Geochemistry Drives the Allometric Growth of the Hydrothermal Vent Tubeworm Riftia Pachyptila (Annelida: Siboglinidae)

Total Page:16

File Type:pdf, Size:1020Kb

Geochemistry Drives the Allometric Growth of the Hydrothermal Vent Tubeworm Riftia Pachyptila (Annelida: Siboglinidae) applyparastyle “fig//caption/p[1]” parastyle “FigCapt” Zoological Journal of the Linnean Society, 2021, 193, 281–294. With 3 figures. Geochemistry drives the allometric growth of the hydrothermal vent tubeworm Riftia pachyptila (Annelida: Siboglinidae) NADEZHDA RIMSKAYA-KORSAKOVA1,*, , DIEGO FONTANETO2, SERGEY GALKIN3, Downloaded from https://academic.oup.com/zoolinnean/article/193/1/281/6048373 by guest on 27 September 2021 VLADIMIR MALAKHOV1 and ALEJANDRO MARTÍNEZ2, 1Department of Invertebrate Zoology, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia 2Molecular Ecology Group (MEG), Water Research Institute (IRSA), National Research Council of Italy (CNR), 28922 Verbania Pallanza, Italy 3Laboratory of Ocean Benthic Fauna, Shirshov Institute of Oceanology of the Russian Academy of Science, 117218 Moscow, Russia Received 23 May 2020; revised 15 September 2020; accepted for publication 15 October 2020 The tubeworm Riftia pachyptila is a key primarily producer in hydrothermal vent communities due to the symbiosis with sulphur-oxidizing bacteria, which provide nourishment to the worm from sulphides, oxygen and carbon dioxide. These substances diffuse from the vent water into the bloodstream of the worm through their tentacular crowns, and then to the bacteria, hosted in a specialized organ of the worm, called a trophosome. The uptake rates of these substances depend on the surface/volume relationship of the tentacles. We here describe two morphotypes, ‘fat’ and ‘slim’, respectively, from the basalt sulphide-rich vents at 9 °N and 21 °N at the East Pacific Rise, and the highly sedimented, sulphide-poor vents at 27 °N in the Guaymas Basin. The ‘fat’ morphotype has a thicker body and tube, longer trunk and smaller tentacular crowns, whereas the ‘slim’ morphotype has shorter trunk, thinner body and tube, and presents longer tentacular crowns and has a higher number of tentacular lamellae. Given the dependence on sulphides for the growth of R. pachyptila, as well as high genetic connectivity of the worm’s populations along the studied localities, we suggest that such morphological differences are adaptive and selected to keep the sulphide uptake near to the optimum values for the symbionts. ‘Fat’ and ‘slim’ morphotypes are also found in the vestimentiferan Ridgeia piscesae in similar sulphide-rich and poor environments in the northern Pacific. ADDITIONAL KEYWORDS: East Pacific Rise – Guaymas Basin – lamellae – morphometrics – obturaculum – sulphides – tubes – tentacles – Vestimentifera. INTRODUCTION as the vestimentiferan annelid Riftia pachyptila Jones, 1981 (family Siboglinidae), are today amongst The discovery of the unique fauna of hydrothermal the best-known and most characteristic species of zones of the oceans was one of the most important hydrothermal vent communities (Rouse, 2001). Riftia events in marine biodiversity of recent decades pachyptila is gutless and it obtains nourishment (Corliss et al., 1979; Bright & Lallier, 2010; Hilário solely through a highly efficient symbiosis with et al., 2011). The submersible DSV Alvin found chemoautotrophic bacteria, allowing the worm to reach large, red, tube-dwelling worms rising up to several up to 3 m in length at growth rates of 160 cm per year meters above the seafloor around the vent smokers (Thiébaut et al., 2002). Populations of R. pachyptila (Corliss & Ballard, 1977; Ballard & Grassle, 1979; are key ecosystem engineers of hydrothermal vent Corliss et al., 1979). These worms, formally described communities, especially in the Pacific Ocean rifts (Scott & Fisher, 1995; Shank et al., 1998), where they reach *Corresponding author: E-mail: nadezdarkorsakova@gmail. a large biomass responsible for most of the primary com production in the ecosystem (Lutz et al., 1994; Thiébaut © 2020 The Linnean Society of London, Zoological Journal of the Linnean Society, 2021, 193, 281–294 281 282 N. RIMSKAYA-KORSAKOVA ET AL. et al., 2002; Bright et al., 2010). For all these reasons, 1981, 1985; Karaseva et al., 2016; Goffredi et al., 2017). R. pachyptila has attracted extensive interdisciplinary Basalt-hosted vents exhibit higher hydrogen sulphide attention from ecologists, biochemists, microbiologists concentration (so called, high sulphide-flux), lower and physiologists (Malakhov & Galkin, 1998; Van concentrations of oxidized sulphur compounds and Dover, 2000; Gebruk, 2002; Bright et al., 2010). lower concentrations of dissolved organic carbon and Riftia pachyptila, together with other ammonium than sedimented hydrothermal sites (von vestimentiferans, has also been in the spotlight of Damm et al., 1985a, b; Childress & Beehler, 1988a; zoologists and systematists, provoking a heated debate Johnson et al., 1988a, b; Luther et al., 2001; Bogdanov, around its phylogenetic affinities, largely instigated by 2002; Le Bris et al., 2006). In contrast, sedimented its bizarre lifestyle and morphology. Unlike any other hydrothermal vents are restricted to some localities in Downloaded from https://academic.oup.com/zoolinnean/article/193/1/281/6048373 by guest on 27 September 2021 annelids, the body of vestimentiferans comprises of the Guaymas Basin with a high sedimentation rate. In four parts. The anterior obturaculum, often bearing fact, the Guaymas Basin is considered one of the few a conspicuous crowns of tentacles, followed by the key sites to study carbon release in a rift basin exposed vestimentum, the trunk (hosting the symbionts to high sedimentation rates (von Damm, 1985b; and the gonads) and the opisthosoma. Like other Campbell et al., 1988; Dean, 2006; Geilert et al. 2018). hydrothermal vestimentiferans of the subfamily Hydrothermal fluids in these areas are characterized Tevniinae, Riftia pachyptila uptakes reduced sulphur, by slow rates of diffuse flow of sulphides (so called, oxygen and carbon dioxide from the water column low sulphide-flux), a consequence of the injection using the crown of tentacles on the obturaculum of the fluid from the vent through the thick layer of (Hilário et al., 2011). These substances are then organic-rich sediment. The sediments partially cover transported by the vascular system inside the body the colonies of R. pachyptila growing in these vents, trunk, where the chemoautotrophic symbiotic bacteria which appear to contain lower amounts of elemental oxidize the sulphur and fix the carbon dioxide, directly sulphur in their trophosomes than those recovered feeding the host (Cavanaugh et al., 1981; Felbeck, from basalt-hosted vents (von Damm et al., 1985a, b; 1981). In contrast, vestimentiferans from hydrocarbon Campbell et al., 1988; Gamo, 1995; von Damm, 2000; seeps and shipwrecks, Lamellibrachiinae and Bogdanov, 2002; Shock & Canovas, 2010; Robidart Escarpiinae, uptake sulphides through the epidermis et al., 2011). Such ecological differences between of the entire body, even if the process is more efficient vents, mostly reflected by the different availability through the so-called ‘roots’, which are structures in of sulphides, might favour a differential development the posterior end of the body buried into the substrate of the body parts related to sulphide uptake, thereby (Scott & Fisher, 1995; Julian et al., 1999; Hilário optimizing the feeding of the symbionts. It has been et al., 2011). The two different strategies of sulphide shown that, regardless of the physiological plasticity absorption are reflected in the proportions of body of its bacterial symbionts (Robidart et al., 2011; parts: the obturaculum is proportionally shorter in Zimmermann et al., 2014), Riftia pachyptila buffers Lamellibrachiinae and Escarpiinae than in Tevniinae, the environmental changes in sulphide concentrations where it is used to absorb sulphides (Malakhov & to keep bacteria growing at an optimal rate (Childress Galkin, 1998; Andersen et al., 2002; Karaseva et al., et al., 1984; Goffredi et al., 1997; Zal et al., 1997; Gru 2016, 2019). Such differences might have been selected et al., 1998; Van Dover, 2000; Girguis & Childress, to optimize the diffusion of chemicals into the body 2006). Thus, different availability of sulphides in the of the worms, since long and thin structures have a environment could lead to different morphological higher surface/volume ratio, which makes the diffusion adaptations to maintain a homogeneous and stable rate higher. However, testing this idea across different environment for the symbionts. Interestingly, species of siboglinids is confounded by the effects of notwithstanding the potential ecological differences phylogeny and the different habitat preferences by and the large geographic distances between types of different members of the family. Nevertheless, most of vents, high genetic connectivity has been found across these factors can be controlled when individuals of the all known populations of Riftia pachyptila (Black et al., same species are available for comparison, especially 1994; Hurtado et al., 2004). if they occur in replicated habitats differing only in The goal of our study is to describe how the growth few ecological parameters, such as the availability of patterns of the various body parts in Riftia pachyptila sulphides. change with age and between sedimented and basalt- Riftia pachyptila is found in the Pacific Ocean, in hosted hydrothermal vents. Our first hypothesis is either basalt-hosted hydrothermal vents, widespread that all body parts increase with body length but at along the East Pacific Rise (EPR) and the Galapagos different rates. We expected a positive correlation Rift, or in sediment-rich
Recommended publications
  • Diversity of Bacteria and Archaea in the Deep-Sea Low-Temperature Hydrothermal Sulfide Chimney of the Northeastern Pacific Ocean
    African Journal of Biotechnology Vol. 11(2), pp. 337-345, 5 January, 2012 Available online at http://www.academicjournals.org/AJB DOI: 10.5897/AJB11.2692 ISSN 1684–5315 © 2012 Academic Journals Full Length Research Paper Diversity of bacteria and archaea in the deep-sea low-temperature hydrothermal sulfide chimney of the Northeastern Pacific Ocean Xia Ding1*, Xiao-Jue Peng1#, Xiao-Tong Peng2 and Huai-Yang Zhou3 1College of Life Sciences and Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330031, China. 2Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China. 3National Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China. Accepted 4 November, 2011 Our knowledge of the diversity and role of hydrothermal vents microorganisms has considerably expanded over the past decade, while little is known about the diversity of microorganisms in low-temperature hydrothermal sulfide chimney. In this study, denaturing gradient gel electrophoresis (DGGE) and 16S rDNA sequencing were used to examine the abundance and diversity of microorganisms from the exterior to the interior of the deep sea low-temperature hydrothermal sulfide chimney of the Northeastern Pacific Ocean. DGGE profiles revealed that both bacteria and archaea could be examined in all three zones of the chimney wall and the compositions of microbial communities within different zones were vastly different. Overall, for archaea, cell abundance was greatest in the outermost zone of the chimney wall. For bacteria, there was no significant difference in cell abundance among three zones. In addition, phylogenetic analysis revealed that Verrucomicrobia and Deltaproteobacteria were the predominant bacterial members in exterior zone, beta Proteobacteria were the dominant members in middle zone, and Bacillus were the abundant microorganisms in interior zone.
    [Show full text]
  • Sponge–Microbe Interactions on Coral Reefs: Multiple Evolutionary Solutions to a Complex Environment
    fmars-08-705053 July 14, 2021 Time: 18:29 # 1 REVIEW published: 20 July 2021 doi: 10.3389/fmars.2021.705053 Sponge–Microbe Interactions on Coral Reefs: Multiple Evolutionary Solutions to a Complex Environment Christopher J. Freeman1*, Cole G. Easson2, Cara L. Fiore3 and Robert W. Thacker4,5 1 Department of Biology, College of Charleston, Charleston, SC, United States, 2 Department of Biology, Middle Tennessee State University, Murfreesboro, TN, United States, 3 Department of Biology, Appalachian State University, Boone, NC, United States, 4 Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, United States, 5 Smithsonian Tropical Research Institute, Panama City, Panama Marine sponges have been successful in their expansion across diverse ecological niches around the globe. Pioneering work attributed this success to both a well- developed aquiferous system that allowed for efficient filter feeding on suspended organic matter and the presence of microbial symbionts that can supplement host Edited by: heterotrophic feeding with photosynthate or dissolved organic carbon. We now know Aldo Cróquer, The Nature Conservancy, that sponge-microbe interactions are host-specific, highly nuanced, and provide diverse Dominican Republic nutritional benefits to the host sponge. Despite these advances in the field, many current Reviewed by: hypotheses pertaining to the evolution of these interactions are overly generalized; these Ryan McMinds, University of South Florida, over-simplifications limit our understanding of the evolutionary processes shaping these United States symbioses and how they contribute to the ecological success of sponges on modern Alejandra Hernandez-Agreda, coral reefs. To highlight the current state of knowledge in this field, we start with seminal California Academy of Sciences, United States papers and review how contemporary work using higher resolution techniques has Torsten Thomas, both complemented and challenged their early hypotheses.
    [Show full text]
  • Tube Worm Riftia Pachyptila to Severe Hypoxia
    l MARINE ECOLOGY PROGRESS SERIES Vol. 174: 151-158,1998 Published November 26 Mar Ecol Prog Ser Metabolic responses of the hydrothermal vent tube worm Riftia pachyptila to severe hypoxia Cordelia ~rndt',~.*,Doris Schiedek2,Horst Felbeckl 'University of California San Diego, Scripps Institution of Oceanography. La Jolla. California 92093-0202. USA '~alticSea Research Institute at the University of Rostock, Seestrasse 15. D-181 19 Rostock-Warnemuende. Germany ABSTRACT: The metabolic capabilit~esof the hydrothermal vent tube worm Riftia pachyptila to toler- ate short- and long-term exposure to hypoxia were investigated After incubating specimens under anaerobic conditions the metabolic changes in body fluids and tissues were analyzed over time. The tube worms tolerated anoxic exposure up to 60 h. Prior to hypoxia the dicarboxylic acid, malate, was found in unusually high concentrations in the blood (up to 26 mM) and tissues (up to 5 pm01 g-' fresh wt). During hypoxia, most of the malate was degraded very quickly, while large quantities of succinate accumulated (blood: about 17 mM; tissues: about 13 pm01 g-l fresh wt). Volatile, short-chain fatty acids were apparently not excreted under these conditions. The storage compound, glycogen, was mainly found in the trophosome and appears to be utilized only during extended anaerobiosis. The succinate formed during hypoxia does not account for the use of malate and glycogen, which possibly indicates the presence of yet unidentified metabolic end products. Glutamate concentration in the trophosome decreased markedly durlng hypoxia, presumably due to a reduction in the autotrophic function of the symb~ontsduring hypoxia. In conclusion, R. pachyptila is phys~ologicallywell adapted to the oxygen fluctuations freq.uently occurring In the vent habitat.
    [Show full text]
  • Reproductive Ecology of Vestimentifera (Polychaeta: Siboglinidae) from Hydrothermal Vents and Cold Seeps
    University of Southampton Research Repository ePrints Soton Copyright © and Moral Rights for this thesis are retained by the author and/or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder/s. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders. When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given e.g. AUTHOR (year of submission) "Full thesis title", University of Southampton, name of the University School or Department, PhD Thesis, pagination http://eprints.soton.ac.uk University of Southampton Reproductive Ecology of Vestimentifera (Polychaeta: Siboglinidae) from Hydrothermal Vents and Cold Seeps PhD Dissertation submitted by Ana Hil´ario to the Graduate School of the National Oceanography Centre, Southampton in partial fulfillment of the requirements for the degree of Doctor of Philosophy June 2005 Graduate School of the National Oceanography Centre, Southampton This PhD dissertation by Ana Hil´ario has been produced under the supervision of the following persons Supervisors Prof. Paul Tyler and Dr Craig Young Chair of Advisory Panel Dr Martin Sheader Member of Advisory Panel Dr Jonathan Copley I hereby declare that no part of this thesis has been submitted for a degree to the University of Southampton, or any other University, at any time previously. The material included is the work of the author, except where expressly stated.
    [Show full text]
  • A Metapopulation Model for Whale-Fall Specialists: the Largest Whales Are Essential to Prevent Species Extinctions
    THE SEA: THE CURRENT AND FUTURE OCEAN Journal of Marine Research, 77, Supplement, 283–302, 2019 A metapopulation model for whale-fall specialists: The largest whales are essential to prevent species extinctions by Craig R. Smith,1,2 Joe Roman,3 and J. B. Nation4 ABSTRACT The sunken carcasses of great whales (i.e., whale falls) provide an important deep-sea habitat for more than 100 species that may be considered whale-fall specialists. Commercial whaling has reduced the abundance and size of whales, and thus whale-fall habitats, as great whales were hunted and removed from the oceans, often to near extinction. In this article, we use a metapopulation modeling approach to explore the consequences of whaling to the abundance and persistence of whale-fall habitats in the deep sea and to the potential for extinction of whale-fall specialists. Our modeling indicates that the persistence of metapopulations of whale-fall specialists is linearly related to the abundance of whales, and extremely sensitive (to the fourth power) to the mean size of whales. Thus, whaling-induced declines in the mean size of whales are likely to have been as important as declines in whale abundance to extinction pressure on whale-fall specialists. Our modeling also indicates that commercial whaling, even under proposed sustainable yield scenarios, has the potential to yield substantial extinction of whale-fall specialists. The loss of whale-fall habitat is likely to have had the greatest impact on the diversity of whale-fall specialists in areas where whales have been hunted for centuries, allowing extinctions to proceed to completion.
    [Show full text]
  • The Metabolic Demands of Endosymbiotic Chemoautotrophic Metabolism on Host Physiological Capacities
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Harvard University - DASH The metabolic demands of endosymbiotic chemoautotrophic metabolism on host physiological capacities The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters. Citation Childress, J. J., and P. R. Girguis. 2011. “The Metabolic Demands of Endosymbiotic Chemoautotrophic Metabolism on Host Physiological Capacities.” Journal of Experimental Biology 214, no. 2: 312–325. Published Version doi:10.1242/jeb.049023 Accessed February 16, 2015 7:23:35 PM EST Citable Link http://nrs.harvard.edu/urn-3:HUL.InstRepos:12763600 Terms of Use This article was downloaded from Harvard University's DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#OAP (Article begins on next page) 1 The metabolic demands of endosymbiotic chemoautotrophic metabolism on host 2 physiological capacities 3 4 J. J. Childress1* and P. R. Girguis2 5 1Department of Ecology, Evolution and Marine Biology, University of California, Santa 6 Barbara, CA 93106, USA, 2Department of Organismic and Evolutionary Biology, 7 Harvard University, Cambridge, MA 02138, USA 8 *Author for correspondence ([email protected]) 9 Running Title: Chemoautotrophic Metabolism 10 11 SUMMARY 12 While chemoautotrophic endosymbioses of hydrothermal vents and other 13 reducing environments have been well studied, little attention has been paid to the 14 magnitude of the metabolic demands placed upon the host by symbiont metabolism, 15 and the adaptations necessary to meet such demands.
    [Show full text]
  • The First Record of the Genus Lamellibrachia (Siboglinidae
    J. Earth Syst. Sci. (2021) 130:94 Ó Indian Academy of Sciences https://doi.org/10.1007/s12040-021-01587-1 (0123456789().,-volV)(0123456789().,-volV) The Brst record of the genus Lamellibrachia (Siboglinidae) tubeworm along with associated organisms in a chemosynthetic ecosystem from the Indian Ocean: A report from the Cauvery–Mannar Basin 1, 1 1 1 AMAZUMDAR *, P DEWANGAN ,APEKETI ,FIROZ BADESAAB , 1,5 1,6 1 1,6 MOHD SADIQUE ,KALYANI SIVAN ,JITTU MATHAI ,ANKITA GHOSH , 1,6 1,5 2 1,6 1 AZATALE ,SPKPILLUTLA ,CUMA ,CKMISHRA ,WALSH FERNANDES , 3 4 ASTHA TYAGI and TANOJIT PAUL 1Gas Hydrate Research Group, CSIR-National Institute of Oceanography, Dona Paula, Goa 403 004, India. 2Kerala University of Fisheries and Ocean Studies, Kochi, Kerala 682 506, India. 3K.J. Somaiya College of Science and Commerce, University of Mumbai, Mumbai, Maharashtra 400 077, India. 4Manipal Institute of Technology, Manipal, Karnataka 576 104, India. 5School of Earth, Ocean, and Atmospheric Sciences, Goa University, Taleigao Plateau, Goa 403 001, India. 6Academy of ScientiBc and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India. *Corresponding author. e-mail: [email protected] MS received 2 October 2020; revised 23 January 2021; accepted 25 January 2021 Here, we report for the Brst time, the genus Lamellibrachia tubeworm and associated chemosynthetic ecosystem from a cold-seep site in the Indian Ocean. The discovery of cold-seep was made oA the Cauvery–Mannar Basin onboard ORV Sindhu Sadhana (SSD-070; 13th to 22nd February 2020). The chemosymbiont bearing polychaete worm is also associated with squat lobsters (Munidposis sp.) and Gastropoda belonging to the family Buccinidae.
    [Show full text]
  • Biodiversity and Biogeography of Hydrothermal Vent Species Thirty Years of Discovery and Investigations
    This article has been published inOceanography , Volume 20, Number 1, a quarterly journal of The Oceanography Soci- S P E C I A L I ss U E F E AT U R E ety. Copyright 2007 by The Oceanography Society. All rights reserved. Permission is granted to copy this article for use in teaching and research. Republication, systemmatic reproduction, or collective redistirbution of any portion of this article by photocopy machine, reposting, or other means is permitted only with the approval of The Oceanography Society. Send all correspondence to: [email protected] or Th e Oceanography Society, PO Box 1931, Rockville, MD 20849-1931, USA. Biodiversity and Biogeography of Hydrothermal Vent Species Thirty Years of Discovery and Investigations B Y EvA R AMIREZ- L LO D RA, On the Seaoor, Dierent Species T IMOTH Y M . S H A N K , A nd Thrive in Dierent Regions C HRI S TO P H E R R . G E R M A N Soon after animal communities were discovered around seafl oor hydrothermal vents in 1977, sci- entists found that vents in various regions are populated by distinct animal species. Scien- Shallow Atlantic vents (800-1700-meter depths) tists have been sorting clues to explain how support dense clusters of mussels The discovery of hydrothermal vents and the unique, often endem- seafl oor populations are related and how on black smoker chimneys. they evolved and diverged over Earth’s • ic fauna that inhabit them represents one of the most extraordinary history. Scientists today recognize dis- scientific discoveries of the latter twentieth century.
    [Show full text]
  • Phylogenomics of Tubeworms (Siboglinidae, Annelida) and Comparative Performance of Different Reconstruction Methods
    Zoologica Scripta Phylogenomics of tubeworms (Siboglinidae, Annelida) and comparative performance of different reconstruction methods YUANNING LI,KEVIN M. KOCOT,NATHAN V. WHELAN,SCOTT R. SANTOS,DAMIEN S. WAITS, DANIEL J. THORNHILL &KENNETH M. HALANYCH Submitted: 28 January 2016 Li, Y., Kocot, K.M., Whelan, N.V., Santos, S.R., Waits, D.S., Thornhill, D.J. & Halanych, Accepted: 18 June 2016 K.M. (2016). Phylogenomics of tubeworms (Siboglinidae, Annelida) and comparative perfor- doi:10.1111/zsc.12201 mance of different reconstruction methods. —Zoologica Scripta, 00: 000–000. Deep-sea tubeworms (Annelida, Siboglinidae) represent dominant species in deep-sea chemosynthetic communities (e.g. hydrothermal vents and cold methane seeps) and occur in muddy sediments and organic falls. Siboglinids lack a functional digestive tract as adults, and they rely on endosymbiotic bacteria for energy, making them of evolutionary and physi- ological interest. Despite their importance, inferred evolutionary history of this group has been inconsistent among studies based on different molecular markers. In particular, place- ment of bone-eating Osedax worms has been unclear in part because of their distinctive biol- ogy, including harbouring heterotrophic bacteria as endosymbionts, displaying extreme sexual dimorphism and exhibiting a distinct body plan. Here, we reconstructed siboglinid evolutionary history using 12 newly sequenced transcriptomes. We parsed data into three data sets that accommodated varying levels of missing data, and we evaluate effects of miss- ing data on phylogenomic inference. Additionally, several multispecies-coalescent approaches and Bayesian concordance analysis (BCA) were employed to allow for a compar- ison of results to a supermatrix approach. Every analysis conducted herein strongly sup- ported Osedax being most closely related to the Vestimentifera and Sclerolinum clade, rather than Frenulata, as previously reported.
    [Show full text]
  • Chemosynthesis: What It We Can Learn from Hydrothermal Vents
    Chemosynthesis:Chemosynthesis: WhatWhat itit wewe cancan learnlearn fromfrom hydrothermalhydrothermal ventsvents Ryan Perry Geol 062 II.. IInnttrroo ttoo MMeettaabboolliissmm 1. CCaarrbboonn fifixxaattiioonn aanndd PPhhoottoossyynntthheessiiss 2. FFaammiilliiaarr ooxxiiddaattiivvee mmeettaabboolliissmm 3. OOxxyyggeenniicc PPhhoottoossyynntthh.. 4. GGeeoollooggiicc ccoonnsseeqquueenncceess IIII.. CChheemmoossyynntthheessiiss 1. HHyyddrrootthheerrmmaall VVeennttss 2. AArrcchheeaann 3. CChheemmoossyynntthheettiicc mmeettaabboolliissmm:: MMiiccrroobbeess RRuullee!!!!!! 4. CChheemmoossyynntthheettiicc eeccoossyysstteemmss IIIIII.. WWhhyy aarree eexxttrreemmoopphhiilleess ssoo ccooooll?? 1. BBiioommeeddiiccaall 2. IInndduussttrriiaall 3. WWhhaatt eexxttrreemmoopphhiilleess tteeaacchh uuss aabboouutt eeaarrllyy lliiffee 4. EExxoobbiioollooggyy IIVV.. EExxoobbiioollooggyy PPrreebbiioottiicc CChheemmiissttrryy oonn EEaarrtthh PPoossssiibbllee ((pprroobbaabbllee??)) oorriiggiinnss ooff lliiffee.. PPoossssiibbiillee lliiffee eellsseewwhheerree iinn tthhee ssoollaarr ssyysstteemm.. MMeettaabboolliissmm • The complete set of chemical reactions that take place within a cell. • Basis of all life processes. • Catabolic and Anabolic MMeettaabboolliissmm • CCaattaabbllooiicc mmeettaabboolliissmm---- hhiigghh eenneerrggyy mmoolleeccuulleess ((eelleeccttrroonn--ddoonnoorrss,, ffoooodd)) aarree ooxxiiddiizzeedd,, hhaavviinngg tthheeiirr eelleeccttrroonnss ttrraannssffeerrrreedd ttoo aann eelleeccttrroonn--aacccceeppttoorr.. • EElleeccttrroonn ppaasssseess ddoowwnn
    [Show full text]
  • Alvinella Pompejana (Annelida)
    MARINE ECOLOGY - PROGRESS SERIES Vol. 34: 267-274, 1986 Published December 19 Mar. Ecol. Prog. Ser. Tubes of deep sea hydrothermal vent worms Riftia pachyptila (Vestimentif era) and Alvinella pompejana (Annelida) ' CNRS Centre de Biologie Cellulaire, 67 Rue Maurice Gunsbourg, 94200 Ivry sur Seine, France Department of Biological Sciences, University of Lancaster, Bailrigg. Lancaster LA1 4YQ. England ABSTRACT: The aim of this study was to compare the structure and chemistry of the dwelling tubes of 2 invertebrate species living close to deep sea hydrothermal vents at 12"48'N, 103'56'W and 2600 m depth and collected during April 1984. The Riftia pachyptila tube is formed of a chitin proteoglycan/ protein complex whereas the Alvinella pompejana tube is made from an unusually stable glycoprotein matrix containing a high level of elemental sulfur. The A. pompejana tube is physically and chemically more stable and encloses bacteria within the tube wall material. INTRODUCTION the submersible Cyana in April 1984 during the Biocy- arise cruise (12"48'N, 103O56'W). Tubes were pre- The Pompeii worm Alvinella pompejana, a poly- served in alcohol, or fixed in formol-saline, or simply chaetous annelid, and Riftia pachyptila, previously rinsed and air-dried. considered as pogonophoran but now placed in the Some pieces of tubes were post-fixed with osmium putative phylum Vestimentifera (Jones 1985), are tetroxide (1 O/O final concentration) and embedded in found at a depth of 2600 m around deep sea hydrother- Durcupan. Thin sections were stained with aqueous mal vents. R. pachyptila lives where the vent water uranyl acetate and lead citrate and examined using a (anoxic, rich in hydrogen sulphide, temperatures up to Phillips EM 201 TEM at the Centre de Biologie 15°C) mixes with surrounding seawater (oxygenated, Cellulaire, CNRS, Ivry (France).
    [Show full text]
  • Hydrothermal Vent Periphery Invertebrate Community Habitat Preferences of the Lau Basin
    California State University, Monterey Bay Digital Commons @ CSUMB Capstone Projects and Master's Theses Capstone Projects and Master's Theses Summer 2020 Hydrothermal Vent Periphery Invertebrate Community Habitat Preferences of the Lau Basin Kenji Jordi Soto California State University, Monterey Bay Follow this and additional works at: https://digitalcommons.csumb.edu/caps_thes_all Recommended Citation Soto, Kenji Jordi, "Hydrothermal Vent Periphery Invertebrate Community Habitat Preferences of the Lau Basin" (2020). Capstone Projects and Master's Theses. 892. https://digitalcommons.csumb.edu/caps_thes_all/892 This Master's Thesis (Open Access) is brought to you for free and open access by the Capstone Projects and Master's Theses at Digital Commons @ CSUMB. It has been accepted for inclusion in Capstone Projects and Master's Theses by an authorized administrator of Digital Commons @ CSUMB. For more information, please contact [email protected]. HYDROTEHRMAL VENT PERIPHERY INVERTEBRATE COMMUNITY HABITAT PREFERENCES OF THE LAU BASIN _______________ A Thesis Presented to the Faculty of Moss Landing Marine Laboratories California State University Monterey Bay _______________ In Partial Fulfillment of the Requirements for the Degree Master of Science in Marine Science _______________ by Kenji Jordi Soto Spring 2020 CALIFORNIA STATE UNIVERSITY MONTEREY BAY The Undersigned Faculty Committee Approves the Thesis of Kenji Jordi Soto: HYDROTHERMAL VENT PERIPHERY INVERTEBRATE COMMUNITY HABITAT PREFERENCES OF THE LAU BASIN _____________________________________________
    [Show full text]