Information to Users

Total Page:16

File Type:pdf, Size:1020Kb

Information to Users INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9” black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. ProQuest Information and Learning 300 North Zeeb Road, Ann Artx)r, Ml 48106-1346 USA 800-521-0600 UMI' RELATIONSHIPS AMONG AQUATIC INSECTS, HYDROPERIODS, AND WETLAND FUNCTIONAL PLANT GROUPS IN CENTRAL OHIO DISSERTATION Presented in Partial Fulfillment of the Requirements for The Degree Doctor of Philosophy in the Graduate School of the Ohio State University By Michael J. Bailey, MS. ***** The Ohio State University 2001 Dissertation Committee: Approved by D. L. Denlinger D. J. Horn, Advisor D. C. Smith Advisor A. A. Snow Department of Entomology UMI Number 3031168 UMI UMf Microfbrnraaattas Copyright 2002 by Bell & Howell Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. Bell & Howell Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, Ml 48106-1346 Copyright by Michael J. Bailey 2001 ABSTRACT This study investigated relationships among functional wetland plant groups, insects, and hydroperiods in Central Ohio wetlands on Morrow Meadows Pond, Hoover Nature Preserve, and the Hebron Fish Hatchery. The orthopteran Conocephalus fasciatus was collected in a wide range of wetland types especially those with ruderal-type plants and unpredictable hydroperiods. In contrast, Conocephalus brevipennis preferred tussock and interstitial plants in more predictable hydroperiods. The pygmy backswimmer. Neoplea striola, was found in ponds with longer hydroperiods, tall tussocks and clonal dominants. Its life history fits the autumnal pool template: long life, predictable seasonal growth rates, and overwintering in water or moist litter. The coleopterans,Haliplus immaculicollis, Hydrovatus pustulatus and Enochrus oechnts also preferred clonal dominant stands with stable hydroperiods compared to Copelanis glyphicus which was collected only in temporary pools with ruderals, reed interstitials, and short tussocks. Conceptually, the temporary pool template selects for emergent*plants that either grow fast and reproduce in dry periods, or, for plants that tolerate flooding stress and grow slowly. It also selects for aquatic insects that have short life spans, long-diapause eggs, and quick growth rates. The semi-permanent pond template selects for competitive plants that tolerate long periods of flooding and for invertebrates that may be large predators, lack desiccation resistant stages, and develop over longer time intervals. ii To my parents and Barbara Squires m ACKNOWLEDGMENTS I am most grateful to my advisors Dr. David J. Horn and to Dr. C. David Smith for their continuous encouragement, guidance, and friendship during my graduate study. I also express sincere appreciation to other members of my advisory committee, Drs. Allison Snow and David L. Denlinger, for their suggestions and comments. The technical assistance of Jana Chordas is gratefully acknowledged. This study was made possible with support of The Ohio State University, the Ohio Division of Wildlife, and City of Columbus Recreation and Parks Department. I thank Joan McMahon, Faye Militante, William and Marsha Driscoll for their unshakable faith in me. IV CURRICULUM VITAE March 14,1955 ................................................... Bom — El Paso, Texas 1978 .................................................................... B.S., University of Missouri, Columbia, Missouri 1994................................................................... M.S. Zoology, The Ohio State University, Columbus, Ohio 1995-present..................................................... Graduate Teaching Assistant and Lecturer at The Ohio State University, Columbus, Ohio PUBLICATIONS Bailey, M. J., 1994. Lacustrine environments of the prothonotary warbler. M.S. Thesis. The Ohio State University, Columbus, OH FIELD OF STUDY Major Field: Entomology TABLE OF CONTENTS Abstract ...................................................................................................... ii Dedication................................................................................................... iii Acknowledgments ..................................................................................... iv CurriculumVitae ......................................................................................... v List of Tables............................................................................................... viii List of Figures............................................................................................. x Chapter 1 : Introduction................................................................................. 1 Chapter 2: Methods....................................................................................... 10 Site descriptions and locations......................................................... 10 Hydroperiods and wetland classifications ....................................... 12 Vegetation analysis........................................................................... 13 Aquatic insect analysis.................................................................... 15 Chapter 3 : Wetland plants, hydroperiods, and grasshoppers ....................... 17 Introduction.................................................................................... 18 Methods - study sites, hyroperiods, wetland plants ......................... 20 Methods - Orthoptera....................................................................... 21 VI Results - study sites, hydroperiods, wetland plant types ................... 22 Results - plant comparisons............................................................... 32 Results - Orthoptera........................................................................... 39 Discussion........................................................................................... 49 Chapter 4: Wetland plants, hydroperiods, and Neoplea striola..................... 53 Introduction........................................................................................ 54 Methods - study sites, hydroperiods, wetland plants ........................ 57 Methods - organic matter and invertebrates ..................................... 57 Results................................................................................................ 58 Discussion......................................................................................... 73 Chapter 5: Wetland plants, hydroperiods, and Coleoptera............................ 80 Introduction....................................................................................... 82 Methods - study sites, hydroperiods, wetland plants ........................ 83 Methods - invertebrates ..................................................................... 84 Results- hydroperiods, wetland plants, invertebrates ........................ 86 Discussion........................................................................................ 103 References................................................................................................. 113 vu LIST OF TABLES Table Page 2.1 Central Ohio wetland descriptions and sampled insects ....... 16 3.1 Classification of wetland plants from Central Ohio into functional plant groups..................................................................................... 23 3.2 Classification of wetlands by the Stewart and Kantrand (1971) prairie pothole method.................................................................... 27 3.3 Comparison of plant traits on Hoover Nature Preserve wetlands ... 33 3.4 Summary results of the discriminant functional analysis on wetland plants .................................................................................. 35 3.5 Comparison of plant traits on Hebron Fish Fish Hatchery................ 38 3.6 List of grasshopper species found in Central Ohio wetlands 40 3.7 Comparison of grasshopper transect coimts on Hoover Nature Preserve................................................................................ 41 3.8 Comparison of grasshopper counts on Morrow Meadows by sweep n et.............................................................................. 45 3.9 Comparison of grasshopper county on Hebron Fish: Hatchery 46 3.10 Comparison of grasshopper counts on Morrow Meadows
Recommended publications
  • Spatial Vision in Band-Winged Grasshoppers (Orthoptera: Acrididae: Oedipodinae)
    Spatial vision in band-winged grasshoppers (Orthoptera: Acrididae: Oedipodinae) A Senior Thesis Presented to the Faculty of the Department of Organismal Biology and Ecology, Colorado College By Alexander B. Duncan Bachelor of Arts Degree in Organismal Biology and Ecology May, 2017 Approved by: _________________________________________ Dr. Nicholas Brandley Primary Thesis Advisor ________________________________________ Dr. Emilie Gray Secondary Thesis Advisor ABSTRACT Visual acuity, the ability to resolve fine spatial details, can vary dramatically between and within insect species. Body-size, sex, behavior, and ecological niche are all factors that may influence an insect’s acuity. Band-winged grasshoppers (Oedipodinae) are a subfamily of grasshoppers characterized by their colorfully patterned hindwings. Although researchers have anecdotally suggested that this color pattern may attract mates, few studies have examined the visual acuity of these animals, and none have examined its implications on intraspecific signaling. Here, we compare the visual acuity of three bandwing species: Dissosteira carolina, Arphia pseudonietana, and Spharagemon equale. To measure acuity in these species we used a modified radius of curvature estimation (RCE) technique. Visual acuity was significantly coarser 1) in males compared to females, 2) parallel to the horizon compared to the perpendicular, and 3) in S. equale compared to other bandwings. Unlike many insect families, body size within a species did not correlate with visual acuity. To examine the functional implications of these results, we modeled the appearance of different bandwing patterns to conspecifics. These results suggest that hind- wing patterning could only be used as a signal to conspecifics at short distances (<50cm). This study furthers the exploration of behavior and the evolution of visual systems in bandwings.
    [Show full text]
  • RECORDS of the HAWAII BIOLOGICAL SURVEY for 1995 Part 2: Notes1
    RECORDS OF THE HAWAII BIOLOGICAL SURVEY FOR 1995 Part 2: Notes1 This is the second of two parts to the Records of the Hawaii Biological Survey for 1995 and contains the notes on Hawaiian species of plants and animals including new state and island records, range extensions, and other information. Larger, more compre- hensive treatments and papers describing new taxa are treated in the first part of this Records [Bishop Museum Occasional Papers 45]. New Hawaiian Pest Plant Records for 1995 PATRICK CONANT (Hawaii Dept. of Agriculture, Plant Pest Control Branch, 1428 S King St, Honolulu, HI 96814) Fabaceae Ulex europaeus L. New island record On 6 October 1995, Hawaii Department of Land and Natural Resources, Division of Forestry and Wildlife employee C. Joao submitted an unusual plant he found while work- ing in the Molokai Forest Reserve. The plant was identified as U. europaeus and con- firmed by a Hawaii Department of Agriculture (HDOA) nox-A survey of the site on 9 October revealed an infestation of ca. 19 m2 at about 457 m elevation in the Kamiloa Distr., ca. 6.2 km above Kamehameha Highway. Distribution in Wagner et al. (1990, Manual of the flowering plants of Hawai‘i, p. 716) listed as Maui and Hawaii. Material examined: MOLOKAI: Molokai Forest Reserve, 4 Dec 1995, Guy Nagai s.n. (BISH). Melastomataceae Miconia calvescens DC. New island record, range extensions On 11 October, a student submitted a leaf specimen from the Wailua Houselots area on Kauai to PPC technician A. Bell, who had the specimen confirmed by David Lorence of the National Tropical Botanical Garden as being M.
    [Show full text]
  • Taxon Order Family Scientific Name Common Name Non-Native No. of Individuals/Abundance Notes Bees Hymenoptera Andrenidae Calliop
    Taxon Order Family Scientific Name Common Name Non-native No. of individuals/abundance Notes Bees Hymenoptera Andrenidae Calliopsis andreniformis Mining bee 5 Bees Hymenoptera Apidae Apis millifera European honey bee X 20 Bees Hymenoptera Apidae Bombus griseocollis Brown belted bumble bee 1 Bees Hymenoptera Apidae Bombus impatiens Common eastern bumble bee 12 Bees Hymenoptera Apidae Ceratina calcarata Small carpenter bee 9 Bees Hymenoptera Apidae Ceratina mikmaqi Small carpenter bee 4 Bees Hymenoptera Apidae Ceratina strenua Small carpenter bee 10 Bees Hymenoptera Apidae Melissodes druriella Small carpenter bee 6 Bees Hymenoptera Apidae Xylocopa virginica Eastern carpenter bee 1 Bees Hymenoptera Colletidae Hylaeus affinis masked face bee 6 Bees Hymenoptera Colletidae Hylaeus mesillae masked face bee 3 Bees Hymenoptera Colletidae Hylaeus modestus masked face bee 2 Bees Hymenoptera Halictidae Agapostemon virescens Sweat bee 7 Bees Hymenoptera Halictidae Augochlora pura Sweat bee 1 Bees Hymenoptera Halictidae Augochloropsis metallica metallica Sweat bee 2 Bees Hymenoptera Halictidae Halictus confusus Sweat bee 7 Bees Hymenoptera Halictidae Halictus ligatus Sweat bee 2 Bees Hymenoptera Halictidae Lasioglossum anomalum Sweat bee 1 Bees Hymenoptera Halictidae Lasioglossum ellissiae Sweat bee 1 Bees Hymenoptera Halictidae Lasioglossum laevissimum Sweat bee 1 Bees Hymenoptera Halictidae Lasioglossum platyparium Cuckoo sweat bee 1 Bees Hymenoptera Halictidae Lasioglossum versatum Sweat bee 6 Beetles Coleoptera Carabidae Agonum sp. A ground beetle
    [Show full text]
  • Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016
    Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016 April 1981 Revised, May 1982 2nd revision, April 1983 3rd revision, December 1999 4th revision, May 2011 Prepared for U.S. Department of Commerce Ohio Department of Natural Resources National Oceanic and Atmospheric Administration Division of Wildlife Office of Ocean and Coastal Resource Management 2045 Morse Road, Bldg. G Estuarine Reserves Division Columbus, Ohio 1305 East West Highway 43229-6693 Silver Spring, MD 20910 This management plan has been developed in accordance with NOAA regulations, including all provisions for public involvement. It is consistent with the congressional intent of Section 315 of the Coastal Zone Management Act of 1972, as amended, and the provisions of the Ohio Coastal Management Program. OWC NERR Management Plan, 2011 - 2016 Acknowledgements This management plan was prepared by the staff and Advisory Council of the Old Woman Creek National Estuarine Research Reserve (OWC NERR), in collaboration with the Ohio Department of Natural Resources-Division of Wildlife. Participants in the planning process included: Manager, Frank Lopez; Research Coordinator, Dr. David Klarer; Coastal Training Program Coordinator, Heather Elmer; Education Coordinator, Ann Keefe; Education Specialist Phoebe Van Zoest; and Office Assistant, Gloria Pasterak. Other Reserve staff including Dick Boyer and Marje Bernhardt contributed their expertise to numerous planning meetings. The Reserve is grateful for the input and recommendations provided by members of the Old Woman Creek NERR Advisory Council. The Reserve is appreciative of the review, guidance, and council of Division of Wildlife Executive Administrator Dave Scott and the mapping expertise of Keith Lott and the late Steve Barry.
    [Show full text]
  • Hundreds of Species of Aquatic Macroinvertebrates Live in Illinois In
    Illinois A B aquatic sowbug Asellus sp. Photograph © Paul P.Tinerella AAqquuaattiicc mayfly A. adult Hexagenia sp.; B. nymph Isonychia sp. MMaaccrrooiinnvveerrtteebbrraatteess Photographs © Michael R. Jeffords northern clearwater crayfish Orconectes propinquus Photograph © Michael R. Jeffords ruby spot damselfly Hetaerina americana Photograph © Michael R. Jeffords aquatic snail Pleurocera acutum Photograph © Jochen Gerber,The Field Museum of Natural History predaceous diving beetle Dytiscus circumcinctus Photograph © Paul P.Tinerella monkeyface mussel Quadrula metanevra common skimmer dragonfly - nymph Libellula sp. Photograph © Kevin S. Cummings Photograph © Paul P.Tinerella water scavenger beetle Hydrochara sp. Photograph © Steve J.Taylor devil crayfish Cambarus diogenes A B Photograph © ChristopherTaylor dobsonfly Corydalus sp. A. larva; B. adult Photographs © Michael R. Jeffords common darner dragonfly - nymph Aeshna sp. Photograph © Paul P.Tinerella giant water bug Belostoma lutarium Photograph © Paul P.Tinerella aquatic worm Slavina appendiculata Photograph © Mark J. Wetzel water boatman Trichocorixa calva Photograph © Paul P.Tinerella aquatic mite Order Prostigmata Photograph © Michael R. Jeffords backswimmer Notonecta irrorata Photograph © Paul P.Tinerella leech - adult and young Class Hirudinea pygmy backswimmer Neoplea striola mosquito - larva Toxorhynchites sp. fishing spider Dolomedes sp. Photograph © William N. Roston Photograph © Paul P.Tinerella Photograph © Michael R. Jeffords Photograph © Paul P.Tinerella Species List Species are not shown in proportion to actual size. undreds of species of aquatic macroinvertebrates live in Illinois in a Kingdom Animalia Hvariety of habitats. Some of the habitats have flowing water while Phylum Annelida Class Clitellata Family Naididae aquatic worm Slavina appendiculata This poster was made possible by: others contain still water. In order to survive in water, these organisms Class Hirudinea leech must be able to breathe, find food, protect themselves, move and reproduce.
    [Show full text]
  • (Raats) for Management of Grasshoppers on South Dakota Rangeland, 1997-1999
    Field and Economic Evaluation of Operational Scale Reduced Agent and Reduced Area Treatments (RAATs) for Management of Grasshoppers on South Dakota Rangeland, 1997-1999 R. Nelson Foster1, K. Chris Reuter1, K. Fridley2, D. Kurtenbach2, R. Flakus2, R. Bohls3, B. Radsick4, J. B. Helbig5, A. Wagner2 and L. Jech6 1Phoenix Plant Protection Center United States Department of Agriculture Animal and Plant Health Inspection Service 3645 E. Wier Ave. Phoenix, AZ 85040 2South Dakota Department of Agriculture 523 E. Capitol Ave. Foss Bldg. Pierre, SD 57501-3182 31123 St. Charles St. Rapid City, SD 57701 4Aircraft and Equipment Operations United States Department of Agriculture Animal and Plant Health Inspection Service Moore Air Field Mission, TX 5Plant Protection and Quarantine United States Department of Agriculture Animal and Plant Health Inspection Service P.O. Box 250 Pierre, SD 57501-0250 611416 West Hidalgo Tolleson, AZ 85353 1 Abstract Strategies that utilize lower than traditional doses of insecticides in combination with swaths of applied insecticide that leave untreated areas between each swath are one way to significantly reduce the cost of controlling grasshoppers on rangeland. By leaving untreated areas, this strategy provides reserves for naturally occurring biological control agents and facilitates an economical integrated management approach for dealing with damaging populations of grasshoppers on rangeland. This three year study was conducted in different locations and years to develop and demonstrate on a large scale operational level, the utility of reduced area / agent treatments (RAATs) for significantly reducing costs to manage damaging populations of grasshoppers. In 1997 these reduced agent/area treatments (RAATs) resulted in about 15% lower mortality than traditional treatments while reducing pesticide use and cost by 60% with malathion and 75% with carbaryl.
    [Show full text]
  • Insects and Molluscs, According to the Procedures Outlined Below
    Bush Blitz – ACT Expedition 26 Nov – 6 Dec 2018 ACT Expedition Bush Blitz Hemiptera, Hymenoptera, Lepidoptera, Orthoptera, Terrestrial molluscs 26 Nov – 6 Dec 2018 Submitted: 5 April 2019 Debbie Jennings and Olivia Evangelista Nomenclature and taxonomy used in this report is consistent with: The Australian Faunal Directory (AFD) http://www.environment.gov.au/biodiversity/abrs/online-resources/fauna/afd/home Page 1 of 43 Bush Blitz – ACT Expedition 26 Nov – 6 Dec 2018 Contents Contents .................................................................................................................................. 2 List of contributors ................................................................................................................... 3 Abstract ................................................................................................................................... 4 1. Introduction ...................................................................................................................... 4 2. Methods .......................................................................................................................... 6 2.1 Site selection ............................................................................................................. 6 2.2 Survey techniques ..................................................................................................... 6 2.2.1 Methods used at standard survey sites ................................................................... 7 2.3 Identifying
    [Show full text]
  • Underwater Breathing: the Mechanics of Plastron Respiration
    J. Fluid Mech. (2008), vol. 608, pp. 275–296. c 2008 Cambridge University Press 275 doi:10.1017/S0022112008002048 Printed in the United Kingdom Underwater breathing: the mechanics of plastron respiration M. R. FLYNN† AND J O H N W. M. B U S H Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307, USA (Received 11 July 2007 and in revised form 10 April 2008) The rough, hairy surfaces of many insects and spiders serve to render them water-repellent; consequently, when submerged, many are able to survive by virtue of a thin air layer trapped along their exteriors. The diffusion of dissolved oxygen from the ambient water may allow this layer to function as a respiratory bubble or ‘plastron’, and so enable certain species to remain underwater indefinitely. Main- tenance of the plastron requires that the curvature pressure balance the pressure difference between the plastron and ambient. Moreover, viable plastrons must be of sufficient area to accommodate the interfacial exchange of O2 and CO2 necessary to meet metabolic demands. By coupling the bubble mechanics, surface and gas-phase chemistry, we enumerate criteria for plastron viability and thereby deduce the range of environmental conditions and dive depths over which plastron breathers can survive. The influence of an external flow on plastron breathing is also examined. Dynamic pressure may become significant for respiration in fast-flowing, shallow and well-aerated streams. Moreover, flow effects are generally significant because they sharpen chemical gradients and so enhance mass transfer across the plastron interface. Modelling this process provides a rationale for the ventilation movements documented in the biology literature, whereby arthropods enhance plastron respiration by flapping their limbs or antennae.
    [Show full text]
  • The Taxonomy of Utah Orthoptera
    Great Basin Naturalist Volume 14 Number 3 – Number 4 Article 1 12-30-1954 The taxonomy of Utah Orthoptera Andrew H. Barnum Brigham Young University Follow this and additional works at: https://scholarsarchive.byu.edu/gbn Recommended Citation Barnum, Andrew H. (1954) "The taxonomy of Utah Orthoptera," Great Basin Naturalist: Vol. 14 : No. 3 , Article 1. Available at: https://scholarsarchive.byu.edu/gbn/vol14/iss3/1 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. IMUS.COMP.ZSOL iU6 1 195^ The Great Basin Naturalist harvard Published by the HWIilIijM i Department of Zoology and Entomology Brigham Young University, Provo, Utah Volum e XIV DECEMBER 30, 1954 Nos. 3 & 4 THE TAXONOMY OF UTAH ORTHOPTERA^ ANDREW H. BARNUM- Grand Junction, Colorado INTRODUCTION During the years of 1950 to 1952 a study of the taxonomy and distribution of the Utah Orthoptera was made at the Brigham Young University by the author under the direction of Dr. Vasco M. Tan- ner. This resulted in a listing of the species found in the State. Taxonomic keys were made and compiled covering these species. Distributional notes where available were made with the brief des- criptions of the species. The work was based on the material in the entomological col- lection of the Brigham Young University, with additional records obtained from the collection of the Utah State Agricultural College.
    [Show full text]
  • The Evolution of Complex Calls in Meadow
    THE EVOLUTION OF COMPLEX CALLS IN MEADOW KATYDIDS _______________________________________ A Dissertation presented to the Faculty of the Graduate School at the University of Missouri-Columbia _______________________________________________________ In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy _____________________________________________________ by NATHAN HARNESS Dr. Johannes Schul, Dissertation Supervisor July 2018 The undersigned, appointed by the dean of the Graduate School, have examined the dissertation entitled THE EVOLUTION OF COMPLEX CALLS IN MEADOW KATYDIDS presented by Nathan Harness, a candidate for the degree of doctor of philosophy, and hereby certify that, in their opinion, it is worthy of acceptance. Professor Johannes Schul Professor Sarah Bush Professor Lori Eggert Professor Patricia Friedrichsen For my family Rachel and Mayr have given me so much. They show me unselfish affection, endless support, and generosity that seems to only grow. Without them the work here, and the adventure we’ve all three gone on surrounding it, would not have been possible. They have sacrificed birthdays, anniversaries, holidays, and countless weekends and evenings. They’ve happily seen me off to weeks of field work and conference visits. I am thankful to them for being so generous, and completely lacking in resentment at all the things that pull their husband and dad in so many directions. They have both necessarily become adept at melting away anxiety; I will forever be indebted to the hugs of a two-year-old and the kind words of his mom. Rachel and Mayr both deserve far more recognition than is possible here. I also want to thank my parents and brother and sisters.
    [Show full text]
  • (Orthoptera: Tettigoniidae) Species Composition and Size Across Latitude in Atlantic Coast Salt Marshes
    Estuaries and Coasts: J CERF (2008) 31:335–343 DOI 10.1007/s12237-007-9026-3 Grasshopper (Orthoptera: Tettigoniidae) Species Composition and Size Across Latitude in Atlantic Coast Salt Marshes Elizabeth L. Wason & Steven C. Pennings Received: 14 June 2007 /Revised: 5 November 2007 /Accepted: 16 November 2007 /Published online: 16 January 2008 # Coastal and Estuarine Research Federation 2007 Abstract Although grasshoppers are common salt marsh Geographic variation in species composition and body size herbivores, we know little about geographic variation in of grasshoppers may help explain documented patterns of their species composition. We documented latitudinal geographic variation in plant palatability and plant–herbivore variation in species composition of the tettigoniid grass- interactions in Atlantic Coast salt marshes. Because it can be hopper fauna of Atlantic Coast salt marshes. Tettigoniids difficult to identify tettigoniids to species, we present a guide (N=740 adults) were collected from the Spartina alterni- to aid future workers in identifying the tettigoniid species flora zone of 31 salt marsh sites across a latitudinal range of common in these marshes. 13.19° (Florida to Maine), with an additional 52 individuals collected from the Juncus roemerianus zone of low-latitude Keywords Biogeography. Latitude . marshes for comparative purposes. Eight species were Plant–herbivore interactions . Bergmann’s rule . collected, but some were common only at a few sites or Orthoptera . Spartina alterniflora . Salt marsh rare throughout the entire collection range. The tettigoniid community was dominated by Orchelimum fidicinium at low latitudes and Conocephalus spartinae at high latitudes. Introduction Several factors might explain this shift, including changes in climate, plant phenology, and plant zonation patterns.
    [Show full text]
  • Biological Diversity, Ecological Health and Condition of Aquatic Assemblages at National Wildlife Refuges in Southern Indiana, USA
    Biodiversity Data Journal 3: e4300 doi: 10.3897/BDJ.3.e4300 Taxonomic Paper Biological Diversity, Ecological Health and Condition of Aquatic Assemblages at National Wildlife Refuges in Southern Indiana, USA Thomas P. Simon†, Charles C. Morris‡, Joseph R. Robb§, William McCoy | † Indiana University, Bloomington, IN 46403, United States of America ‡ US National Park Service, Indiana Dunes National Lakeshore, Porter, IN 47468, United States of America § US Fish and Wildlife Service, Big Oaks National Wildlife Refuge, Madison, IN 47250, United States of America | US Fish and Wildlife Service, Patoka River National Wildlife Refuge, Oakland City, IN 47660, United States of America Corresponding author: Thomas P. Simon ([email protected]) Academic editor: Benjamin Price Received: 08 Dec 2014 | Accepted: 09 Jan 2015 | Published: 12 Jan 2015 Citation: Simon T, Morris C, Robb J, McCoy W (2015) Biological Diversity, Ecological Health and Condition of Aquatic Assemblages at National Wildlife Refuges in Southern Indiana, USA. Biodiversity Data Journal 3: e4300. doi: 10.3897/BDJ.3.e4300 Abstract The National Wildlife Refuge system is a vital resource for the protection and conservation of biodiversity and biological integrity in the United States. Surveys were conducted to determine the spatial and temporal patterns of fish, macroinvertebrate, and crayfish populations in two watersheds that encompass three refuges in southern Indiana. The Patoka River National Wildlife Refuge had the highest number of aquatic species with 355 macroinvertebrate taxa, six crayfish species, and 82 fish species, while the Big Oaks National Wildlife Refuge had 163 macroinvertebrate taxa, seven crayfish species, and 37 fish species. The Muscatatuck National Wildlife Refuge had the lowest diversity of macroinvertebrates with 96 taxa and six crayfish species, while possessing the second highest fish species richness with 51 species.
    [Show full text]