Hans Bethe Papers Division of Rare and Manuscript Collections Cornell University Library the Early Years

Total Page:16

File Type:pdf, Size:1020Kb

Hans Bethe Papers Division of Rare and Manuscript Collections Cornell University Library the Early Years Photographs from the Hans Bethe Papers Division of Rare and Manuscript Collections Cornell University Library The Early Years 2 The Early Years Hans Bethe was born in Strasbourg, Alsace on July 2, 1906. He attended the University of Munich, as a student of Arnold Sommerfeld who had created one of the greatest schools of theoretical physics in the world. In 1928, Bethe earned his doctorate — summa cum laude — with a pioneering study of electron diffraction in crystalline solids. 3 After receiving his degree, he became Paul Ewald’s assistant at the Technical University of Stuttgart (Ewald was later to become his father-in-law), and then returned to Munich as a Privatdozent. In 1930 and 1931, he received fellowships to spend time in Cambridge and in Rome, where he worked with Enrico Fermi. 4 From Fermi, Bethe learned to reason qualitatively, to think of physics as easy and fun, as challenging problems to be solved. Bethe’s craftsmanship combined the best of what he learned from these two great physicists and teachers: the thoroughness and rigor of Sommerfeld and the clarity and simplicity of Fermi. 5 Hans Bethe, age 12, with his parents, Albrecht and Anna Kuhn Bethe 6 Hans Bethe as a young boy in Strasbourg, 1914 Strasbourg was a German city in 1914 when this photograph was taken. It reverted to France in 1945. 7 According to Hans Bethe, "My father was a physiologist. At the time of my birth, he was a Privatdozent at the University of Strasbourg. He had come from Stettin, an old city on the Oder River, in what was then the northern Prussian province of Pomerania and is now part of Poland...My father’s family was Protestant,...some members were Protestant ministers, and some were schoolteachers. My grandfather was a medical doctor— the closest anyone in that family had come to being a scientist." “My mother’s family was Jewish. Her father was a professor at the University of Strasbourg; his specialty was ear, nose, and throat diseases. For a Jew to get such a professorship was at that time—around 1880—quite exceptional. His family had been grape growers and wine merchants in the Palatinate. My grandmother came from a family of cloth merchants.” 8 Hans Bethe with his parents, Albrecht and Anna Kuhn Bethe, 1930(?) 9 Coming to Cornell 10 Coming to Cornell From 1928 till 1933 Bethe worked primarily on problems in atomic and solid state physics. By 1933, he was recognized as one of the outstanding theorists of his generation, but after Hitler’s accession to power, he had to leave Germany. A former student recommended him to R. Clifton Gibbs at Cornell. Gibbs wanted the Physics Department to become engaged in nuclear research, and offered a position to Bethe. In February 1935, Hans Bethe came to Cornell as an acting assistant professor. 11 During his first year in the United States, Bethe traveled extensively, giving lectures in nuclear theory. He published a series of articles in The Reviews of Modern Physics, which quickly became known as “The Bethe Bible.” In 1937, at the age of 31, Bethe was promoted to a full professorship at Cornell. In 1938, Bethe attended the Washington Conference on energy production in stars. After the conference, Bethe developed his carbon-cycle theory, an intricate sequence of thermonuclear reactions for producing energy in stars. It was for this work that he would win the Nobel Prize in 1967. 12 Cornell University Physics Department, 1936 (Some faculty and graduate students; key on next slide.) 13 Front row: Horace Grover, Felix L. Yerzeley, Leroy L. Barnes, Donald Mueller, L. A. Wood. Second row: George W. Scott, Hans Bethe, Lloyd P. Smith, Aldous Fogelsanger, M. Stanley Livingston. Third row: Donald F. Weekes, Eugene C. Crittenden, Albert Rose, Emery Meschter. Back row: ?, Willy A. Higinbotham, Paul Hartman, Richard E. Downing 14 Physics Professorial Faculty in 1936 Bacher, Robert F. Barnes, Leroy L. Bedell, Frederick Bethe, Hans A. Collins, Jacob R. Gibbs, R. Clifton Grantham, Guy E. Howe, Harley E. Kennard, Earle H. Livingston, M. Stanley Murdock, Carleton C. Parratt, Lyman G. Richtmyer, Floyd K. Smith, Lloyd P. Trevor, Joseph E. Reference: The Cornell Physics Department: Recollections and a History of Sorts. Hartman, Paul L. 1993. online at http://dspace.library.cornell.edu/handle/1813/2093 15 Hans Bethe with Werner Heisenberg, 1938 16 17 18 19 20 Early WWII 21 On September 1, 1939, Hitler invaded Poland, and on September 3, France and Great Britain declared war on Germany. While anxious to contribute to the allied cause, Bethe was still a German citizen and could not participate in military research. With the assistance of his close friend at Cornell, structural engineer George Winter, he did important research on the penetration of armor by projectiles. In the summer of 1940, Bethe and Edward Teller collaborated on research on the theory of shock waves. Later that summer, Bethe had his first extended meeting with J. Robert Oppenheimer at a meeting of the American Physical Society. After becoming a United States citizen in 1941, Bethe received clearance to work on military projects. 22 He was asked to participate in work on radar with the Theoretical Group at the Radiation Laboratory at M.I.T., and organized a small group that met monthly at Cornell, which included Julian Schwinger, who at the time was at Purdue, and Robert Marshak who was at Rochester, to assist him. Initially, Bethe was skeptical of the possibilities of designing and producing an atomic bomb during World War II. However, by 1942, it was clear that Enrico Fermi would succeed in producing a chain reaction in uranium. That summer, Bethe agreed to join a group directed by Oppenheimer and meeting at Berkeley to investigate theoretically how an atomic bomb might be made. 23 The following winter, it was decided to establish a separate laboratory for the design of the bomb, at a remote site at Los Alamos, New Mexico, under the direction of Oppenheimer. Bethe joined the Manhattan Project, as head of the Theoretical Physics Division, arriving in Los Alamos in April 1943. Rose Bethe, who was assigned to be the Manhattan Project’s housing officer, had come ten days earlier. The Bethes’ two children, Henry and Monica, were born there. Other Cornell physicists at Los Alamos included Robert F. Bacher, Bruno Rossi, Lyman G. Parratt, and students Kenneth Greisen, Willy Higinbotham, Marshall Holloway, Charles Baker, and Boyce D. McDaniel. 24 25 26 Rose Ewald Bethe 27 Hans Bethe had first become acquainted with Rose Ewald when he served as an assistant to her father, Paul P. Ewald, professor of theoretical physics at the Technical University of Stuttgart. They met again in 1936, after Rose had come to the United States, and were married in 1939. Rose, who had been a student at Smith College, finished her degree in 1941 at Cornell. 28 Rose Ewald Bethe 29 World War II & Return to Cornell 30 World War II & Return to Cornell In the summer of 1940, Bethe first met with J. Robert Oppenheimer. After becoming a United States citizen in 1941, Bethe received clearance to work on military projects. Initially, Bethe was skeptical of the possibilities of designing and producing an atomic bomb during World War II. However, by 1942, it was clear that Enrico Fermi would succeed in producing a chain reaction in uranium. Bethe joined the Manhattan Project, as head of the Theoretical Physics Division, and arrived in Los Alamos in April 1943. 31 After World War II, Bethe played the key role in creating a world-class physics department at Cornell by recruiting some of the most brilliant young physicists at Los Alamos, in particular Richard Feynman, Philip Morrison, and Robert Wilson. Bethe’s negotiations with President Edmund Ezra Day resulted in the construction of Newman Laboratory. Under the leadership of Bethe and Wilson, the Laboratory of Nuclear Studies quickly developed into one of the world’s leading centers of research in experimental particle physics. 32 Hans A. Bethe 33 Postwar Politics After World War II, the control of nuclear armaments became one of Bethe’s chief commitments. He opposed the development of the hydrogen bomb on moral grounds, and, as early as 1946, began to lobby for international civilian control of all phases of nuclear energy. One of the first scientists to publicly advocate arms control, he became one of the most influential participants in the discussions with Soviet scientists leading toward a nuclear test ban, serving as a member of the U.S. delegation to “Discussions and Discontinuance of Nuclear Weapons Tests” at Geneva, Switzerland in 1958 and 1959. 34 Bethe was a member of the President’s Scientific Advisory Committee (PSAC) during the Eisenhower and Kennedy administrations, and of other high-level government advisory bodies. He publicly opposed the Johnson Administration’s decision, against the advice of PSAC, to deploy an Anti-Ballistic Missile (ABM) system. During the 1980s, he joined the public debate on defense and arms control issues and strongly opposed the Strategic Defense Initiative (SDI), the “Star Wars” program. 35 1958 Geneva Conference 36 Hans Bethe receiving the Fermi Award from President John F. Kennedy at the White House 37 Hans Bethe receiving the Franklin Medal, 1959 38 Franklin Medal 39 Nobel Prize Medal The Nobel medals were designed in 1901 by the Swedish sculptor Erik Lindberg. The front carries the image of Alfred Nobel and his birth and death dates. Nobel laureates in physics and chemistry receive the medal of the Royal Academy of Sciences. On its reverse, Nature in the form of the goddess Isis, is lifting the clouds and carrying a horn of plenty in her arms.
Recommended publications
  • Nuclear Technology
    Nuclear Technology Joseph A. Angelo, Jr. GREENWOOD PRESS NUCLEAR TECHNOLOGY Sourcebooks in Modern Technology Space Technology Joseph A. Angelo, Jr. Sourcebooks in Modern Technology Nuclear Technology Joseph A. Angelo, Jr. GREENWOOD PRESS Westport, Connecticut • London Library of Congress Cataloging-in-Publication Data Angelo, Joseph A. Nuclear technology / Joseph A. Angelo, Jr. p. cm.—(Sourcebooks in modern technology) Includes index. ISBN 1–57356–336–6 (alk. paper) 1. Nuclear engineering. I. Title. II. Series. TK9145.A55 2004 621.48—dc22 2004011238 British Library Cataloguing in Publication Data is available. Copyright © 2004 by Joseph A. Angelo, Jr. All rights reserved. No portion of this book may be reproduced, by any process or technique, without the express written consent of the publisher. Library of Congress Catalog Card Number: 2004011238 ISBN: 1–57356–336–6 First published in 2004 Greenwood Press, 88 Post Road West, Westport, CT 06881 An imprint of Greenwood Publishing Group, Inc. www.greenwood.com Printed in the United States of America The paper used in this book complies with the Permanent Paper Standard issued by the National Information Standards Organization (Z39.48–1984). 10987654321 To my wife, Joan—a wonderful companion and soul mate Contents Preface ix Chapter 1. History of Nuclear Technology and Science 1 Chapter 2. Chronology of Nuclear Technology 65 Chapter 3. Profiles of Nuclear Technology Pioneers, Visionaries, and Advocates 95 Chapter 4. How Nuclear Technology Works 155 Chapter 5. Impact 315 Chapter 6. Issues 375 Chapter 7. The Future of Nuclear Technology 443 Chapter 8. Glossary of Terms Used in Nuclear Technology 485 Chapter 9. Associations 539 Chapter 10.
    [Show full text]
  • Jul/Aug 2013
    I NTERNATIONAL J OURNAL OF H IGH -E NERGY P HYSICS CERNCOURIER WELCOME V OLUME 5 3 N UMBER 6 J ULY /A UGUST 2 0 1 3 CERN Courier – digital edition Welcome to the digital edition of the July/August 2013 issue of CERN Courier. This “double issue” provides plenty to read during what is for many people the holiday season. The feature articles illustrate well the breadth of modern IceCube brings particle physics – from the Standard Model, which is still being tested in the analysis of data from Fermilab’s Tevatron, to the tantalizing hints of news from the deep extraterrestrial neutrinos from the IceCube Observatory at the South Pole. A connection of a different kind between space and particle physics emerges in the interview with the astronaut who started his postgraduate life at CERN, while connections between particle physics and everyday life come into focus in the application of particle detectors to the diagnosis of breast cancer. And if this is not enough, take a look at Summer Bookshelf, with its selection of suggestions for more relaxed reading. To sign up to the new issue alert, please visit: http://cerncourier.com/cws/sign-up. To subscribe to the magazine, the e-mail new-issue alert, please visit: http://cerncourier.com/cws/how-to-subscribe. ISOLDE OUTREACH TEVATRON From new magic LHC tourist trail to the rarest of gets off to a LEGACY EDITOR: CHRISTINE SUTTON, CERN elements great start Results continue DIGITAL EDITION CREATED BY JESSE KARJALAINEN/IOP PUBLISHING, UK p6 p43 to excite p17 CERNCOURIER www.
    [Show full text]
  • Simulating Physics with Computers
    International Journal of Theoretical Physics, VoL 21, Nos. 6/7, 1982 Simulating Physics with Computers Richard P. Feynman Department of Physics, California Institute of Technology, Pasadena, California 91107 Received May 7, 1981 1. INTRODUCTION On the program it says this is a keynote speech--and I don't know what a keynote speech is. I do not intend in any way to suggest what should be in this meeting as a keynote of the subjects or anything like that. I have my own things to say and to talk about and there's no implication that anybody needs to talk about the same thing or anything like it. So what I want to talk about is what Mike Dertouzos suggested that nobody would talk about. I want to talk about the problem of simulating physics with computers and I mean that in a specific way which I am going to explain. The reason for doing this is something that I learned about from Ed Fredkin, and my entire interest in the subject has been inspired by him. It has to do with learning something about the possibilities of computers, and also something about possibilities in physics. If we suppose that we know all the physical laws perfectly, of course we don't have to pay any attention to computers. It's interesting anyway to entertain oneself with the idea that we've got something to learn about physical laws; and if I take a relaxed view here (after all I'm here and not at home) I'll admit that we don't understand everything.
    [Show full text]
  • Pos(RAD COR 2007)025 Ce
    Automated calculation of QED corrections to lepton g − 2 PoS(RAD COR 2007)025 Tatsumi Aoyama∗ Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK) E-mail: [email protected] Masashi Hayakawa Department of Physics, Nagoya University Toichiro Kinoshita Laboratory for Elementary-Particle Physics, Cornell University Makiko Nio Theoretical Physics Laboratory, Nishina Center, RIKEN This article reports our project on the automated calculation of QED corrections to the anomalous magnetic moment of leptons. Our major concern is the tenth-order correction, which is urgently needed considering the recent improvementof electron g−2 measurements. We focus on a type of diagrams that have no internal lepton loops, and have devised the automated code-generating sys- tem for the UV-renormalized amplitude. We have newly developed and implemented an efficient algorithm to perform subtractions of IR divergences. This enables us to obtain finite amplitudes that are free from both UV and IR divergences. Currently the numerical evaluation of these dia- grams of tenth order is in progress. 8th International Symposium on Radiative Corrections October 1-5, 2007 Florence, Italy ∗Speaker. c Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/ Automated calculation of QED corrections to lepton g − 2 TatsumiAoyama 1. Introduction The anomalous magnetic moment g−2 of the electron is one of the most precisely studied quantities in the particle physics, and it has provided the most stringent test of QED. Recently, a new measurement was carried out by a Harvard group using the Penning trap with cylindrical cavity.
    [Show full text]
  • Luis Alvarez: the Ideas Man
    CERN Courier March 2012 Commemoration Luis Alvarez: the ideas man The years from the early 1950s to the late 1980s came alive again during a symposium to commemorate the birth of one of the great scientists and inventors of the 20th century. Luis Alvarez – one of the greatest experimental physicists of the 20th century – combined the interests of a scientist, an inventor, a detective and an explorer. He left his mark on areas that ranged from radar through to cosmic rays, nuclear physics, particle accel- erators, detectors and large-scale data analysis, as well as particles and astrophysics. On 19 November, some 200 people gathered at Berkeley to commemorate the 100th anniversary of his birth. Alumni of the Alvarez group – among them physicists, engineers, programmers and bubble-chamber film scanners – were joined by his collaborators, family, present-day students and admirers, as well as scientists whose professional lineage traces back to him. Hosted by the Lawrence Berkeley National Laboratory (LBNL) and the University of California at Berkeley, the symposium reviewed his long career and lasting legacy. A recurring theme of the symposium was, as one speaker put it, a “Shakespeare-type dilemma”: how could one person have accom- plished all of that in one lifetime? Beyond his own initiatives, Alvarez created a culture around him that inspired others to, as George Smoot put it, “think big,” as well as to “think broadly and then deep” and to take risks. Combined with Alvarez’s strong scientific standards and great care in execut- ing them, these principles led directly to the awarding of two Nobel Luis Alvarez celebrating the announcement of his 1968 Nobel prizes in physics to scientists at Berkeley – George Smoot in 2006 prize.
    [Show full text]
  • 11/03/11 110311 Pisp.Doc Physics in the Interest of Society 1
    1 _11/03/11_ 110311 PISp.doc Physics in the Interest of Society Physics in the Interest of Society Richard L. Garwin IBM Fellow Emeritus IBM, Thomas J. Watson Research Center Yorktown Heights, NY 10598 www.fas.org/RLG/ www.garwin.us [email protected] Inaugural Lecture of the Series Physics in the Interest of Society Massachusetts Institute of Technology November 3, 2011 2 _11/03/11_ 110311 PISp.doc Physics in the Interest of Society In preparing for this lecture I was pleased to reflect on outstanding role models over the decades. But I felt like the centipede that had no difficulty in walking until it began to think which leg to put first. Some of these things are easier to do than they are to describe, much less to analyze. Moreover, a lecture in 2011 is totally different from one of 1990, for instance, because of the instant availability of the Web where you can check or supplement anything I say. It really comes down to the comment of one of Elizabeth Taylor later spouses-to-be, when asked whether he was looking forward to his wedding, and replied, “I know what to do, but can I make it interesting?” I’ll just say first that I think almost all Physics is in the interest of society, but I take the term here to mean advising and consulting, rather than university, national lab, or contractor research. I received my B.S. in physics from what is now Case Western Reserve University in Cleveland in 1947 and went to Chicago with my new wife for graduate study in Physics.
    [Show full text]
  • I. I. Rabi Papers [Finding Aid]. Library of Congress. [PDF Rendered Tue Apr
    I. I. Rabi Papers A Finding Aid to the Collection in the Library of Congress Manuscript Division, Library of Congress Washington, D.C. 1992 Revised 2010 March Contact information: http://hdl.loc.gov/loc.mss/mss.contact Additional search options available at: http://hdl.loc.gov/loc.mss/eadmss.ms998009 LC Online Catalog record: http://lccn.loc.gov/mm89076467 Prepared by Joseph Sullivan with the assistance of Kathleen A. Kelly and John R. Monagle Collection Summary Title: I. I. Rabi Papers Span Dates: 1899-1989 Bulk Dates: (bulk 1945-1968) ID No.: MSS76467 Creator: Rabi, I. I. (Isador Isaac), 1898- Extent: 41,500 items ; 105 cartons plus 1 oversize plus 4 classified ; 42 linear feet Language: Collection material in English Location: Manuscript Division, Library of Congress, Washington, D.C. Summary: Physicist and educator. The collection documents Rabi's research in physics, particularly in the fields of radar and nuclear energy, leading to the development of lasers, atomic clocks, and magnetic resonance imaging (MRI) and to his 1944 Nobel Prize in physics; his work as a consultant to the atomic bomb project at Los Alamos Scientific Laboratory and as an advisor on science policy to the United States government, the United Nations, and the North Atlantic Treaty Organization during and after World War II; and his studies, research, and professorships in physics chiefly at Columbia University and also at Massachusetts Institute of Technology. Selected Search Terms The following terms have been used to index the description of this collection in the Library's online catalog. They are grouped by name of person or organization, by subject or location, and by occupation and listed alphabetically therein.
    [Show full text]
  • THE MEETING Meridel Rubenstein 1995
    THE MEETING Meridel Rubenstein 1995 Palladium prints, steel, single-channel video Video assistance by Steina Video run time 4:00 minutes Tia Collection The Meeting consists of twenty portraits of people from San Ildefonso Pueblo and Manhattan Project physicists—who met at the home of Edith Warner during the making of the first atomic bomb—and twenty photographs of carefully selected objects of significance to each group. In this grouping are people from San Ildefonso Pueblo and the objects they selected from the collections of the Museum of Indian Arts and Culture to represent their culture. 1A ROSE HUGHES 2A TALL-NECKED JAR 3A BLUE CORN 4A SLEIGH BELLS 5A FLORENCE NARANJO Rose Hughes holding a photograph of WITH AVANYU One of the most accomplished and (Museum of Indian Arts and Culture) Married to Louis Naranjo; her father, Tony Peña, who organized (plumed serpent) made by Julian and recognized of the San Ildefonso Sleigh bells are commonly used in granddaughter of Ignacio and Susana the building of Edith Warner’s second Maria Martinez, ca. 1930 (Museum of potters. Like many women from the ceremonial dances to attract rain. Aguilar; daughter of Joe Aguilar, who house. Hughes worked at Edith Indian Arts and Culture) Edith Warner pueblos, she worked as a maid for the Tilano Montoya returned with bells like helped Edith Warner remodel the Warner’s with Florence Naranjo one was shown a pot like this one in 1922 Oppenheimers. these from Europe, where he went on tearoom. Edith called her Florencita. summer. She recalls that Edith once on her first visit to San Ildefonso, in the tour with a group of Pueblo dancers.
    [Show full text]
  • Enrico Fermi
    Fermi, Enrico Inventors and Inventions Enrico Fermi Italian American physicist Fermi helped develop Fermi-Dirac statistics, which liceo (secondary school) and, on the advice of Amidei, elucidate the group behavior of elementary particles. joined the Scuola Normale Superiore at Pisa. This elite He also developed the theory of beta decay and college, attached to the University of Pisa, admitted only discovered neutron-induced artificial radioactivity. forty of Italy’s top students, who were given free board Finally, he succeeded in producing the first sustained and lodging. Fermi performed exceedingly well in the nuclear chain reaction, which led to the discovery highly competitive entrance exam. He completed his of nuclear energy and the development of the university education after only four years of research and atomic bomb. studies, receiving his Ph.D. in physics from the Univer- sity of Pisa and his undergraduate diploma from the Born: September 29, 1901; Rome, Italy Scuola Normale Superiore in July, 1922. He became Died: November 28, 1954; Chicago, Illinois an expert theoretical physicist and a talented exper- Primary field: Physics imentalist. This rare combination provided a solid foun- Primary inventions: Controlled nuclear chain dation for all his subsequent inventions. reaction; Fermi-Dirac statistics; theory of beta decay Life’s Work After postdoctoral work at the University of Göttingen, Early Life in Germany (1922-1923), and the University of Leiden, Enrico Fermi (ehn-REE-koh FUR-mee) was the third in the Netherlands (fall, 1924), Fermi took an interim po- child of Alberto Fermi and Ida de Gattis. Enrico was very sition at the University of Florence in December, 1924.
    [Show full text]
  • An Investigation of the American Atomic Narrative Through News and Magazine Articles, Official Government Statements, Critiques, Essays and Works of Non/Fiction
    九州大学学術情報リポジトリ Kyushu University Institutional Repository Atomic Evangelists: An Investigation of the American Atomic Narrative Through News and Magazine Articles, Official Government Statements, Critiques, Essays and Works of Non/Fiction 髙田, とも子 https://doi.org/10.15017/4059961 出版情報:九州大学, 2019, 博士(文学), 課程博士 バージョン: 権利関係: Doctoral Dissertation Atomic Evangelists: An Investigation of the American Atomic Narrative Through News and Magazine Articles, Official Government Statements, Critiques, Essays and Works of Non-Fiction Tomoko Takada January 2020 Graduate School of Humanities Kyushu University Acknowledgement I would like to extend my deepest gratitude to Professor Takano, who has always provided me with unwavering support and guidance since the day I entered Kyushu University’s graduate program. In retrospect, I could not have chosen my research topic had it not been for his constructive advice. His insightful suggestions helped me understand that literature, or in a broader sense, humanities, can go far beyond the human imagination. I would also like to express my sincere thanks to the members of Genbaku Bungaku Kenkyukai, especially Kyoko Matsunaga, Michael Gorman, Takayuki Kawaguchi, Tomoko Ichitani and Shoko Itoh for generously sharing their extensive knowledge and giving me the most creative and practical comments on my research. Ever since I joined this group in 2011, their advice never failed to give me a sense of “epiphany”. As for the grants that supported my research for writing this dissertation, I am extremely grateful to Kyushu University Graduate School of Humanities, JSPS, The America-Japan Society and the US Embassy in Japan for offering me the invaluable opportunity to conduct my research in the United States.
    [Show full text]
  • Appendix E Nobel Prizes in Nuclear Science
    Nuclear Science—A Guide to the Nuclear Science Wall Chart ©2018 Contemporary Physics Education Project (CPEP) Appendix E Nobel Prizes in Nuclear Science Many Nobel Prizes have been awarded for nuclear research and instrumentation. The field has spun off: particle physics, nuclear astrophysics, nuclear power reactors, nuclear medicine, and nuclear weapons. Understanding how the nucleus works and applying that knowledge to technology has been one of the most significant accomplishments of twentieth century scientific research. Each prize was awarded for physics unless otherwise noted. Name(s) Discovery Year Henri Becquerel, Pierre Discovered spontaneous radioactivity 1903 Curie, and Marie Curie Ernest Rutherford Work on the disintegration of the elements and 1908 chemistry of radioactive elements (chem) Marie Curie Discovery of radium and polonium 1911 (chem) Frederick Soddy Work on chemistry of radioactive substances 1921 including the origin and nature of radioactive (chem) isotopes Francis Aston Discovery of isotopes in many non-radioactive 1922 elements, also enunciated the whole-number rule of (chem) atomic masses Charles Wilson Development of the cloud chamber for detecting 1927 charged particles Harold Urey Discovery of heavy hydrogen (deuterium) 1934 (chem) Frederic Joliot and Synthesis of several new radioactive elements 1935 Irene Joliot-Curie (chem) James Chadwick Discovery of the neutron 1935 Carl David Anderson Discovery of the positron 1936 Enrico Fermi New radioactive elements produced by neutron 1938 irradiation Ernest Lawrence
    [Show full text]
  • Cornell Gets a New Chair
    PEOPLE APPOINTMENTS & AWARDS Cornell gets a new chair Two prominent accelerator physicists and Cornell alumni, Helen T Edwards and her husband, Donald A Edwards, have endowed a chair in accelerator physics at Cornell.The chair is named after Boyce D McDaniel, pro­ fessor emeritus at Cornell. The first holder of the new chair is David L Rubin, professor of physics and director of accelerator physics at Cornell.The donors David Rubin is the first incumbent of the new Boyce McDaniel Chair of Physics at Cornell, asked that the new professorship should be endowed by Helen and Donald Edwards. The chair is named after Boyce D McDaniel. Left awarded to a Cornell faculty member whose to right: Boyce McDaniel, Donald Edwards, David Rubin, Helen Edwards and Maury Tigner, discipline is particle-beam physics and who director of Cornell's Laboratory of Nuclear Studies. would teach both graduate and undergradu­ ate students in addition to doing research. McDaniel, a previous director of nuclear ingthe commissioning of the Main Ring at Helen Edwards is a 1957 graduate of science at Cornell, was Helen Edwards' thesis Fermilab and providing advice for numerous Cornell, where she also earned her PhD in adviser. Initially a graduate student at Cornell, accelerator projects throughout the US, in 1966. She works at Fermilab and at DESY in he left during the Second World War to join the addition to his notable contributions to the Germany. She played a prominent role in the Manhattan Project and returned to complete accelerator and elementary particle physics construction of Fermilab'sTevatron and has his PhD, joining the faculty in 1946.
    [Show full text]