Occasionally, a person is born Human Services originates in the parathyroid glands. In with one or more of the parathyroid glands primary hyperparathyroidism, one or more in another location. For example, a gland NATIONAL INSTITUTES of the parathyroid glands are overactive. may be embedded in the thyroid, in the OF HEALTH As a result, the gland releases too much thymus—an immune system organ located parathyroid hormone (PTH). The disorder in the chest—or elsewhere around this area. includes the problems that occur in the rest In most such cases, however, the parathyroid of the body as a result of too much PTH—for glands function normally. example, loss of calcium from bones. In the United States, about 100,000 people develop primary hyperparathyroidism each year.1 The disorder is diagnosed most often in people between age 50 and 60, and women are affected about three times as often as men.2 Secondary, or reactive, hyperparathyroidism can occur if a problem such as kidney failure causes the parathyroid glands to be overactive. Parathyroid glands Thyroid gland The parathyroid glands are located on or near the thyroid gland in the neck. 1Bilezikian JP. Primary hyperparathyroidism. In: DeGroot LJ, ed.; Arnold A, section editor.
    [Show full text]
  • The Endocrine System
    PowerPoint® Lecture Slides The Endocrine System: An Overview prepared by Leslie Hendon University of Alabama, Birmingham • A system of ductless glands • Secrete messenger molecules called hormones C H A P T E R 17 • Interacts closely with the nervous system Part 1 • Endocrinology The Endocrine • Study of hormones and endocrine glands System Copyright © 2011 Pearson Education, Inc. Copyright © 2011 Pearson Education, Inc. Endocrine Organs Location of the Major Endocrine Glands Pineal gland • Scattered throughout the body Hypothalamus Pituitary gland • Pure endocrine organs are the … Thyroid gland • Pituitary, pineal, thyroid, parathyroid, and adrenal Parathyroid glands glands (on dorsal aspect of thyroid gland) • Organs containing endocrine cells include: Thymus • Pancreas, thymus, gonads, and the hypothalamus Adrenal glands • Plus other organs secrete hormones (eg., kidney, stomach, intestine) Pancreas • Hypothalamus is a neuroendocrine organ • Produces hormones and has nervous functions Ovary (female) Endocrine cells are of epithelial origin • Testis (male) Copyright © 2011 Pearson Education, Inc. Copyright © 2011 Pearson Education, Inc. Figure 17.1 Hormones Control of Hormones Secretion • Classes of hormones • Amino acid–based hormones • Secretion triggered by three major types of • Steroids—derived from cholesterol stimuli: • Basic hormone action • Humoral—simplest of endocrine control mechanisms • Circulate throughout the body in blood vessels • Secretion in direct response to changing • Influences only specific tissues— those with ion or nutrient levels in the blood target cells that have receptor molecules for that hormone • Example: Parathyroid monitors calcium • A hormone can have different effects on • Responds to decline by secreting different target cells (depends on the hormone to reverse decline receptor) Copyright © 2011 Pearson Education, Inc. Copyright © 2011 Pearson Education, Inc.
    [Show full text]