The Effects of a Small Low-Head Dam on Benthic Invertebrate Communities and Particulate Organic Matter Storage in the Ilm Stream (Thuringia / Germany)

Total Page:16

File Type:pdf, Size:1020Kb

The Effects of a Small Low-Head Dam on Benthic Invertebrate Communities and Particulate Organic Matter Storage in the Ilm Stream (Thuringia / Germany) The effects of a small low-head dam on benthic invertebrate communities and particulate organic matter storage in the Ilm stream (Thuringia / Germany) Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) vorgelegt dem Rat der Biologisch-Pharmazeutischen-Fakultät der Friedrich-Schiller-Universität Jena von Jens Arle geboren am 19. Februar 1975 in Gera Jena, im Januar 2005 Contents i Table of contents Chapter 1 General introduction 1. Introduction...................................................................................................... 1 Chapter 2 The effects of a small dam on invertebrate communities and the distribution of particulate organic matter storage (POM) 2.1 Introduction...................................................................................................... 7 2.2 Methods........................................................................................................... 10 2.3 Results ............................................................................................................ 21 2.3.1 Abiotic parameters .......................................................................................... 21 2.3.2 Spatial and seasonal variability of invertebrate communities.......................... 23 2.3.3 Functional feeding group structure and community composition .................... 25 2.3.4 Pool-Riffle comparison for invertebrate community variables ......................... 26 2.3.5 Spatial and seasonal variability of particulate organic matter (POM).............. 27 2.3.6 Relationship between invertebrate community variables and POM ................ 29 2.3.7 Influence of environmental factors on invertebrate community composition... 29 2.4 Discussion....................................................................................................... 32 Chapter 3 The dam as a barrier – effects on invertebrate assemblages and downstream drift. 3.1 Introduction...................................................................................................... 41 3.2 Methods........................................................................................................... 43 3.2.1 Study part I - Invertebrate assemblages on stones......................................... 43 3.2.2 Study part II - Invertebrate downstream drift and seston transport ................. 48 3.3 Results ............................................................................................................ 51 3.3.1 Invertebrate assemblages on stones .............................................................. 51 3.3.2 Invertebrate downstream drift and seston transport........................................ 54 3.4 Discussion....................................................................................................... 57 3.4.1 Invertebrate assemblages on stones .............................................................. 57 3.4.2 Invertebrate downstream drift and seston transport........................................ 61 ii Contents Chapter 4 The effects of multiple impoundments on the longitudinal zonation of benthic invertebrates 4.1 Introduction ...................................................................................................... 65 4.2 Methods ........................................................................................................... 66 4.3 Results ............................................................................................................. 72 4.4 Discussion........................................................................................................ 76 Chapter 5 Experiments on invertebrate feeding and detritus processing 5.1 Introduction ...................................................................................................... 81 5.2 Methods ........................................................................................................... 85 5.3 Results ............................................................................................................. 94 5.3.1 Abiotic changes during the experiments .......................................................... 94 5.3.2 Survival and growth ......................................................................................... 94 5.3.3 Leaf mass loss ................................................................................................. 96 5.3.4 Amount and composition of particles generated during leaf breakdown.......... 97 5.3.5 Chemical and isotopical changes during the experiments............................... 99 5.4 Discussion........................................................................................................ 106 6. General discussion........................................................................................ 117 7. Summary / Zusammenfassung..................................................................... 127 7.1 Summary.......................................................................................................... 127 7.2 Zusammenfassung .......................................................................................... 130 8. References...................................................................................................... 135 8.1 Literature cited ................................................................................................. 135 8.2 Invertebrate identification keys ........................................................................ 154 Appendix......................................................................................................... 157 Appendix A – Chapter 2................................................................................... 158 Appendix B – Chapter 3................................................................................... 164 Appendix C – Chapter 4................................................................................... 169 Appendix D – Chapter 5................................................................................... 171 Danksagung ................................................................................................... 181 Curriculum vitae / Lebenslauf....................................................................... 183 Selbstständigkeitserklärung......................................................................... 187 Contents iii List of Tables Chapter 2 Table 2.1 Environmental characteristics of the study sites ...................................... 22 Chapter 3 Table 3.1 Major biotic variables (Minimum, Maximum, Mean ± 1 S.D.) for invertebrate assemblages and the organic content of the stones sampled ................................................................................................... 51 Table 3.2 Physical and chemical conditions measured during drift sampling.......... 54 Table 3.3 Biotic and abiotic drift variables (Mean ± 1 S.D.) measured at the sample sites............................................................................................. 56 Chapter 4 Table 4.1 Physical, chemical, geographical and geomorphological characteristics at the sampling stations along the Ilm profile........................................... 67 Table 4.2 The four categories used to rank the invertebrates by their abundance.. 68 Table 4.3 The eight categories, their codes and rank scores used for analysis ...... 69 Table 4.4 The seven flow preference categories, their codes and a description of the categories used for analysis ................................................................ 71 Table 4.5 The eight habitat-preference categories used in this study ..................... 71 Table 4.6 Invertebrate taxon richness at seven sampling stations along the longitudinal profile of the Ilm during 1992-93 ........................................... 72 Chapter 5 Table 5.1 The leaf material fractions analyzed in this study .................................... 91 Table 5.2 Survival (%) of G.pulex and B. rhodani in the experiments ..................... 94 Table 5.3 The amount of particles generated during breakdown experiments relative to leaf mass initially added and relative to leaf mass loss........... 98 Table 5.4 Chemical and isotopical composition of the leaf materials and the changes observed during leaching experiments...................................... 99 iv Contents List of Figures Chapter 2 Figure 2.1 Maps of Germany, Thuringia and a schematic view to the study sites (SS1 to SS4), the dam is located within the town Stadtilm (11°05´ E, 50°46´ N, 360 m a.s.l.)........................................................................... 10 Figure 2.2 Map of the Ilm section, containing the four study sites .......................... 11 Figure 2.3 A picture of the dam investigated in this study. (View from the site immediately downstream)...................................................................... 12 Figure 2.4 Discharge at the permanent gauge Gräfinau-Angstedt 10 km up- stream from the study area from 1. January 2000 to 30. October 2002....................................................................................................... 13 Figure 2.5 Schematic view of the Hess-Sampler used in this study ....................... 16 Figure 2.6 Means (± 1 S.D.) for invertebrate density (A), biomass (B), Simpson`s index of diversity (C), expected taxon richness (D), number of taxa (E) and number of invertebrate eggs (F) during four seasons at the four sampling sites .......................................................
Recommended publications
  • Thüringer Pfarrerbuch Band 10: Thüringer Evangelische Kirche 1921
    THÜRINGEN 1920 – 2010 SERIES 250 1 Friedrich Meinhof 01.04.2015 Thüringer Pfarrerbuch Band 10: Thüringer evangelische Kirche 1921 ‐ 1948 und Evangelisch‐Lutherische Kirche in Thüringen 1948 ‐ 2008 Entwurf Zusammengestellt von Friedrich Meinhof 2015 Heilbad Heiligenstadt Series pastorum THÜRINGEN 1920 – 2010 SERIES 250 2 Friedrich Meinhof 01.04.2015 Abtsbessingen (S‐S) 1914 ‐ 1924 Hesse, Walter Karl Otto 1925 ‐ 1935 Petrenz, Hans‐Dietrich Otto Wilhelm, Pf. 1935 (1936) – 1953 Mascher, Werner, Hpf., Pf. 1953 – 1954 Wondraschek, Felix Julius, komm. Verw. 1954 Kästner, Ludwig, Pf. (in Winterstein), Vertr. 1954 (1957) – 1971 Lenski, Heinz, Hpr., Hpf., Pf. 1980 (1982) – 1985 Herbert, Bernd Ernst Erich, komm. Verw., Pfarrvik. 1988 Willer, Christoph 1990 ‐ Lenski, Hartmut, Pf. (in Allmenhausen) 1993 (1995) – 2003 Balling geb. Amling, Beate, Vik., Pf. z.A. Alkersleben (S‐S) 1913 ‐ 1928 Meyer, Franz Simon, Pf. Allendorf b. Königsee (SR) 1886 – 1927 Otto, Karl Heinrich Adolf, Pf. 1928 Triebel, Johannes Karl Ernst, Hpf. 1928 – 1933 Maser, Berthold Philipp Heinrich, Hpf., Pf. 1932 (1935) – 1948 Braecklein, Ingo (u. Schwarzburg) (1939 – 1945 Kriegsdienst) 1941 – 1943 Hansberg, Friedrich Franz, Hpf. (1940 – 1945 Kriegsdienst) 1949 (1950, 1952) – 1963 Bär, Karl, Pf. i. W., komm. Verw., Pf., Opf. 1963 Modersohn, Hans‐Werner, Vik. 1963 (1966) – 1975 Söffing, Horst, Vik., Pf. 1976 – 2006 Hassenstein, Karl‐Helmut, 1993 Opf.(in Döbrischau) Allmenhausen (S‐S) 1919 (1920) ‐ 1927 Simon, Johannes Wilhelm Gottfried 1926 (1927) ‐ 1931 Müller, Friedrich Heinrich Gottfried, Vik., Pf. (Allmenhausen‐ Billeben) 1932 – 1936 Wulff‐Woesten, Alfred Eberhard Harry, Lehrvik., Hpr., Hpf. 1936 (1939) – 1942 Pfannstiel, Paul Arthur, Hpf., Pf. (1940 ‐ 1942 Kriegsdienst) 1943 – 1945 Schoeme, Rolf Waldemar Friedrich, Pf.
    [Show full text]
  • Wo 2008/134510 A2
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (43) International Publication Date (10) International Publication Number 6 November 2008 (06.11.2008) PCT WO 2008/134510 A2 (51) International Patent Classification: (74) Agents: WOLIN, Harris, A. et al; Myers Wolin LLC, AOlN 45/00 (2006.01) AOlN 43/04 (2006.01) 100 Headquarters Plaza, North Tower, 6th Floor, Morris- AOlN 65/00 (2006.01) town, NJ 07960-6834 (US). (21) International Application Number: (81) Designated States (unless otherwise indicated, for every PCT/US2008/061577 kind of national protection available): AE, AG, AL, AM, AO, AT,AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, (22) International Filing Date: 25 April 2008 (25.04.2008) CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FT, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, (25) Filing Language: English IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, (26) Publication Language: English MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, (30) Priority Data: SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, 11/740,275 25 April 2007 (25.04.2007) US ZA, ZM, ZW (71) Applicant (for all designated States except US): DICTUC (84) Designated States (unless otherwise indicated, for every S.A. [CUCL]; Rut 96.691.330-4, Avda Vicuna Mackenna kind of regional protection available): ARIPO (BW, GH, 4860, Macul, Santiago, 7820436 (CL).
    [Show full text]
  • Amtsblatt Vgem
    Amtsblatt VGem. Mellingen - 1 - 06. Ausgabe, 01. Mai 2012 AMTSBLATT Verwaltungsgemeinschaft Mellingen Gemeinde Journal 20. Jahrg. • kostenl. in ca. 3.300 Haushalte Der Geltungsbereich umfasst die Mitgliedsgemeinden: Buchfart • Döbritschen / Vollradisroda • Frankendorf • Großschwabhausen / Hohlstedt / Kötschau • Hammerstedt • Hetschburg • Kapellendorf • Kiliansroda • Kleinschwabhausen • Lehnstedt • Magdala / Göttern / Maina / Ottstedt • Mechelroda / Linda • Mellingen / Köttendorf • Oettern • Umpferstedt • Vollersroda • Wiegendorf / Schwabsdorf Öffnungszeiten der Verwaltungsgemeinschaft Unter folgenden Nummern sind unsere Ämter zu erreichen: Öffnungszeiten: Vorsitzende (03 64 53) 8 16 12 Dienstag 10:00 - 12:00 Uhr und 13:00 - 18:00 Uhr Schreibbüro (03 64 53) 8 03 50 Donnerstag 10:00 - 12:00 Uhr und 13:00 - 15:30 Uhr Standesamt (03 64 53) 8 16 16 Freitag 10:00 - 11:30 Uhr Meldeamt (03 64 53) 8 07 28 Kämmerei (03 64 53) 8 16 80 Sprechzeiten Bauamt / Ordnungsamt: Leiter Finanzen (03 64 53) 8 16 08 Dienstag 13:00 -18:00 Uhr u. nach telefonischer Vereinbarung Kasse (03 64 53) 8 16 81 Lohn (03 64 53) 8 16 82 Sprechzeiten Meldeamt / Standesamt: Ordnungsamt (03 64 53) 8 16 09 Montag 9:00 - 12:00 Uhr Leiter Bauamt/Ordnungsamt (03 64 53) 8 16 14 Dienstag 9:00 - 12:00 Uhr und 14:00 - 18:00 Uhr Mittwoch geschlossen Bauamt/Vorzimmer (03 64 53) 8 16 15 Donnerstag 9:00 - 12:00 Uhr und 14:00 - 15:30 Uhr Fax (03 64 53) 8 16 15 Freitag 9:00 - 11:30 Uhr Liegenschaften/Steuer (03 64 53) 8 16 13 & i Fax (03 64 53) 8 07 27 ¥ Internetadresse: www.vgem-mellingen.de Kontaktbereichsbeamter (03 64 53) 7 47 55 amtlicher Teil Verwaltungsgemeinschaft Am 18.
    [Show full text]
  • Dissertation.Pdf
    Untersuchung unterschiedlicher Flächendiskretisierungs- und Modellierungskonzepte für die hydrologische Modellierung am Beispiel Thüringer Vorfluter Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium ( Dr. rer. nat.) vorgelegt dem Rat der Chemisch-Geowissenschaftlichen Fakultät der Friedrich-Schiller-Universität Jena von Dipl. Geogr. Klaus Bongartz geboren am 04.08.1967 in Grevenbroich Gutachter 1. Prof. Dr. W.-A. Flügel 2. Prof. Dr. Ch. Schmullius Tag der öffentlichen Verteidigung: 19.12.2001 Vorwort Die vorliegende Arbeit entstand am von Herrn Prof. Dr. W.-A. Flügel geleiteten Lehrstuhl für Geoinformatik, Geohydrologie und Modellierung des Geographischen Institutes der Fried- rich-Schiller-Universität Jena. Prof. Flügel, der mich wissenschaftlich schon während meines Diploms in Bonn begleitete, verdanke ich den Anstoß zu dieser Arbeit. Er übernahm gleichzeitig die wissenschaftliche Betreuung. Mein herzlicher Dank gilt ihm für seinen unermüdlichen Einsatz bei der Beantragung des Projektes "RIVER", welches mich nach Jena führte. Ebenso möchte ich mich für sein stetes Interesse am Fortgang der Untersuchungen, den vielen wertvollen Anregungen und Diskus- sionen, sowie der Intensiven Durchsicht der Arbeit bedanken. Die zugrunde liegenden Untersuchungen wurden im Herbst 1997 im Rahmen meiner Tätig- keit im Forschungs- und Entwicklungsprojekt "RIVER" begonnen und nach 3 jähriger Arbeit zwischenzeitlich abgeschlossen. Zu diesem Zeitpunkt übernahm ich Lehrtätigkeit meines geschätzten Kollegen Olaf David, der sich zu einem fünfzehnmonatigen Forschungsauf- enthalt in die USA begab. Die Vorbereitung der Lehre nahm zunächst einen Großteil meiner Zeit in Anspruch, so dass die Fortführung der Arbeit etwas ins Hintertreffen geriet. Aufgrund der großen Unterstützung meiner Kolleginnen und Kollegen am Lehrstuhl, konnte die Arbeit trotz der Mehrfachbelastung aber dennoch fertig gestellt werden. Insbesondere möchte ich mich für die gute Arbeitsatmosphäre und die intensive Zusammenarbeit bedanken.
    [Show full text]
  • Change of Status and Name for a Hawaiian
    Published online: 11 August 2016 ISSN (online): 2376-3191 Records of the Hawaii Biological Survey for 2015. Edited by Neal L. Evenhuis. Bishop Museum Occasional Papers 118: 5 –8 (2016) Change of Status and Name for a Hawaiian Freshwater Limpet : Ancylus sharpi Sykes , 1900 , is the Invasive North American Ferrissia californica (Rowell , 1863) , Formerly Known as Ferrissia fragilis (Tryon , 1863) (Gastropoda : Planorbidae : Ancylinae) 1 CARl C. C HRISteNSeN 2 Bishop Museum, 1525 Bernice Street, Honolulu, Hawaiʻi 96817-2704, USA; email: [email protected] the freshwater limpet heretofore known as Ferrissia sharpi (Sykes, 1900) was described as Ancylus sharpi from material collected on the Island of O‘ahu (Sykes 1900). the dis - cussion of the species by Hubendick (1967) added little new information, but by the end of the 20th century it had been reported from the islands of Kauaʻi and Hawaiʻi in addition to its type locality (Cowie et al. 1995; Cowie 1997). Recent surveys of Hawaiian stream fauna have recorded it from numerous localities on those islands and have added the islands of Moloka‘i and Maui to its known range within the state of Hawaiʻi (englund & Godwin 2002; englund & Preston 2002; Anthony et al . 2004; Brasher et al. 2004; Parham et al . 2008). Ferrissia sharpi has been a cryptogenic species in the Hawaiian fauna as its status as native or introduced has been unclear. Most recent authors have regarded its status as uncertain (Cowie et al. 1995; Cowie 1997, 1998; englund & Godwin 2002; englund & Preston 2002; Ziegler 2002; Anthony et al . 2004; Brasher et al. 2004), but Parham et al.
    [Show full text]
  • Entsorgungskalender 2021
    WEIMARER LAND A - Z – 2. Blatt WEIMARER LAND A - Z – 3. Blatt 2021 Hausmüll Gelbe Säcke Abfuhr- Altpapier (PPK) 2021 Hausmüll Gelbe Säcke Abfuhr- Altpapier (PPK) SCHADSTOFFSAMMLUNG ELEKTROGERÄTE Straßen bzw. Orte Woche/Tag Woche/Tag tag Termine Straßen bzw. Orte Woche/Tag Woche/Tag tag Termine ENTSORGUNGSKALENDER SCHADSTOFFKLEINMENGENSAMMLUNG WAS IST ZU BEACHTEN: Hermstedt ungerade Mi gerade Fr Mo 11.01. 08.02. 08.03. 06.04. 03.05. 31.05. 28.06. 26.07. 23.08. 21.09. 18.10. 15.11. 13.12. Oberndorf gerade Mo gerade Fr Mi 20.01. 17.02. 17.03. 14.04. 12.05. 09.06. 07.07. 04.08. 01.09. 29.09. 27.10. 24.11. 22.12. Frühjahr und Herbst Am Abfuhrtag nur die angemeldeten Gegenstände KREIS WEIMARER LAND Herressen/Sulzbach gerade Mi gerade Fr Mi 20.01. 17.02. 17.03. 14.04. 12.05. 09.06. 07.07. 04.08. 01.09. 29.09. 27.10. 24.11. 22.12. Obernissa ungerade Fr ungerade Do Di 26.01. 23.02. 23.03. 20.04. 18.05. 15.06. 13.07. 10.08. 07.09. 05.10. 02.11. 30.11. 28.12. Bei dieser Sammlung können Sie in Ihrem Ort kostenlos in bis 6:00 Uhr unfallsicher und gut sichtbar am Grundstück/ Hetschburg gerade Mo ungerade Fr Do 07.01. 04.02. 04.03. 01.04. 29.04. 28.05. 24.06. 22.07. 19.08. 16.09. 14.10. 11.11. 09.12. Oberreißen gerade Mo ungerade Mo Mo 25.01. 22.02. 22.03. 19.04. 17.05.
    [Show full text]
  • The Effects of Artificial Illumination on Invertebrate Drift
    The effects of artificial illumination on invertebrate drift Effekten av artificiellt ljus på evertebratdrift Sandra Andersson Faculty of Health, Science and Technology Biology 15 hp Supervisor: Olle Calles Examiner: Larry Greenberg 2015-02-18 Serial number: 15:77 Abstract For the past century, humans have drastically increased the use of artificial light all over the world. This is causing many problems for other organisms. Daytime feeders extend their activity into the night, which causes an increase in predation pressure on their prey. This study focused on macroinvertebrate drift and how it is affected by artificial light. A street light was placed at a Welsh river, and drift nets were staggered across the stream. The stream was then exposed to three different light treatments: (1) the lights were on all night, (2) the lights were off all night (3) the lights were on from 20.30 to 24.00 and then turned off. The results showed that species richness was lower in the net nearest the street light when the light was on for the first part of the night. This indicated a light sensitivity in some invertebrate species in the stream. Drift abundance was lower when the light was on throughout the whole night and when the light was on for the first part of the night than when the lights were never on. This difference was found in the net furthest away from the street light. Two possible explanations for this are: (1) the statistical significance was spurious, (2) There was a local difference in species composition. Some invertebrate species are especially vulnerable to predatory fish, and the difference in drift abundance for one of the nets could have been an indication of the presence of predatory fish in the stream.
    [Show full text]
  • Goethe-Wanderweg Bergab in Das Tal Der Schwarza
    G S d t e a r n I n d f o o r t t a e f e l n M e 1 2 3 4 5 t 0 0 0 0 0 e 0 0 0 0 0 r 0 Goethe-Wanderweg 2 W e i m a r 4 6 weimar großkochberg V o l l e 8 r s r o d a B 1 u 0 c h f a r t 1 2 S 1 a 4 a l b o r n 1 6 1 8 2 0 S c h w a 2 r 2 z a N e c k 2 e 4 r o d a 2 6 G 2 8 r o ß k o c h 3 b 0 e k r m g Fotos: Uwe Germar, Barbara Neumann, Hartmut Steckert, Maik Schuck, Rasmus Schübel | Gestaltung und Karte: gudman design „… ich habe mich gestern herausgeflüchtet, bin um halb sechs zu Buchfart Hochdorf Großkochberg Wegbeschreibung Fuß von Weimar abmarschiert und war halb zehn schon hier, da alles schon verschlossen war, und sich zum Bettgehen bereitete …“ Schloss Großkochberg 4. Etappe: Diese Zeilen schrieb Johann Wolfgang von Goethe am 12. Juli Markant für Buchfart ist die Der kleine Ort Hochdorf , Thüringer Bienenprofessor in Saalborn – Schwarza 1777 in Kochberg an die verehrte Freundin Charlotte von Stein. histo rische überdachte Holz - erstmalig 1143 urkundlich ganz Deutschland bekannt (ca. 5 km) Von 1775 bis 1788 eilte der junge Dichter oft zum „Schloss hinter brücke. Nach einem Hoch - erwähnt, liegt auf einer An höhe wurde, ist 1867 im Pfarrhaus zu Saalborn wird vom Goethe - den Bergen“.
    [Show full text]
  • Impacts of Flow Releases on Invertebrate Drift and Juvenile
    IMPACTS OF FLOW RELEASES ON INVERTEBRATE DRIFT AND JUVENILE CHINOOK SALMON (ONCORHYNCHUS TSHAWYTSCHA) DIET ON THE TRINITY RIVER BELOW LEWISTON DAM By Thomas Starkey-Owens A Thesis Presented to The Faculty of Humboldt State University In Partial Fulfillment of the Requirements for the Degree Master of Science in Natural Resources: Environmental and Natural Resource Sciences Committee Membership Dr. Alison O’Dowd, Committee Chair Dr. Darren Ward, Committee Member Dr. Nicholas A. Som, Committee Member Dr. Erin Kelly, Graduate Coordinator May 2020 ABSTRACT IMPACTS OF FLOW RELEASES ON INVERTEBRATE DRIFT AND JUVENILE CHINOOK SALMON (ONCORHYNCHUS TSHAWYTSCHA) DIET ON THE TRINITY RIVER BELOW LEWISTON DAM Thomas Starkey-Owens Benthic macroinvertebrate (BMI) drift, species composition and abundance are specific to local hydrologic and habitat conditions, which can restrict or enhance availability to salmonids as a food resource. Currently, a knowledge gap exists on the Trinity River (northern California) in how flow releases from Lewiston Dam potentially impact BMI drift and feeding opportunities for juvenile salmonids. Samples of BMIs from drift, benthos, and diets of juvenile Chinook salmon (Oncorhynchus tshawytscha) were collected from two sites in the upper Trinity River February-April 2018, during stable flow conditions (~8 푚3/푠) and two increased flow conditions peaking at ~50 푚3/푠. Chironomidae (Diptera) and Baetidae (Ephemeroptera) were dominant BMI taxa in the drift, benthos and diets. Although contributions to biomass were more even across BMI taxa in the drift, biomass consumed by fish was dominated by Chironomidae and Baetidae at both study sites. BMI taxonomic composition was more similar between benthic, drift and diet samples at the upstream study site below Lewiston Dam, whereas compositional similarities diverged during peak discharge conditions at the downstream study site.
    [Show full text]
  • Unterwegs Im Weimarer Land Anlässe Für Einen Urlaub Im Weimarer Land
    Hainturm mit Schloßpark Bergpunkt Belvedere (308m) Goethe und Feininger URSPRUNG * GEIST * ENTFALTUNG ... machten sich von Weimar aus zu Fuß oder per Rad auf Feininger- den Weg kreuz und quer durch das Weimarer Land. Radweg B85 Das hatte gute Gründe, denn damals wie heute eignet sich die Region Ilm hervorragend dazu, unterwegs zu sein. Ursprung, Geist und Entfaltung Paulinenturm mit Bergpunkt (416m) charakterisieren ebenso wie eine gute Streckenqualität und freundliche Gastgeber diese grüne Qualitätsregion in Thüringen. Unsere Fernradwege Ilmtal- haben Anschluss an die wichtigsten Radstrecken z. B. im Thüringer Wald B85 B87 Radweg oder der Weinregion Saale-Unstrut. Inmitten dessen unser Glanzstück – der Ilmtal-Radweg . Thematische Rad- und Wandertagestouren wie z. B. der Feininger-Radweg oder der Goethe-Wanderweg bieten ausreichend Unterwegs im Weimarer Land Anlässe für einen Urlaub im Weimarer Land. Rad- und Wandertouren ÜBERSICHTSKARTE – Rad- und Wanderwege im Weimarer Land Eckartsberga STRUT- RE E-UN GION Buttstedt AL Großbrembach Gernstedt SA Kleinheringen Neustedt Schlossvippach Stausee Rudersdorf Großbrembach Gebstedt RT05 WT02 Großheringen Niederreißen Auerstedt Großrudestedt Nirmsdorf Kaatschen Alperstedt Dielsdorf Thalborn Kaatschen- Haindorf Weichau Krautheim Willerstedt Rannstedt Bad Sulza Oberreißen A 71 Nermsdorf Ködderitzsch ILMTAL Kleinrudestedt Vippachedelhausen Neumark Lachstedt Eberstedt Markvippach Darnstedt Buttelstedt Weiden Stöben Eckstedt Stausee Schwerstedt Vippachedelhausen Niedertrebra Daasdorf Rohrbach Schmiedehausen
    [Show full text]
  • Caenogastropoda
    13 Caenogastropoda Winston F. Ponder, Donald J. Colgan, John M. Healy, Alexander Nützel, Luiz R. L. Simone, and Ellen E. Strong Caenogastropods comprise about 60% of living Many caenogastropods are well-known gastropod species and include a large number marine snails and include the Littorinidae (peri- of ecologically and commercially important winkles), Cypraeidae (cowries), Cerithiidae (creep- marine families. They have undergone an ers), Calyptraeidae (slipper limpets), Tonnidae extraordinary adaptive radiation, resulting in (tuns), Cassidae (helmet shells), Ranellidae (tri- considerable morphological, ecological, physi- tons), Strombidae (strombs), Naticidae (moon ological, and behavioral diversity. There is a snails), Muricidae (rock shells, oyster drills, etc.), wide array of often convergent shell morpholo- Volutidae (balers, etc.), Mitridae (miters), Buccin- gies (Figure 13.1), with the typically coiled shell idae (whelks), Terebridae (augers), and Conidae being tall-spired to globose or fl attened, with (cones). There are also well-known freshwater some uncoiled or limpet-like and others with families such as the Viviparidae, Thiaridae, and the shells reduced or, rarely, lost. There are Hydrobiidae and a few terrestrial groups, nota- also considerable modifi cations to the head- bly the Cyclophoroidea. foot and mantle through the group (Figure 13.2) Although there are no reliable estimates and major dietary specializations. It is our aim of named species, living caenogastropods are in this chapter to review the phylogeny of this one of the most diverse metazoan clades. Most group, with emphasis on the areas of expertise families are marine, and many (e.g., Strombidae, of the authors. Cypraeidae, Ovulidae, Cerithiopsidae, Triphori- The fi rst records of undisputed caenogastro- dae, Olividae, Mitridae, Costellariidae, Tereb- pods are from the middle and upper Paleozoic, ridae, Turridae, Conidae) have large numbers and there were signifi cant radiations during the of tropical taxa.
    [Show full text]
  • What Predicts Terrestrial Invertebrate Subsidy Use by Brook Trout
    Freshwater Biology (2014) 59, 187–199 doi:10.1111/fwb.12257 What predicts the use by brook trout (Salvelinus fontinalis) of terrestrial invertebrate subsidies in headwater streams? MATTHEWK.WILSON*,WINSORH.LOWE† AND KEITH H. NISLOW‡ *Wildlife Biology Program, College of Forestry and Conservation, The University of Montana, Missoula, MT, U.S.A. †Division of Biological Sciences, The University of Montana, Missoula, MT, U.S.A. ‡U.S. Forest Service, Northern Research Station, University of Massachusetts, Amherst, MA, U.S.A. SUMMARY 1. Spatial subsidies are important resources for organisms in receiving habitats, particularly when production in those habitats is low. Terrestrial invertebrates provide a critical subsidy for trout, including eastern brook trout (Salvelinus fontinalis), but we have limited understanding of what causes input and use of these subsidies to vary among streams. 2. We predicted that forest successional stage would be an especially important driver of variation in terrestrial invertebrate subsidies to brook trout in headwater streams due to differences in terres- trial invertebrate biomass in early and late successional habitats. Specifically, we expected biomass of aerial invertebrates, those capable of dispersal to the stream, to be greater in early successional habitat than late successional habitat due to the nutrient-rich, herbaceous vegetation typical of early successional habitat. 3. We measured aerial terrestrial invertebrate biomass in early and late successional habitats, input to streams and use by resident brook trout in 12 first- and second-order catchments in northern New Hampshire, U.S.A. The study catchments represented a range of early successional habitat coverage (0–51.5%). We also measured a suite of reach-scale variables that might influence terrestrial invertebrate input and use by brook trout, including riparian forest conditions and benthic invertebrate biomass.
    [Show full text]