The Boundaries of Nature: Special & General Relativity and Quantum
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Information and Entropy in Quantum Theory
Information and Entropy in Quantum Theory O J E Maroney Ph.D. Thesis Birkbeck College University of London Malet Street London WC1E 7HX arXiv:quant-ph/0411172v1 23 Nov 2004 Abstract Recent developments in quantum computing have revived interest in the notion of information as a foundational principle in physics. It has been suggested that information provides a means of interpreting quantum theory and a means of understanding the role of entropy in thermodynam- ics. The thesis presents a critical examination of these ideas, and contrasts the use of Shannon information with the concept of ’active information’ introduced by Bohm and Hiley. We look at certain thought experiments based upon the ’delayed choice’ and ’quantum eraser’ interference experiments, which present a complementarity between information gathered from a quantum measurement and interference effects. It has been argued that these experiments show the Bohm interpretation of quantum theory is untenable. We demonstrate that these experiments depend critically upon the assumption that a quantum optics device can operate as a measuring device, and show that, in the context of these experiments, it cannot be consistently understood in this way. By contrast, we then show how the notion of ’active information’ in the Bohm interpretation provides a coherent explanation of the phenomena shown in these experiments. We then examine the relationship between information and entropy. The thought experiment connecting these two quantities is the Szilard Engine version of Maxwell’s Demon, and it has been suggested that quantum measurement plays a key role in this. We provide the first complete description of the operation of the Szilard Engine as a quantum system. -
THE MEETING Meridel Rubenstein 1995
THE MEETING Meridel Rubenstein 1995 Palladium prints, steel, single-channel video Video assistance by Steina Video run time 4:00 minutes Tia Collection The Meeting consists of twenty portraits of people from San Ildefonso Pueblo and Manhattan Project physicists—who met at the home of Edith Warner during the making of the first atomic bomb—and twenty photographs of carefully selected objects of significance to each group. In this grouping are people from San Ildefonso Pueblo and the objects they selected from the collections of the Museum of Indian Arts and Culture to represent their culture. 1A ROSE HUGHES 2A TALL-NECKED JAR 3A BLUE CORN 4A SLEIGH BELLS 5A FLORENCE NARANJO Rose Hughes holding a photograph of WITH AVANYU One of the most accomplished and (Museum of Indian Arts and Culture) Married to Louis Naranjo; her father, Tony Peña, who organized (plumed serpent) made by Julian and recognized of the San Ildefonso Sleigh bells are commonly used in granddaughter of Ignacio and Susana the building of Edith Warner’s second Maria Martinez, ca. 1930 (Museum of potters. Like many women from the ceremonial dances to attract rain. Aguilar; daughter of Joe Aguilar, who house. Hughes worked at Edith Indian Arts and Culture) Edith Warner pueblos, she worked as a maid for the Tilano Montoya returned with bells like helped Edith Warner remodel the Warner’s with Florence Naranjo one was shown a pot like this one in 1922 Oppenheimers. these from Europe, where he went on tearoom. Edith called her Florencita. summer. She recalls that Edith once on her first visit to San Ildefonso, in the tour with a group of Pueblo dancers. -
An Investigation of the American Atomic Narrative Through News and Magazine Articles, Official Government Statements, Critiques, Essays and Works of Non/Fiction
九州大学学術情報リポジトリ Kyushu University Institutional Repository Atomic Evangelists: An Investigation of the American Atomic Narrative Through News and Magazine Articles, Official Government Statements, Critiques, Essays and Works of Non/Fiction 髙田, とも子 https://doi.org/10.15017/4059961 出版情報:九州大学, 2019, 博士(文学), 課程博士 バージョン: 権利関係: Doctoral Dissertation Atomic Evangelists: An Investigation of the American Atomic Narrative Through News and Magazine Articles, Official Government Statements, Critiques, Essays and Works of Non-Fiction Tomoko Takada January 2020 Graduate School of Humanities Kyushu University Acknowledgement I would like to extend my deepest gratitude to Professor Takano, who has always provided me with unwavering support and guidance since the day I entered Kyushu University’s graduate program. In retrospect, I could not have chosen my research topic had it not been for his constructive advice. His insightful suggestions helped me understand that literature, or in a broader sense, humanities, can go far beyond the human imagination. I would also like to express my sincere thanks to the members of Genbaku Bungaku Kenkyukai, especially Kyoko Matsunaga, Michael Gorman, Takayuki Kawaguchi, Tomoko Ichitani and Shoko Itoh for generously sharing their extensive knowledge and giving me the most creative and practical comments on my research. Ever since I joined this group in 2011, their advice never failed to give me a sense of “epiphany”. As for the grants that supported my research for writing this dissertation, I am extremely grateful to Kyushu University Graduate School of Humanities, JSPS, The America-Japan Society and the US Embassy in Japan for offering me the invaluable opportunity to conduct my research in the United States. -
Nuclear Weapons and Nuclear War. Papers Based on a Symposium Of
. DOCUMENT RESUME ED 233 910 SE 043 147 A AUTHOR Mo'irison, Philip; And Others TITLE Nuclear Weapcins and'Nuclear War. Papers Based on a.' symposium of the Forum on Physics and Society of the American Physical Society, (ashington, D.C., April 1982.). INSTITUTION Americ'ap Association of Physics Teachers, Washington, 'D.C. 0 PUB DATE 83 NOTE 44. L AVAILABLE FROM American AssoCiatiOn of Physics Teachers, Graduate Phygics Bldg., SUNY, Stony Btook, NY,11794._(Nuclear Weapons $2.00 U.S., prepaid; Nuclear Energy $2.50 U.S./$3.00 outside U.S.). PUB TYPE Reports - General (140) Speeches/Conference Papers (150.) EDRS PRICE MF01 Plus Postage. PC Not Available from EDRS. DESCRIPTORS Armed Forces; *Disarmament; *Intetnational Relations; National Defense; Nuclear Technology; *Nuclear Warfare; Treaties; *World Problems IDENTIFIERS *Nuclear Weapons; *USSR ABSTRACT Three papers on nuclear weapons and nuclear war, baged on talks 'given by distinguihed physicists during an American Physical Society-sponsored symposium,,-are provided in this booklet. They include "Caught Between Asymptotes" (Philip Morrison), "We are not Inferior to the Soviets" (Hans A. Bethe), and "MAD vs. NUTS" (Wolfgang K. H.. Panofsky).'Areas addressed in the first paper (whose title is based on a metaphOr offered by, John von Neumann) include the threat of nuclear war, WorldWar III. versus World War II, and .others. The major point of the second paper is that United States strategic nuclear forces are not infeiior to those of the Soviets., Areas addressed include accuracy/vulnerability, new weapons, madness of .nuclear war, SALT I and II, proposed nuclear weapons freeze, and possible U.S initiatives'. -
Notes on the Theory of Quantum Clock
NOTES ON THE THEORY OF QUANTUM CLOCK I.Tralle1, J.-P. Pellonp¨a¨a2 1Institute of Physics, University of Rzesz´ow,Rzesz´ow,Poland e-mail:[email protected] 2Department of Physics, University of Turku, Turku, Finland e-mail:juhpello@utu.fi (Received 11 March 2005; accepted 21 April 2005) Abstract In this paper we argue that the notion of time, whatever complicated and difficult to define as the philosophical cat- egory, from physicist’s point of view is nothing else but the sum of ’lapses of time’ measured by a proper clock. As far as Quantum Mechanics is concerned, we distinguish a special class of clocks, the ’atomic clocks’. It is because at atomic and subatomic level there is no other possibility to construct a ’unit of time’ or ’instant of time’ as to use the quantum transitions between chosen quantum states of a quantum ob- ject such as atoms, atomic nuclei and so on, to imitate the periodic circular motion of a clock hand over the dial. The clock synchronization problem is also discussed in the paper. We study the problem of defining a time difference observable for two-mode oscillator system. We assume that the time dif- ference obsevable is the difference of two single-mode covariant Concepts of Physics, Vol. II (2005) 113 time observables which are represented as a time shift covari- ant normalized positive operator measures. The difficulty of finding the correct value space and normalization for time dif- ference is discussed. 114 Concepts of Physics, Vol. II (2005) Notes on the Theory of Quantum Clock And the heaven departed as a scroll when it is rolled together;.. -
Engineering Ultrafast Quantum Frequency Conversion
Engineering ultrafast quantum frequency conversion Der Naturwissenschaftlichen Fakultät der Universität Paderborn zur Erlangung des Doktorgrades Dr. rer. nat. vorgelegt von BENJAMIN BRECHT aus Nürnberg To Olga for Love and Support Contents 1 Summary1 2 Zusammenfassung3 3 A brief history of ultrafast quantum optics5 3.1 1900 – 1950 ................................... 5 3.2 1950 – 2000 ................................... 6 3.3 2000 – today .................................. 8 4 Fundamental theory 11 4.1 Waveguides .................................. 11 4.1.1 Waveguide modelling ........................ 12 4.1.2 Spatial mode considerations .................... 14 4.2 Light-matter interaction ........................... 16 4.2.1 Nonlinear polarisation ........................ 16 4.2.2 Three-wave mixing .......................... 17 4.2.3 More on phasematching ...................... 18 4.3 Ultrafast pulses ................................. 21 4.3.1 Time-bandwidth product ...................... 22 4.3.2 Chronocyclic Wigner function ................... 22 4.3.3 Pulse shaping ............................. 25 5 From classical to quantum optics 27 5.1 Speaking quantum .............................. 27 iii 5.1.1 Field quantisation in waveguides ................. 28 5.1.2 Quantum three-wave mixing .................... 30 5.1.3 Time-frequency representation .................. 32 5.1.3.1 Joint spectral amplitude functions ........... 32 5.1.3.2 Schmidt decomposition ................. 35 5.2 Understanding quantum ........................... 36 5.2.1 Parametric -
Notes on the Theory of Quantum Clock
NOTES ON THE THEORY OF QUANTUM CLOCK I.Tralle1, J.-P. Pellonp¨a¨a2 1Institute of Physics, University of Rzesz´ow,Rzesz´ow,Poland e-mail:[email protected] 2Department of Physics, University of Turku, Turku, Finland e-mail:juhpello@utu.fi (Received 11 March 2005; accepted 21 April 2005) Abstract In this paper we argue that the notion of time, whatever complicated and difficult to define as the philosophical cat- egory, from physicist’s point of view is nothing else but the sum of ’lapses of time’ measured by a proper clock. As far as Quantum Mechanics is concerned, we distinguish a special class of clocks, the ’atomic clocks’. It is because at atomic and subatomic level there is no other possibility to construct a ’unit of time’ or ’instant of time’ as to use the quantum transitions between chosen quantum states of a quantum ob- ject such as atoms, atomic nuclei and so on, to imitate the periodic circular motion of a clock hand over the dial. The clock synchronization problem is also discussed in the paper. We study the problem of defining a time difference observable for two-mode oscillator system. We assume that the time dif- ference obsevable is the difference of two single-mode covariant Concepts of Physics, Vol. II (2005) 113 time observables which are represented as a time shift covari- ant normalized positive operator measures. The difficulty of finding the correct value space and normalization for time dif- ference is discussed. 114 Concepts of Physics, Vol. II (2005) Notes on the Theory of Quantum Clock And the heaven departed as a scroll when it is rolled together;.. -
Time and Frequency Division Report
Time and Frequency Division Goal The broad mission of the Time and Frequency Division is to provide official U.S. time and related quantities to support a wide range of uses in industry, national infrastructure, research, and among the general public. DIVISION STRATEGY The division’s research and metrology ac- tivities comprise three vertically integrated components, each of which constitutes a strategic element: 1. Official time: Accurate and precise realization of official U.S. time (UTC) and frequency. 2. Dissemination: A wide range of mea- surement services to efficiently and effectively distribute U.S. time and frequency and related quantities – pri- marily through free broadcast services available to any user 24/7/365. 3. Research: Research and technolo- gy development to improve time and frequency standards and dissemination. Part of this research includes high-impact programs in areas such as quantum information processing, atom-based sensors, and laser development and applications, which evolved directly from research to make better frequency standards (atomic clocks). Overview These three components – official time, dissemination, and research – are closely integrated. For example, all Division dissemination services tie directly to the Division’s realization of official time (UTC), and much of the Division’s research is enabled by the continual availability of precision UTC. Our modern technology and economy depend critically on the broad availability of precision timing, frequency, and synchronization. NIST realization and dissemination of time and frequency – continually improved by NIST research and development – is a crucial part of a series of informal national timing infrastructures that enable such essential technologies as: • Telecommunications and computer networks • Utility distribution • GPS, widely available in every cell phone and smartphone as well as GPS receivers • Electronic financial transactions 1 • National security and intelligence applications • Research Strategic Goal: Official Time Intended Outcome and Background U.S. -
Quantum Physics in Space
Quantum Physics in Space Alessio Belenchiaa,b,∗∗, Matteo Carlessob,c,d,∗∗, Omer¨ Bayraktare,f, Daniele Dequalg, Ivan Derkachh, Giulio Gasbarrii,j, Waldemar Herrk,l, Ying Lia Lim, Markus Rademacherm, Jasminder Sidhun, Daniel KL Oin, Stephan T. Seidelo, Rainer Kaltenbaekp,q, Christoph Marquardte,f, Hendrik Ulbrichtj, Vladyslav C. Usenkoh, Lisa W¨ornerr,s, Andr´eXuerebt, Mauro Paternostrob, Angelo Bassic,d,∗ aInstitut f¨urTheoretische Physik, Eberhard-Karls-Universit¨atT¨ubingen, 72076 T¨ubingen,Germany bCentre for Theoretical Atomic,Molecular, and Optical Physics, School of Mathematics and Physics, Queen's University, Belfast BT7 1NN, United Kingdom cDepartment of Physics,University of Trieste, Strada Costiera 11, 34151 Trieste,Italy dIstituto Nazionale di Fisica Nucleare, Trieste Section, Via Valerio 2, 34127 Trieste, Italy eMax Planck Institute for the Science of Light, Staudtstraße 2, 91058 Erlangen, Germany fInstitute of Optics, Information and Photonics, Friedrich-Alexander University Erlangen-N¨urnberg, Staudtstraße 7 B2, 91058 Erlangen, Germany gScientific Research Unit, Agenzia Spaziale Italiana, Matera, Italy hDepartment of Optics, Palacky University, 17. listopadu 50,772 07 Olomouc,Czech Republic iF´ısica Te`orica: Informaci´oi Fen`omensQu`antics,Department de F´ısica, Universitat Aut`onomade Barcelona, 08193 Bellaterra (Barcelona), Spain jDepartment of Physics and Astronomy, University of Southampton, Highfield Campus, SO17 1BJ, United Kingdom kDeutsches Zentrum f¨urLuft- und Raumfahrt e. V. (DLR), Institut f¨urSatellitengeod¨asieund -
Gar Alperovitz and the Decision to Use the Atomic Bomb
Advances in Historical Studies 2013. Vol.2, No.2, 46-53 Published Online June 2013 in SciRes (http://www.scirp.org/journal/ahs) DOI:10.4236/ahs.2013.22008 Reclaiming Realism for the Left: Gar Alperovitz and the Decision to Use the Atomic Bomb Peter N. Kirstein History Department, St. Xavier University, Chicago, USA Email: [email protected] Received December 24th, 2012; revised February 14th, 2013; accepted February 22nd, 2013 Copyright © 2013 Peter N. Kirstein. This is an open access article distributed under the Creative Commons At- tribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Sixty-seven years after the decision to use the atomic bomb in World War II, controversy remains whether the United States was justified in using fission bombs in combat. Gar Alperovitz, the great revi- sionist historian, in his Atomic Diplomacy and The Decision to Use the Atomic Bomb transformed our knowledge of the geopolitical motives behind the atomic attack against Japan at the end of World War II. These uranium and plutonium-core bombs were political, not primarily military in purpose and motive behind their deployment. His analysis will be compared to realists such as Hans Morgenthau, Kenneth Waltz, Henry Kissinger and George Kennan who for the most part questioned unrestrained violence and offered nuanced views on the wisdom of using such indiscriminate, savage weapons of war. The paper will explore Alperovitz’s classic argument that out of the ashes of Hiroshima and Nagasaki, the A-bomb drove the incipient Cold War conflict. American national-security elites construed the bomb as a political- diplomatic lever to contain Soviet power as much as a military weapon to subdue Japan. -
J. Robert Oppenheimer
Priscilla J. McMillan The Ruin of J. Robert Oppenheimer and the Birth of the Modern Arms Race VIKING VIKING Published by the Penguin Group Penguin Group (USA) Inc., 375 Hudson Street, New York, New York 100I4, U.S.A. Penguin Group (Canada), 10 Alcorn Avenue, Toronto, Ontario, Canada M4V 3B2 (a division of Pearson Penguin Canada Inc.) Penguin Books Ltd, 80 Strand, London WC2R oRL, England Penguin Ireland, 25 St. Stephen's Green, Dublin 2, Ireland (a division of Penguin Books Ltd) Penguin Books Australia Ltd, 250 Camberwell Road, Camberwell, Victoria 3124, Australia (a division of Pearson Australia Group Pry Ltd) Penguin Books India Pvt Lrd, II Community Centre, Panchsheel Park, New Delhi-no 0I7, India Penguin Group (NZ), Cnr Airborne and Rosedale Roads, Albany, Auckland 1310, New Zealand (a division of Pearson New Zealand Ltd) Penguin Books (South Africa) (Pry) Ltd, 24 Srurdee Avenue, Rosebank, Johannesburg 2196, South Africa Penguin Books Lrd, Registered Offices: 80 Strand, London WC2R oRL, England First published in 2005 by Viking Penguin, a member of Penguin Group (USA) Inc. 7 9 10 8 6 4 2 Copyright © Priscilla Johnson McMillan, 2005 All rights reserved Photograph credits appear on page 374- LIBRARY OF CONGRESS CATALOGING-IN-PUBLICATION DATA McMillan, Priscilla Johnson. The ruin of J. Robert Oppenheimer / Priscilla J. McMillan. p. ern. Includes index. ISBN 0-670-03422-3 I. Oppenheimer, J. Robert, 1904-1967. 2. Physicists-United States-Biography. 3. Manhattan Project (U.S.) 4- Atomic bomb-United States-s-History. 5. Nuclear physics- United States-Histoty-20th century. 6. Teller, Edward, 1908- I. -
Concerning Relativity Books. Published in June 2013 INTERVIEW WITH
Interview for Hungarian “Physical Review” concerning relativity books. Published in June 2013 INTERVIEW WITH EDWIN F. TAYLOR, SENIOR RESEARCH SCIENTIST, EMERITUS AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY (FSZ: Fizikai Szemle, EFT: Edwin F. Taylor) FSZ: Spacetime Physics, the book you co-authored with John Archibald Wheeler, has many fans among physicists throughout the world, and Hungary is no exception. (The Hungarian edition was first published in 1974; the second printing of this edition came out in 2006 [1].) In 1972 you published an account of your collaboration with John Wheeler on the 1963 edition of Spacetime Physics and your personal impressions about John Wheeler (including his emotional reaction to the news of his mentor Niels Bohr’s death in November 1962) [2]. Your collaboration and friendship with Wheeler started during your sabbatical at Princeton University in 1962. One of your assignments was to prepare lecture notes for a freshman physics course that Wheeler taught to a class of 35 students. He started the course with 6 weeks of relativity! What had been your main areas of interest in physics before you met John Wheeler? Had you been particularly interested in relativity, or was it Wheeler’s presentation of it during that introductory physics course in 1962 which made it a lifelong passion for you? EFT: My father, Lloyd W. Taylor, was a physics textbook writer, so it came naturally to me. My first book, Introductory Mechanics, arrived from the publisher when I was on a junior faculty sabbatical at Princeton University; that book included some chapters on special relativity. Wheeler arranged for me to assist him in this honors introductory class [3].