Universidade Federal Do Rio Grande Do Norte Centro De Ciências Exatas E Da Terra Programa De Pós-Graduação Em Ensino De Ciências Naturais E Matemática

Total Page:16

File Type:pdf, Size:1020Kb

Universidade Federal Do Rio Grande Do Norte Centro De Ciências Exatas E Da Terra Programa De Pós-Graduação Em Ensino De Ciências Naturais E Matemática UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE CENTRO DE CIÊNCIAS EXATAS E DA TERRA PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE CIÊNCIAS NATURAIS E MATEMÁTICA MARLENE GORETE DE ARAÚJO ABU JA'FAR MUHAMMAD IBN MUSA AL-KHWARIZMI: CONTRIBUIÇÕES DA ÁLGEBRA PARA O ENSINO NATAL – RN 2019 MARLENE GORETE DE ARAÚJO ABU JA'FAR MUHAMMAD IBN MUSA AL-KHWARIZMI: CONTRIBUIÇÕES DA ÁLGEBRA PARA O ENSINO Dissertação apresentada ao curso de Pós- Graduação em Ensino de Ciências Naturais e Matemática da Universidade Federal do Rio Grande do Norte, como requisito parcial à obtenção do título de Mestre em Ensino de Ciências Naturais e Matemática. Orientadora: Profª Dra. Bernadete Barbosa Morey. Coorientador: Prof° Fabian Arley Posada Balvin. NATAL – RN 2019 Universidade Federal do Rio Grande do Norte - UFRN Sistema de Bibliotecas - SISBI Catalogação de Publicação na Fonte. UFRN - Biblioteca Central Zila Mamede Araújo, Marlene Gorete de. Abu ja'far muhammad ibn musa al-khwarizmi: contribuições da álgebra para o ensino / Marlene Gorete de Araújo. - 2019. 141f.: il. Dissertação (Mestrado) - Universidade Federal do Rio Grande do Norte, Centro de ciências exatas e da terra, Programa de pós- graduação em ensino de ciências naturais e matemática, Natal, 2019. Orientador: Dra. Bernadete Barbosa Morey. Coorientador: Dr. Fabian Arley Posada Balvin. 1. Ensino de Álgebra - Dissertação. 2. Matemática islâmica medieval - Dissertação. 3. História e Ensino de Matemática - Dissertação. I. Morey, Bernadete Barbosa. II. Balvin, Fabian Arley Posada. III. Título. RN/UF/BCZM CDU 512 Elaborado por Raimundo Muniz de Oliveira - CRB-15/429 MARLENE GORETE DE ARAÚJO A ÁLGEBRA DE ABU JA'FAR MUHAMMAD IBN MUSA AL-KHWARIZMI: CONTRIBUIÇÕES PARA O ENSINO Dissertação apresentada ao curso de Pós- Graduação em Ensino de Ciências Naturais e Matemática da Universidade Federal do Rio Grande do Norte, como requisito parcial à obtenção do título de Mestre em Ensino de Ciências Naturais e Matemática. Orientadora: Profª Dra. Bernadete Barbosa Morey. Coorientador: Prof° Fabian Arley Posada Balvin. Banca Examinadora ___________________________________________________________________ Profª Dra. Bernadete Barbosa Morey (Orientadora) - Presidente ___________________________________________________________________ Profa. Dra. Giselle Costa de Sousa – examinador interno ___________________________________________________________________ Profa. Dra. Ana Carolina Costa Pereira (UECE) – Examinador externo ___________________________________________________________________ Prof. Dr. Fabian Arley Balvin Posada – Co-orientador AGRADECIMENTOS Agradeço a Deus, por todas as vezes que Ele me deu força quando pensei em desistir ou redefinir meus objetivos. A meus pais e demais familiares, pela educação e conselhos que me foram dados. À minha orientadora, professora doutora Bernadete Morey, pela acolhida e ensinamentos. Confesso que sem as orientações que me foram prestadas, não teria conseguido chegar até onde estou. Aqui lhe exprimo a minha gratidão! Ao meu companheiro de todas as horas, Ramon Costa, que divide comigo todas as dificuldades e felicidades da vida acadêmica e pessoal. A todos os meus amigos que entenderam a minha ausência durante esses últimos tempos, ouviram todas as minhas inquietações e me incentivaram a seguir adiante. A todos os amigos do Programa de Pós-graduação em Ensino de Ciências Naturais e Matemática (PPGECNM), que dividiram comigo o peso das disciplinas e da dissertação e as angustias e as alegrias vividas durante esse período. A todos os orientandos da professora Bernadete Morey, por todos os conhecimentos compartilhados em nosso grupo de estudo. A todos os professores do PPGECNM, pelos ensinamentos durante o mestrado. Aos professores que participaram da banca de qualificação e defesa: Dra. Giselle Costa de Sousa, Dra. Ana Carolina Costa Pereira e Dr. Fabian Arley Balvin Posada, cujas contribuições foram primordiais para a conclusão desse trabalho. A todos, mesmo àqueles que por ventura não tenham sido registrados aqui, meus sinceros agradecimentos. RESUMO Reconhecendo que a matemática islâmica medieval produziu diversos nomes de estudiosos de primeira grandeza, a presente pesquisa tem como foco de estudo a obra intitulada Al-Kitāb al-mukhtaṣar fī ḥisāb al-jabr wal-muqābala (Livro de Restauração e Balanceamento), mais conhecida como a Álgebra de al-Khwarizmi, escrita pelo eminente sábio islâmico medieval, Abu Ja'far Muhammad ibn Musa al- Khwarizmi. Desse modo, o objetivo dessa pesquisa foi conhecer as potencialidades histórico-pedagógicas do o Tratado de algébrico de al-Khwarizmi (Álgebra de al- Khwarizmi) tendo como suporte teórico-metodológico a Teoria da Objetivação. Essa é uma pesquisa histórica bibliográfica e documental, de natureza qualitativa, com algumas pinceladas da pesquisa-ação. No decorrer da pesquisa foi elaborado um material instrucional sob a forma de e-book que foi pensado para satisfazer a exigência de produto educacional no curso de Mestrado Profissional. Na presente pesquisa, o e-book desempenha o papel de material didático de auxílio aos professores de matemática que queiram se familiarizar com a obra Álgebra de al- Khwarizmi. Na apresentação da Álgebra de al-Khwarizmi aos professores, optamos por privilegiar os aspectos formais, externos e físicos da obra, por pensar que a familiaridade com tais aspectos da obra citada, pode potencializar, por parte dos professores, futuramente, uma imersão mais profunda no conteúdo histórico- matemático da obra. Desse modo, concluímos que a Álgebra de al-Khwarizmi é um tratado consideravelmente importante para o desenvolvimento da álgebra. Além disso, esse tratado apresenta um grande potencial para a formação docente, não somente quanto aos aspectos matemáticos, mas também quanto aos aspectos históricos, sociais e políticos. Palavras-chave: Ensino de Álgebra. Matemática islâmica medieval. História e Ensino de Matemática. ABSTRACT Recognizing that medieval Islamic mathematics has produced several names of first- rate scholars, this research focuses on the well-known work entitled Al-Kitāb al- mukhtaṣar fī ḥisāb al-jabr wal-muqābala (Book of Restoration and Balancing) like al- Khwarizmi Algebra, written by the eminent medieval Islamic sage, Abu Ja'far Muhammad ibn Musa al-Khwarizmi. Thus, the objective of this research was to know the historical-pedagogical potentialities of al-Khwarizmi's Algebraic Treaty (Algebra de al-Khwarizmi) having as theoretical and methodological support the Objection Theory. This is a qualitative bibliographical and documentary historical research, with some brushstrokes of action research. In the course of the research an instructional material was prepared in the form of e-book that was designed to satisfy the educational product requirement in the Professional Master course. In this research, the ebook plays the role of teaching aids to mathematics teachers who want to become familiar with al- Khwarizmi's Algebra. In the presentation of al-Khwarizmi's Algebra to the teachers, we chose to privilege the formal, external and physical aspects of the work, thinking that the familiarity with such aspects of the mentioned work may, in the future, enhance the teachers' deeper immersion. in the historical-mathematical content of the work. Thus we conclude that al-Khwarizmi Algebra is a considerably important treatise for the development of algebra. Moreover, this treatise has great potential for teacher education, not only in mathematical aspects, but also in historical, social and political aspects. Keywords: Algebra teaching. Medieval Islamic Mathematics. History and Teaching of Mathematics. LISTA DE FIGURAS Figura 1 - Península Arábica ..................................................................................... 24 Figura 2 - Selo emitido pela União Soviética em 6 de setembro de 1983 ................. 41 Figura 3 - Página do Livro de Restauração e Balanceamento .................................. 45 Figura 4 - Mapa atribuído aos geógrafos do califa al-Mamun ................................... 47 Figura 5 - Capa do El libro del Álgebra: Mohammed ibn-Musa al-Jwarizmi .............. 55 Figura 6 - Tratado algébrico de al-Khwarizmi em árabe e em espanhol ................... 56 Figura 7 – Momento de discussão da tarefa 1 .......................................................... 93 Figura 8 – Utilização de mapa para apresentação do mundo islâmico medieval ...... 94 Figura 9 – Conversa sobre a Álgebra de al-Khwarizmi ............................................. 96 Figura 10 – Sequências de imagens que apresentam o labor conjunto entre participantes .............................................................................................................. 98 LISTA DE MAPAS Mapa 1 - Conquistas do Islã até 632 ......................................................................... 27 Mapa 2 - Expansão do Islã até 750 ........................................................................... 28 Mapa 3 - Expansão do Islã durante 750 a 1700 ........................................................ 30 Mapa 4 - Khwarezm, localizado em Uzbequistão ...................................................... 42 LISTA DE QUADROS Quadro 1 – Percurso Metodológico da pesquisa ....................................................... 21 Quadro 2 - Síntese das conquistas do mundo islâmico ............................................ 31 Quadro 3 - Sumário do Tratado algébrico de al-Khwarizmi ....................................... 59 Quadro 4 - Os seis tipos de equações polinomiais propostas por al-Khwarizmi ....... 64 Quadro
Recommended publications
  • A Diluted Al-Karaji in Abbacus Mathematics Actes Du 10^ Colloque Maghrebin Sur I’Histoire Des Mathematiques Arabes
    Actes du 10 Colloque Maghrebin sur THistoire des Mathematiques Arabes (Tunis, 29-30-31 mai 2010) Publications de 1’Association Tunisienne des Sciences Mathematiques Actes du 10^ colloque maghrebin sur I’histoire des mathematiques arabes A diluted al-Karajl in Abbacus Mathematics Jens H0yrup^ In several preceding Maghreb colloques I have argued, from varying perspectives, that the algebra of the Italian abbacus school was inspired neither from Latin algebraic writings (the translations of al-Khw5rizmT and the Liber abbaci) nor directly from authors like al-KhwarizmT, Abu Kamil and al-KarajT; instead, its root in the Arabic world is a level of algebra Actes du 10*“® Colloque Maghrebin (probably coupled to mu^Smalat mathematics) which until now has not been scrutinized systematically. sur THistoire des Mathematiques Going beyond this negative characterization I shall argue on the present Arabes occasion that abbacus algebra received indirect inspiration from al-KarajT. As it will turn out, however, this inspiration is consistently strongly diluted, (Tunis, 29-30-31 mai 2010) and certainly indirect. 1. Al-KhwSrizml, Abu Kamil and al-KarajI Let us briefly summarize the relevant aspects of what distinguishes al-KarajT from his algebraic predecessors. Firstly, there is the sequence of algebraic powers. Al-KhwarizmT [ed., trans. Rashed 2007], as is well known, deals with three powers only: census (to adopt the translation which will fit our coming discussion of abbacus algebra), roots, and simple numbers. So do ibn Turk [ed., trans. Say_l_ 1962] and Thabit ibn Qurrah [ed., trans. Luckey 1941] in their presentation of proofs for the basic mixed cases, which indeed involve only these same powers.
    [Show full text]
  • Mathematicians
    MATHEMATICIANS [MATHEMATICIANS] Authors: Oliver Knill: 2000 Literature: Started from a list of names with birthdates grabbed from mactutor in 2000. Abbe [Abbe] Abbe Ernst (1840-1909) Abel [Abel] Abel Niels Henrik (1802-1829) Norwegian mathematician. Significant contributions to algebra and anal- ysis, in particular the study of groups and series. Famous for proving the insolubility of the quintic equation at the age of 19. AbrahamMax [AbrahamMax] Abraham Max (1875-1922) Ackermann [Ackermann] Ackermann Wilhelm (1896-1962) AdamsFrank [AdamsFrank] Adams J Frank (1930-1989) Adams [Adams] Adams John Couch (1819-1892) Adelard [Adelard] Adelard of Bath (1075-1160) Adler [Adler] Adler August (1863-1923) Adrain [Adrain] Adrain Robert (1775-1843) Aepinus [Aepinus] Aepinus Franz (1724-1802) Agnesi [Agnesi] Agnesi Maria (1718-1799) Ahlfors [Ahlfors] Ahlfors Lars (1907-1996) Finnish mathematician working in complex analysis, was also professor at Harvard from 1946, retiring in 1977. Ahlfors won both the Fields medal in 1936 and the Wolf prize in 1981. Ahmes [Ahmes] Ahmes (1680BC-1620BC) Aida [Aida] Aida Yasuaki (1747-1817) Aiken [Aiken] Aiken Howard (1900-1973) Airy [Airy] Airy George (1801-1892) Aitken [Aitken] Aitken Alec (1895-1967) Ajima [Ajima] Ajima Naonobu (1732-1798) Akhiezer [Akhiezer] Akhiezer Naum Ilich (1901-1980) Albanese [Albanese] Albanese Giacomo (1890-1948) Albert [Albert] Albert of Saxony (1316-1390) AlbertAbraham [AlbertAbraham] Albert A Adrian (1905-1972) Alberti [Alberti] Alberti Leone (1404-1472) Albertus [Albertus] Albertus Magnus
    [Show full text]
  • Adam and Seth in Arabic Medieval Literature: The
    ARAM, 22 (2010) 509-547. doi: 10.2143/ARAM.22.0.2131052 ADAM AND SETH IN ARABIC MEDIEVAL LITERATURE: THE MANDAEAN CONNECTIONS IN AL-MUBASHSHIR IBN FATIK’S CHOICEST MAXIMS (11TH C.) AND SHAMS AL-DIN AL-SHAHRAZURI AL-ISHRAQI’S HISTORY OF THE PHILOSOPHERS (13TH C.)1 Dr. EMILY COTTRELL (Leiden University) Abstract In the middle of the thirteenth century, Shams al-Din al-Shahrazuri al-Ishraqi (d. between 1287 and 1304) wrote an Arabic history of philosophy entitled Nuzhat al-Arwah wa Raw∂at al-AfraÌ. Using some older materials (mainly Ibn Nadim; the ∑iwan al-Ìikma, and al-Mubashshir ibn Fatik), he considers the ‘Modern philosophers’ (ninth-thirteenth c.) to be the heirs of the Ancients, and collects for his demonstration the stories of the ancient sages and scientists, from Adam to Proclus as well as the biographical and bibliographical details of some ninety modern philosophers. Two interesting chapters on Adam and Seth have not been studied until this day, though they give some rare – if cursory – historical information on the Mandaeans, as was available to al-Shahrazuri al-Ishraqi in the thirteenth century. We will discuss the peculiar historiography adopted by Shahrazuri, and show the complexity of a source he used, namely al-Mubashshir ibn Fatik’s chapter on Seth, which betray genuine Mandaean elements. The Near and Middle East were the cradle of a number of legends in which Adam and Seth figure. They are presented as forefathers, prophets, spiritual beings or hypostases emanating from higher beings or created by their will. In this world of multi-millenary literacy, the transmission of texts often defied any geographical boundaries.
    [Show full text]
  • In. ^Ifil Fiegree in PNILOSOPNY
    ISLAMIC PHILOSOPHY OF SCIENCE: A CRITICAL STUDY O F HOSSAIN NASR Dis««rtation Submitted TO THE Aiigarh Muslim University, Aligarh for the a^ar d of in. ^Ifil fiegree IN PNILOSOPNY BY SHBIKH ARJBD Abl Under the Kind Supervision of PROF. S. WAHEED AKHTAR Cbiimwa, D«ptt. ol PhiloMphy. DEPARTMENT OF PHILOSOPHY ALIGARH IWIUSLIIM UNIVERSITY ALIGARH 1993 nmiH DS2464 gg®g@eg^^@@@g@@€'@@@@gl| " 0 3 9 H ^ ? S f I O ( D .'^ ••• ¥4 H ,. f f 3« K &^: 3 * 9 m H m «< K t c * - ft .1 D i f m e Q > i j 8"' r E > H I > 5 C I- 115m Vi\ ?- 2 S? 1 i' C £ O H Tl < ACKNOWLEDGEMENT In the name of Allah« the Merciful and the Compassionate. It gives me great pleasure to thanks my kind hearted supervisor Prof. S. Waheed Akhtar, Chairman, Department of Philosophy, who guided me to complete this work. In spite of his multifarious intellectual activities, he gave me valuable time and encouraged me from time to time for this work. Not only he is a philosopher but also a man of literature and sugge'sted me such kind of topic. Without his careful guidance this work could not be completed in proper time. I am indebted to my parents, SK Samser All and Mrs. AJema Khatun and also thankful to my uncle Dr. Sheikh Amjad Ali for encouraging me in research. I am also thankful to my teachers in the department of Philosophy, Dr. M. Rafique, Dr. Tasaduque Hussain, Mr. Naushad, Mr. Muquim and Dr. Sayed.
    [Show full text]
  • Arithmetical Proofs in Arabic Algebra Jeffery A
    This article is published in: Ezzaim Laabid, ed., Actes du 12è Colloque Maghrébin sur l'Histoire des Mathématiques Arabes: Marrakech, 26-27-28 mai 2016. Marrakech: École Normale Supérieure 2018, pp 215-238. Arithmetical proofs in Arabic algebra Jeffery A. Oaks1 1. Introduction Much attention has been paid by historians of Arabic mathematics to the proofs by geometry of the rules for solving quadratic equations. The earliest Arabic books on algebra give geometric proofs, and many later algebraists introduced innovations and variations on them. The most cited authors in this story are al-Khwārizmī, Ibn Turk, Abū Kāmil, Thābit ibn Qurra, al-Karajī, al- Samawʾal, al-Khayyām, and Sharaf al-Dīn al-Ṭūsī.2 What we lack in the literature are discussions, or even an acknowledgement, of the shift in some authors beginning in the eleventh century to give these rules some kind of foundation in arithmetic. Al-Karajī is the earliest known algebraist to move away from geometric proof, and later we see arithmetical arguments justifying the rules for solving equations in Ibn al-Yāsamīn, Ibn al-Bannāʾ, Ibn al-Hāʾim, and al-Fārisī. In this article I review the arithmetical proofs of these five authors. There were certainly other algebraists who took a numerical approach to proving the rules of algebra, and hopefully this article will motivate others to add to the discussion. To remind readers, the powers of the unknown in Arabic algebra were given individual names. The first degree unknown, akin to our �, was called a shayʾ (thing) or jidhr (root), the second degree unknown (like our �") was called a māl (sum of money),3 and the third degree unknown (like our �#) was named a kaʿb (cube).
    [Show full text]
  • The History of Arabic Sciences: a Selected Bibliography
    THE HISTORY OF ARABIC SCIENCES: A SELECTED BIBLIOGRAPHY Mohamed ABATTOUY Fez University Max Planck Institut für Wissenschaftsgeschichte, Berlin A first version of this bibliography was presented to the Group Frühe Neuzeit (Max Planck Institute for History of Science, Berlin) in April 1996. I revised and expanded it during a stay of research in MPIWG during the summer 1996 and in Fez (november 1996). During the Workshop Experience and Knowledge Structures in Arabic and Latin Sciences, held in the Max Planck Institute for the History of Science in Berlin on December 16-17, 1996, a limited number of copies of the present Bibliography was already distributed. Finally, I express my gratitude to Paul Weinig (Berlin) for valuable advice and for proofreading. PREFACE The principal sources for the history of Arabic and Islamic sciences are of course original works written mainly in Arabic between the VIIIth and the XVIth centuries, for the most part. A great part of this scientific material is still in original manuscripts, but many texts had been edited since the XIXth century, and in many cases translated to European languages. In the case of sciences as astronomy and mechanics, instruments and mechanical devices still extant and preserved in museums throughout the world bring important informations. A total of several thousands of mathematical, astronomical, physical, alchemical, biologico-medical manuscripts survived. They are written mainly in Arabic, but some are in Persian and Turkish. The main libraries in which they are preserved are those in the Arabic World: Cairo, Damascus, Tunis, Algiers, Rabat ... as well as in private collections. Beside this material in the Arabic countries, the Deutsche Staatsbibliothek in Berlin, the Biblioteca del Escorial near Madrid, the British Museum and the Bodleian Library in England, the Bibliothèque Nationale in Paris, the Süleymaniye and Topkapi Libraries in Istanbul, the National Libraries in Iran, India, Pakistan..
    [Show full text]
  • Las Matemáticas Del Islam
    LAS MATEMATICAS DEL ISLAM Esther Mora Meneses LAS MATEMÁTICAS DEL ISLAM. Trabajo realizado por: Esther Mora Meneses. E.U.I.T.A Explotaciones. 3 LAS MATEMATICAS DEL ISLAM Esther Mora Meneses Curso 2000 / 2001. 1. ANTECEDENTES HISTORICOS Por la época en que Brahmagupta escribía sus tratados matemáticos ya se había derrumbado el imperio Sabeo de la Arabia Felix, y la península arábiga se encontraba sumida en una profunda crisis. Arabia estaba habitada entonces en su mayor parte por nómadas del desiertos, conocidos con el nombre de beduinos, que no sabían leer ni escribir, y en este marco sociopolítico surgió el profeta Mahoma , nacido en la Meca en el año 570 d.c. Mahoma fué el fundador del Islam, religión que se extendió en poco tiempo por toda Arabia y que tiene como dogmas la creencia en un Dios único y en una vida futura, en la resurrección y en el juicio final. La primera parte de su vida, fué la de un ciudadano medio que vive en una ciudad de 25.000 habitantes. A los 40 años empezó a predicar, primero en un pequeño grupo de fieles, después a la población en general, sentando así las bases de la religión islámica. En el año 622 d.C, su vida se vió amenazada por un complot, lo que le obligó a trasladarse a Yatrib, más tarde denominada Medina. Esta “huida”, conocida como la Hégira , señala el comienzo de la Era Mahometana, que iba a ejercer durante siglos una poderosa influencia en el desasrrollo de las matemáticas. La unidad de la civilización islámica se basaba mucho en la religión de Mahoma y en las actividades económicas que en una hegemonía política real.
    [Show full text]
  • Islamic Mathematics
    Islamic mathematics Bibliography of Mathematics in Medieval Islamic Civilization Version 13 January 1999. This bibliography is a revised, enlarged and updated version of the bibliography on Islamic mathematics by Richard Lorch on pp. 65-86 of Joseph W. Dauben's The History of Mathematics from Antiquity to the Present: A Selective Bibliography, New York and London: Garland, 1985. This bibliography of Islamic mathematics will appear as a chapter in the updated (1999?) version of Dauben's book which will be made available as a CD-Rom. Reactions and suggestions are very welcome, and can be sent to [email protected]. In this preliminary form, no attention has been paid to diacritical marks in Arabic names. The items in the bibliography have been numbered *1, *2, ... *122, *122a, *122b, *123 etc. and many cross-references have been provided. General Introduction Introductory Works Bibliographies and Handbooks Illustrated Works Texts and Commentaries (Specific Authors in Chronological Order) Studies on Specific Subjects Transmission of Mathematics Mathematics in Specific Areas in the Islamic World Arithmetic Irrational Magnitudes Algebra Number Theory, Indeterminate Equations and Magic Squares Geometry Trigonometry Timekeeping Interpolation, Tables, Analysis of Tables Cultural Context: Islamic Aspects Mathematical Astronomy and Astrology Instruments Mathematics, Art and Architecture Optics Geography Reprinted Works and Collections of Articles General Introduction file:///P|/Igitur%20archief_repository/PR&beleid%20Ig...bsites/HOGENDIJK/hogendijk_00_islamic_mathematics.htm (1 van 33)12-2-2007 14:36:27 Islamic mathematics Islamic mathematics and Arabic mathematics are modern historical terms for the mathematical sciences in Islamic civilization from the beginning of Islam (A.D. 622) until the 17th century.
    [Show full text]
  • Islamic Mathematics
    Islamic Mathematics Elizabeth Rogers MATH 390: Islamic Mathematics Supervised by Professor George Francis University of Illinois at Urbana-Champaign August 2008 1 0.1 Abstract This project will provide a summary of the transmission of Greek mathe- matics through the Islamic world, the resulting development of algebra by Muhammad ibn Musa al-Khwarizmi, and the applications of Islamic algebra in modern mathematics through the formulation of the Fundamental Theo- rem of Algebra. In addition to this, I will attempt to address several cultural issues surrounding the development of algebra by Persian mathematicians and the transmission of Greek mathematics through Islamic mathematicians. These cultural issues include the following questions: Why was the geometry of Euclid transmitted verbatim while algebra was created and innovated by Muslim mathematicians? Why didn't the Persian mathematicians expand or invent new theorems or proofs, though they preserved the definition-theorem-proof model for ge- ometry? In addition, why did the definition-theorem-proof model not carry over from Greek mathematics (such as geometry) to algebra? Why were most of the leading mathematicians, in this time period, Mus- lim? In addition, why were there no Jewish mathematicians until recently? Why were there no Orthodox or Arab Christian mathematicians? 0.2 Arabic Names and Transliteration Arabic names are probably unfamiliar to many readers, so a note on how to read Arabic names may be helpful. A child of a Muslim family usually receives a first name ('ism), followed by the phrase \son of ··· "(ibn ··· ). For example, Th¯abitibn Qurra is Th¯abit,son of Qurra. Genealogies can be combined; for example, Ibr¯ah¯ımibn Sin¯anibn Th¯abitibn Qurra means that Ibr¯ah¯ımis the son of Sin¯an,grandson of Th¯abit,and great-grandson of Qurra.
    [Show full text]
  • Mathematics 153–001, Spring 2010, Examination 2 Answer
    NAME: Mathematics 153{001, Spring 2010, Examination 2 Answer Key 1 1. [15 points] If L is the secant line to the parabola y = x2 which goes through the points (1; 1) and (4; 16), find the point (c; c2) on the parabola at which the tangent line is parallel to L. | Recall that two lines are parallel if their slopes are equal. SOLUTION The slope of the secant line is just 16 − 1 15 = = 5 4 − 1 3 while the slope of the tangent line at (c; c2) is 2c. The latter will be parallel to the secant line if and only if 2c = 5, or equivalently if and only if c = 5=2. 2 2. [20 points] Suppose we are given two closed regions A and B in the first quadrant of the coordinate plane such that B is the result of moving A vertically upwards by k units. Suppose that the centroid of A has coordinates (x; y). Let S and T be the solids of revolution obtained by rotating A and B (respectively) about the x-axis. Using the Pappus Centroid Theorem, find the ratio Volume(T )=Volume(S). [Hint: What are the coordinates for the centroid of B?] SOLUTION The centroid of B is (x; y + k). Therefore by the Pappus Centroid Theorem we have Volume(S) = Area(A) · 2πy ; Volume(T ) = Area(B) · 2π(y + k) : Since B is obtained from A by vertical translation, the areas of B and A are equal. If we substitute this into the formula for the volume of T and take ratios, this implies that Volume(T ) Area(A) · 2π(y + k) y + k = = : Volume(S) Area(A) · 2πy y 3 3.
    [Show full text]
  • Arapski Temeljiˇskolske Matematike
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Zagreb Repository SVEUCILIˇ STEˇ U ZAGREBU PRIRODOSLOVNO–MATEMATICKIˇ FAKULTET MATEMATICKIˇ ODSJEK Sebastijan Kocijan ARAPSKI TEMELJI SKOLSKEˇ MATEMATIKE Diplomski rad Voditelj rada: doc. dr. sc. Franka Miriam Brueckler Zagreb, 2016. Ovaj diplomski rad obranjen je dana pred ispitnim povjerenstvom u sastavu: 1. , predsjednik 2. , clanˇ 3. , clanˇ Povjerenstvo je rad ocijenilo ocjenom . Potpisi clanovaˇ povjerenstva: 1. 2. 3. Hvala od srca mojoj obitelji na podrˇscii ˇstosu mi omogu´cilida strudiram ono ˇstovolim, te hvala mojoj djevojci na potpori. Zahvale mentorici zbog ukazanog razumijevanja i pomo´ci. Sadrzajˇ Sadrzajˇ iv Uvod 2 1 Arapske brojke 3 2 Arapski matematicariˇ 6 2.1 Al-Khwarizmi . 6 2.2 Thabit ibn Qurra . 14 2.3 Al-Battani . 17 2.4 Abu‘l-Wafa . 20 2.5 Al-Karaji . 25 2.6 Al-Haytham . 26 2.7 Al-Biruni . 29 2.8 Omar Khayyam . 32 2.9 Al-Tusi . 36 2.10 Al-Kashi . 39 2.11 Ostali znacajniˇ arapski matematicariˇ . 42 3 Usporedba arapskih matematickihˇ doprinosa i skolskihˇ programa matema- tike 48 Bibliografija 52 iv Uvod Opce´ je poznato da je Europa vecinu´ starogrckihˇ matematickihˇ otkrica´ saznala upravo preko Arapa. Starogrckaˇ matematika je u Europu stigla zaobilaznim putem preko Spanjolskeˇ koja je bila u sastavu arapskog kalifata. Takoder, mnoga starogrckaˇ djela sacuvanaˇ su samo u arapskom prijevodu. No, iako mnogi smatraju da su doprinosi arapskog podrucjaˇ mate- matici samo prevodenje i prijenos podataka koje su ranije otkrili stari Grci ili Indijci, to nije tocno.ˇ Dapace,ˇ danasnjaˇ matematika je mnogo slicnijaˇ arapskoj nego starogrckoj.ˇ Nakon stoˇ je 622.
    [Show full text]
  • E Se O Berço Da Álgebra Fosse Islâmico, Ela Seria Terrorista?
    E se o berço da Álgebra fosse islâmico, ela seria terrorista? SUMÁRIO APRESENTAÇÃO DO E-BOOK 4 RECOMENDAÇÕES DIDÁTICAS PARA USO DESSE E-BOOK 5 ESTRUTUTA DO CADERNO E OBJETIVOS 7 CAPÍTULO 1: O CONTEXTO ISLÂMICO MEDIEVAL 8 CAPÍTULO 2: O ESTUDIOSO ISLÂMICO AL-KHWARIZMI 17 CAPÍTULO 3: FOLHEANDO O LIVRO “ÁLGEBRA” DE AL-KHWARIZMI 20 REFERÊNCIAS 29 4 APRESENTAÇÃO DO E-BOOK O e-book E se o berço da Álgebra fosse islâmico, ela seria terrorista? é um recurso didático desenvolvido durante o mestrado profissional do Programa de Pós- Graduação em Ensino de Ciências Naturais e Matemática (PPGECNM/CCET/UFRN), sob orientação da professora Dra. Bernadete Barbosa Morey. Esse material objetiva apresentar ao professor em formação inicial e/ou continuada o personagem histórico islâmico al-Khwarizmi, que viveu na transição dos séculos VIII-IX d. C, sua obra mais conhecida, a Álgebra, e o contexto histórico e cultural em que ele viveu e produziu sua obra. Apesar de ser relativamente fácil encontrar na internet informações sobre al- Khwarizmi, tais informações frequentemente são superficiais. Sendo assim, nosso intuito é tornar acessível ao professor um texto mais circunstanciado que dê cabo das informações sobre o contexto histórico, político e social em que viveu al-Khwarizmi, sobre o lugar onde ele produziu suas obras, assim como sobre sua obra matemática propriamente dita. O e-book foi organizado em três partes, sendo que a primeira parte destinada a apresentação do contexto do mundo islâmico, a segunda destinada a apresentação do estudioso al-Khwarizmi e por fim, a terceira destinada à descrição da Álgebra de al-Khwarizmi.
    [Show full text]