Benthic Invertebrate Fauna, Small Streams

Total Page:16

File Type:pdf, Size:1020Kb

Benthic Invertebrate Fauna, Small Streams Benthic Invertebrate Fauna, Small Streams J Bruce Wallace, University of Georgia, Athens, GA, USA S L Eggert, USDA Forest Service, Northern Research Station, Grand Rapids, MN, USA ã 2009 Elsevier Inc. All rights reserved. Introduction invertebrate taxa have been recorded in a mountain stream on Bougainville Island, Papua New Guinea. Small streams (first- through third-order streams) Incredibly, there are many headwater invertebrate spe- make up >98% of the total number of stream seg- cies that remain undescribed in both isolated and popu- ments and >86% of stream length in many drainage lated regions of the world. networks. Small streams occur over a wide array of With the great diversity of foods available for con- climates, geology, and biomes, which influence tem- sumption by invertebrates (i.e., deposited and retained perature, hydrologic regimes, water chemistry, light, on substrates, or suspended in the water column), it is substrate, stream permanence, a basin’s terrestrial not surprising that invertebrates have evolved diverse plant cover, and food base of a given stream. Small morphobehavioral mechanisms for exploiting food streams are generally most abundant in the upper resources. Their diverse feeding behaviors have been reaches of a basin, but they can also be found through- lumped into a broad functional classification scheme, out the basin and may enter directly into larger rivers. which is based on mechanisms used by invertebrates to They have maximum interface with the terrestrial acquire foods. These functional groups are as follows: environment, and in most temperate and tropical cli- scrapers, animals adapted to graze or scrape materials mates they may receive large inputs of terrestrial, or (periphyton, or attached algae, fine particulate organic allochthonous, organic matter (e.g., leaves, wood) matter, and its associated microbiota) from mineral from the surrounding plant communities. In locations and organic substrates; shredders, organisms that com- with open canopies such as grasslands and deserts, minute large pieces of decomposing vascular plant tis- autochthonous or primary production in the form of sue such as leaf detritus (>1 mm diameter) along with algae, or higher aquatic plants, may serve as the main its associated microflora and fauna, or feed directly on food base. Hence, headwater streams display a diverse living vascular hydrophytes, or gouge decomposing fauna, which is often adapted to physical, chemical, wood; gatherers, animals that feed primarily on depos- and biotic conditions of the region. ited fine particulate organic matter (FPOM 1mm diameter); filterers, animals that have specialized ana- tomical structures (e.g., setae, mouth brushes, or fans) Diversity of Benthic Invertebrates in or silk and silk-like secretions that act as sieves to remove particulate matter from suspension; and pre- Small Streams dators, those organisms that feed primarily on animal The benthic invertebrate fauna of small streams is com- tissue by either engulfing their prey, or piercing prey posed primarily of aquatic insects, crustaceans, mol- and sucking body contents. lusks, and various other invertebrate taxa. The insect Functional feeding groups refer primarily to modes fauna consists primarily of Odonata (dragonflies and of feeding and not type of food per se. For example, damselflies), Ephemeroptera (mayflies), Plecoptera many filter-feeding insects of high gradient streams (stoneflies), Megaloptera (alderflies and dobsonflies), are primarily carnivores, whereas scrapers consume Coleoptera (beetles), Trichoptera (caddisflies), occa- quantities of what must be characterized as epilithon, sional Lepidoptera (moths), and Diptera (true flies). a matrix of polysaccharide exudates, detritus, micro- Crustaceans (including amphipods, isopods, and cray- flora, and microfauna associated with stone surfaces, fish) can also be found in small streams as well as and not solely attached algae. Shredders may select microcrustaceans such as cladocerans, ostracods, and those leaves that have been ‘microbially conditioned’ copepods. Other common invertebrates found in small by colonizing fungi and bacteria. Shredders also ingest streams include nematodes, oligochaetes, turbellarians, attached algal cells, protozoans, and various other and mollusks such as snails, limpets, and finger-nail components of the fauna during feeding. Some ‘shred- clams. Total invertebrate diversity in small streams ders’ have been shown to grow by harvesting primar- can be quite high. The Breitenbach, a first-order stream ily the epixylic biofilm, the matrix of exudates, in Germany, contains at least 1004 described inverte- detritus, microflora, and microfauna found on wood brate taxa. At least 293 invertebrate taxa have been surfaces. Although it appears valid to separate benthic found in headwater streams in the southern Appala- invertebrates according to these mechanisms used chian mountains of the United States. Over 182 known to obtain foods, many questions remain concerning 173 Encyclopedia of Inland Waters (2009), vol. 2, pp. 173-190 174 Invertebrates _ Benthic Invertebrate Fauna, Small Streams the ultimate sources of protein, carbohydrates, fats, 70 000 Abundance and assimilated energy to each of these functional Mixed substrate 60 000 groups. Rock face 50 000 Quantitative Measurements of Benthic 40 000 + 1 s.e. 2 30 000 Invertebrates in Headwater Streams #/m 20 000 Invertebrates are often enumerated by abundances or average numbers per unit area of stream bottom. Other 10 000 measures include average biomass, or weight, per unit 0 (a) Sh Sc Cg Filt Pred area ofstream, or more rarely, secondary production per unit area of stream bottom. Each of these will provide a different picture of the invertebrate commu- 800 Biomass nity. For example, Figure 1(a) shows abundances per unit area of moss-covered bedrock outcrop and mixed 600 substrates in three headwater streams (n ¼ 20 total stream years) at the Coweeta Hydrologic Laboratory + 1 s.e. 400 2 in western North Carolina, USA. Note that abun- dances are dominated by members of the collector- mg/m gatherer (Cg), functional group. In contrast, three 200 groups, predators, shredders, and collectors, represent the majority of the biomass in these small streams 0 (Figure 1(b) ). Secondary production, which represents (b) Sh Sc Cg Filt Pred the living organic matter or biomass produced by each functional group over a year regardless of its fate, i.e., 3000 Production losses to predation, or other sources of mortality, is fairly evenly distributed between the predator, collec- 2500 tor, and shredder functional groups (Figure 1(c)). The 2000 /y + 1 s.e. integration of production, feeding habits, and bioener- 2 getic data can yield a much better understanding of the 1500 role of animal populations in ecosystem function than 1000 either abundance or biomass. Distributional patterns for functional feeding group mg AFDM/m 500 abundance, biomass, and production in small streams 0 may differ among substrate types (Figure 1(a)–1(c)). (c) Sh Sc Cg Filt Pred Collectors and predators dominate abundances on Figure 1 both substrates. For biomass, predators > shredders > Total abundance, biomass, and production of invertebrates by functional feeding group for mixed substrate collectors dominate the mixed substrates, whereas and rockface habitats in headwater streams at Coweeta filterers > collectors > predators contribute most to Hydrologic Laboratory in western North Carolina, USA. These biomass on bedrock outcrop substrates. Most produc- data represent 20 total years of abundance, biomass, and > > production estimates. tion is attributed to predators shredders collectors in mixed substrates compared to filterers > collectors > predators on bedrock out crop substrates. Thus, habitats as these small streams are heavily shaded year distinct differences exist in functional feeding group round by dense riparian rhododendron. These data production among different substrates within a stream, emphasize the influence of local geomorphic processes whichcorrespondtodifferentavailablefoodresources. and riparian linkages on invertebrate productivity in Filterer production predominates in the bedrock forested headwater streams. habitats with high current velocities that transport FPOM. Collector production is also enhanced by Comparison of Secondary Productivity FPOM trapped in the moss on the bedrock outcrops. Measurements from Small Streams Conversely, predator, shredder, and collector pro- duction are similar in the retentive mixed substrate Secondary productivity measures for benthic inverte- habitats, which also have the greatest biomass, abun- brates from small streams from various temperate dances, and organic matter retention. Scraper abun- areas around the world are given in Table 1. Total an- dance, biomass, and production are low for all nual productivity is quite variable ranging from Encyclopedia of Inland Waters (2009), vol. 2, pp. 173-190 À À Table 1 Estimates of secondary production (g m 2 year 1) for various functional feeding groups, or primary and secondary consumers, for small streams from various regions of the world Country Biome Stream Scrapers Shredders Collectors Filterers Predators Total production Source USA, ID Cool desert Douglas Creek* 2.65 0.64 15.28 4.20 0.45 23.22 2 USA, ID Cool desert Snively 0.00 1.32 9.33 3.18 0.33 14.15 2 Springs* USA, ID Cool desert Rattlesnake 0.00 0.17 3.62 11.80 0.77 16.36 2 Springs* Denmark Deciduous Rold Kilde 0.14 5.93 2.58 0.01 0.88 9.54 6 Invertebrates
Recommended publications
  • ARTHROPOD COMMUNITIES and PASSERINE DIET: EFFECTS of SHRUB EXPANSION in WESTERN ALASKA by Molly Tankersley Mcdermott, B.A./B.S
    Arthropod communities and passerine diet: effects of shrub expansion in Western Alaska Item Type Thesis Authors McDermott, Molly Tankersley Download date 26/09/2021 06:13:39 Link to Item http://hdl.handle.net/11122/7893 ARTHROPOD COMMUNITIES AND PASSERINE DIET: EFFECTS OF SHRUB EXPANSION IN WESTERN ALASKA By Molly Tankersley McDermott, B.A./B.S. A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Biological Sciences University of Alaska Fairbanks August 2017 APPROVED: Pat Doak, Committee Chair Greg Breed, Committee Member Colleen Handel, Committee Member Christa Mulder, Committee Member Kris Hundertmark, Chair Department o f Biology and Wildlife Paul Layer, Dean College o f Natural Science and Mathematics Michael Castellini, Dean of the Graduate School ABSTRACT Across the Arctic, taller woody shrubs, particularly willow (Salix spp.), birch (Betula spp.), and alder (Alnus spp.), have been expanding rapidly onto tundra. Changes in vegetation structure can alter the physical habitat structure, thermal environment, and food available to arthropods, which play an important role in the structure and functioning of Arctic ecosystems. Not only do they provide key ecosystem services such as pollination and nutrient cycling, they are an essential food source for migratory birds. In this study I examined the relationships between the abundance, diversity, and community composition of arthropods and the height and cover of several shrub species across a tundra-shrub gradient in northwestern Alaska. To characterize nestling diet of common passerines that occupy this gradient, I used next-generation sequencing of fecal matter. Willow cover was strongly and consistently associated with abundance and biomass of arthropods and significant shifts in arthropod community composition and diversity.
    [Show full text]
  • List of Animal Species with Ranks October 2017
    Washington Natural Heritage Program List of Animal Species with Ranks October 2017 The following list of animals known from Washington is complete for resident and transient vertebrates and several groups of invertebrates, including odonates, branchipods, tiger beetles, butterflies, gastropods, freshwater bivalves and bumble bees. Some species from other groups are included, especially where there are conservation concerns. Among these are the Palouse giant earthworm, a few moths and some of our mayflies and grasshoppers. Currently 857 vertebrate and 1,100 invertebrate taxa are included. Conservation status, in the form of range-wide, national and state ranks are assigned to each taxon. Information on species range and distribution, number of individuals, population trends and threats is collected into a ranking form, analyzed, and used to assign ranks. Ranks are updated periodically, as new information is collected. We welcome new information for any species on our list. Common Name Scientific Name Class Global Rank State Rank State Status Federal Status Northwestern Salamander Ambystoma gracile Amphibia G5 S5 Long-toed Salamander Ambystoma macrodactylum Amphibia G5 S5 Tiger Salamander Ambystoma tigrinum Amphibia G5 S3 Ensatina Ensatina eschscholtzii Amphibia G5 S5 Dunn's Salamander Plethodon dunni Amphibia G4 S3 C Larch Mountain Salamander Plethodon larselli Amphibia G3 S3 S Van Dyke's Salamander Plethodon vandykei Amphibia G3 S3 C Western Red-backed Salamander Plethodon vehiculum Amphibia G5 S5 Rough-skinned Newt Taricha granulosa
    [Show full text]
  • Crustacea-Arthropoda) Fauna of Sinop and Samsun and Their Ecology
    J. Black Sea/Mediterranean Environment Vol. 15: 47- 60 (2009) Freshwater and brackish water Malacostraca (Crustacea-Arthropoda) fauna of Sinop and Samsun and their ecology Sinop ve Samsun illeri tatlısu ve acısu Malacostraca (Crustacea-Arthropoda) faunası ve ekolojileri Mehmet Akbulut1*, M. Ruşen Ustaoğlu2, Ekrem Şanver Çelik1 1 Çanakkale Onsekiz Mart University, Fisheries Faculty, Çanakkale-Turkey 2 Ege University, Fisheries Faculty, Izmir-Turkey Abstract Malacostraca fauna collected from freshwater and brackishwater in Sinop and Samsun were studied from 181 stations between February 1999 and September 2000. 19 species and 4 subspecies belonging to 15 genuses were found in 134 stations. In total, 23 taxon were found: 11 Amphipoda, 6 Decapoda, 4 Isopoda, and 2 Mysidacea. Limnomysis benedeni is the first time in Turkish Mysidacea fauna. In this work at the first time recorded group are Gammarus pulex pulex, Gammarus aequicauda, Gammarus uludagi, Gammarus komareki, Gammarus longipedis, Gammarus balcanicus, Echinogammarus ischnus, Orchestia stephenseni Paramysis kosswigi, Idotea baltica basteri, Idotea hectica, Sphaeroma serratum, Palaemon adspersus, Crangon crangon, Potamon ibericum tauricum and Carcinus aestuarii in the studied area. Potamon ibericum tauricum is the most encountered and widespread species. Key words: Freshwater, brackish water, Malacostraca, Sinop, Samsun, Turkey Introduction The Malacostraca is the largest subgroup of crustaceans and includes the decapods such as crabs, mole crabs, lobsters, true shrimps and the stomatopods or mantis shrimps. There are more than 22,000 taxa in this group representing two third of all crustacean species and contains all the larger forms. *Corresponding author: [email protected] 47 Malacostracans play an important role in aquatic ecosystems and therefore their conservation is important.
    [Show full text]
  • Publications of Glenn B
    Publications: Glenn B. Wiggins, Curator Emeritus, Entomology 2010 Wiggins, G.B. “No small matters. Introducing Biological Notes on an Old Farm: Exploring Common Things in the Kingdoms of Life.” ROM Magazine, 42(2): 29- 31. * 2009 Wiggins, G.B. Biological Notes on an Old Farm: Exploring Common Things in the Kingdoms of Life. Royal Ontario Museum, Toronto. 2008 Wiggins, G.B. and D.C. Currie. “Trichoptera Families.” In An Introduction to the Aquatic Insects of North America, edited by R.W. Merritt, K.W. Cummins, and M.B. Berg. Kendall/Hunt, Dubuque, Iowa (4th edition, revised). 2007 Wiggins, G.B. “Architects under water.” American Entomologist, 53(2): 78-85. 2005b Wiggins, G.B. “Review: Vernal pools, natural history and conservation by Elizabeth A. Colburn.” Journal of the North American Benthological Society, 24(4): 1009-1013. 2005a Vineyard, R.N., G.B. Wiggins, H.E. Frania, and P.W. Schefter. “The caddisfly genus Neophylax (Trichoptera: Uenoidae).” Royal Ontario Museum Contributions in Science, 2: 1-141. * 2004b Wiggins, G.B. Caddisflies: The Underwater Architects. University of Toronto Press. 2004a Wiggins, G.B. “Caddisflies: glimpses into evolutionary history.” Rotunda, 38(2): 32-39. 2002 Wiggins, G.B. “Biogeography of amphipolar caddisflies in the subfamily Dicosmoecinae (Trichoptera, Limnephilidae).” Mitteilungen aus dem Museum für Naturkunde in Berlin, Deutsche Entomologische Zeitschrift, 49(2002) 2: 227- 259. 2001 Wiggins, G.B. “Construction behavior for new pupal cases by case-making caddis larvae: Further comment. (Trichoptera: Integripalpia).” Braueria, 28: 7-9. 1999b Gall, W.K. and G.B. Wiggins. “Evidence bearing on a sister-group relationship between the families Phryganeidae and Plectrotarsidae (Trichoptera).” Proceedings of the Ninth International Symposium on Trichoptera, Chiang Mai, Thailand, 1998, edited by H.
    [Show full text]
  • Diptera) of Finland
    A peer-reviewed open-access journal ZooKeys 441: 37–46Checklist (2014) of the familes Chaoboridae, Dixidae, Thaumaleidae, Psychodidae... 37 doi: 10.3897/zookeys.441.7532 CHECKLIST www.zookeys.org Launched to accelerate biodiversity research Checklist of the familes Chaoboridae, Dixidae, Thaumaleidae, Psychodidae and Ptychopteridae (Diptera) of Finland Jukka Salmela1, Lauri Paasivirta2, Gunnar M. Kvifte3 1 Metsähallitus, Natural Heritage Services, P.O. Box 8016, FI-96101 Rovaniemi, Finland 2 Ruuhikosken- katu 17 B 5, 24240 Salo, Finland 3 Department of Limnology, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel-Oberzwehren, Germany Corresponding author: Jukka Salmela ([email protected]) Academic editor: J. Kahanpää | Received 17 March 2014 | Accepted 22 May 2014 | Published 19 September 2014 http://zoobank.org/87CA3FF8-F041-48E7-8981-40A10BACC998 Citation: Salmela J, Paasivirta L, Kvifte GM (2014) Checklist of the familes Chaoboridae, Dixidae, Thaumaleidae, Psychodidae and Ptychopteridae (Diptera) of Finland. In: Kahanpää J, Salmela J (Eds) Checklist of the Diptera of Finland. ZooKeys 441: 37–46. doi: 10.3897/zookeys.441.7532 Abstract A checklist of the families Chaoboridae, Dixidae, Thaumaleidae, Psychodidae and Ptychopteridae (Diptera) recorded from Finland is given. Four species, Dixella dyari Garret, 1924 (Dixidae), Threticus tridactilis (Kincaid, 1899), Panimerus albifacies (Tonnoir, 1919) and P. przhiboroi Wagner, 2005 (Psychodidae) are reported for the first time from Finland. Keywords Finland, Diptera, species list, biodiversity, faunistics Introduction Psychodidae or moth flies are an intermediately diverse family of nematocerous flies, comprising over 3000 species world-wide (Pape et al. 2011). Its taxonomy is still very unstable, and multiple conflicting classifications exist (Duckhouse 1987, Vaillant 1990, Ježek and van Harten 2005).
    [Show full text]
  • Influence of Intraspecific Competition and Effects on Intermediate Host
    Dianne et al. Parasites & Vectors 2012, 5:166 http://www.parasitesandvectors.com/content/5/1/166 RESEARCH Open Access Larval size in acanthocephalan parasites: Influence of intraspecific competition and effects on intermediate host behavioural changes Lucile Dianne1*, Loïc Bollache1, Clément Lagrue1,2, Nathalie Franceschi1 and Thierry Rigaud1 Abstract Background: Parasites often face a trade-off between exploitation of host resources and transmission probabilities to the next host. In helminths, larval growth, a major component of adult parasite fitness, is linked to exploitation of intermediate host resources and is influenced by the presence of co-infecting conspecifics. In manipulative parasites, larval growth strategy could also interact with their ability to alter intermediate host phenotype and influence parasite transmission. Methods: We used experimental infections of Gammarus pulex by Pomphorhynchus laevis (Acanthocephala), to investigate larval size effects on host behavioural manipulation among different parasite sibships and various degrees of intra-host competition. Results: Intra-host competition reduced mean P. laevis cystacanth size, but the largest cystacanth within a host always reached the same size. Therefore, all co-infecting parasites did not equally suffer from intraspecific competition. Under no intra-host competition (1 parasite per host), larval size was positively correlated with host phototaxis. At higher infection intensities, this relationship disappeared, possibly because of strong competition for host resources,
    [Show full text]
  • (Trichoptera: Glossosomatidae: Protoptilinae) from Brazil
    A new species of Protoptila Banks (Trichoptera: Glossosomatidae: Protoptilinae) from Brazil Allan Paulo Moreira SANTOS1, Jorge Luiz NESSIMIAN2 ABSTRACT A new species of Protoptila Banks (Trichoptera: Glossosomatidae: Protoptilinae) – P. longispinata sp. nov. – is described and illustrated from specimens collected in Amazon region, Amazonas and Pará states, Brazil. KEY WORDS: Amazon basin, Protoptila longispinata sp. nov., Neotropical Region, taxonomy. Uma nova espécie de Protoptila Banks (Trichoptera: Glossosomatidae: Protoptilinae) do Brasil RESUMO Uma nova espécie de Protoptila Banks (Trichoptera: Glossosomatidae: Protoptilinae) – P. longispinata sp. nov. – é descrita e ilustrada a partir de espécimes coletados na Região Amazônica, estados do Amazonas e do Pará, Brasil. PALAVRAS-CHAVE: bacia Amazônica, Protoptila longispinata sp. nov., Região Neotropical, taxonomia. 1 Universidade Federal do Rio de Janeiro. E-mail: [email protected] 2 Universidade Federal do Rio de Janeiro. E-mail: [email protected] 723 VOL. 39(3) 2009: 723 - 726 A new species of Protoptila Banks (Trichoptera: Glossosomatidae: Protoptilinae) from Brazil INTRODUCTION internal area slightly expanded. Forewings covered by long The genus Protoptila currently has 93 described species dark brown setae, and with a light transverse bar at midlength; widespread throughout the Americas, but with most species forks I, II, and III present; discoidal cell closed (Figure 1). occurring in the Neotropics (Robertson & Holzenthal, 2008). Hind wing with forks II and III present (Figure 2); nygma This is the largest genus of the subfamily Protoptilinae, and thyridium inconspicuous in fore- and hind wings. Legs represented in Brazil by 12 species, ten of which were described yellowish brown, with short dark setae. Abdominal segments from Amazon basin, nine occurring in Amazonas State: P.
    [Show full text]
  • The Diptera of Lancashire and Cheshire: Craneflies and Winter Gnats
    The Diptera of Lancashire and Cheshire: Craneflies and Winter Gnats by Phil Brighton 32, Wadeson Way, Croft, Warrington WA3 7JS [email protected] Version 1.1 26 November 2017 1 Summary This document provides a new checklist for the craneflies and winter gnats (Tipuloidea, Ptychopteridae and Trichoceridae) to extend the lists of the diptera of Lancashire and Cheshire first published by Kidd and Bindle in 1959. Overall statistics on recording activity are given by decade and hectad. Checklists are presented for each of the three Watsonian vice-counties 58, 59, and 60 detailing for each species the number of records, year of earliest and most recent record, and the number of hectads with records. A combined checklist showing distribution by the three vice-counties is also included, covering a total of 264 species, amounting to 75% of the current British checklist. Introduction This report is the third in a series to update and extend the partial checklist of the diptera of Lancashire and Cheshire published in 1959 by Leonard Kidd and Alan Brindle1. There were two previous updates, in 19642 and 19713. The previous reports in this series cover the soldierflies and allies4 and the Sepsidae5, the latter family not having been covered in Ref 1. The reader is referred to the first two reports for the background and rationale of these checklists, as well as the history of diptera recording and available data sources. The description of methodology is also kept to a minimum in the present report: only significant differences from the previous publications will be outlined.
    [Show full text]
  • (Trichoptera: Limnephilidae) in Western North America By
    AN ABSTRACT OF THE THESIS OF Robert W. Wisseman for the degree of Master ofScience in Entomology presented on August 6, 1987 Title: Biology and Distribution of the Dicosmoecinae (Trichoptera: Limnsphilidae) in Western North America Redacted for privacy Abstract approved: N. H. Anderson Literature and museum records have been reviewed to provide a summary on the distribution, habitat associations and biology of six western North American Dicosmoecinae genera and the single eastern North American genus, Ironoquia. Results of this survey are presented and discussed for Allocosmoecus,Amphicosmoecus and Ecclisomvia. Field studies were conducted in western Oregon on the life-histories of four species, Dicosmoecusatripes, D. failvipes, Onocosmoecus unicolor andEcclisocosmoecus scvlla. Although there are similarities between generain the general habitat requirements, the differences or variability is such that we cannot generalize to a "typical" dicosmoecine life-history strategy. A common thread for the subfamily is the association with cool, montane streams. However, within this stream category habitat associations range from semi-aquatic, through first-order specialists, to river inhabitants. In feeding habits most species are omnivorous, but they range from being primarilydetritivorous to algal grazers. The seasonal occurrence of the various life stages and voltinism patterns are also variable. Larvae show inter- and intraspecificsegregation in the utilization of food resources and microhabitatsin streams. Larval life-history patterns appear to be closely linked to seasonal regimes in stream discharge. A functional role for the various types of case architecture seen between and within species is examined. Manipulation of case architecture appears to enable efficient utilization of a changing seasonal pattern of microhabitats and food resources.
    [Show full text]
  • User Manual Beta Sdam Aw.Pdf
    User Manual for a Beta Streamflow Duration Assessment Method for the Arid West of the United States Version 1.0 March 1, 2021 Prepared by Raphael Mazor1, Brian Topping2, Tracie-Lynn Nadeau2,3, Ken M. Fritz4, Julia Kelso5, Rachel Harrington6, Whitney Beck2, Kenneth McCune1, Heili Lowman1, Aaron Allen7, Robert Leidy8, James T. Robb9, and Gabrielle C. L. David10. 1 Southern California Coastal Water Research Project. Costa Mesa, CA 2 U.S. Environmental Protection Agency—Office of Wetlands, Oceans, and Watersheds. Washington, D.C. 3 U.S. Environmental Protection Agency—Region 10. Portland, OR 4 U.S. Environmental Protection Agency—Office of Research and Development. Cincinnati, OH 5 Oak Ridge Institute of Science and Education (ORISE) Fellow at U.S. Environmental Protection Agency—Office of Wetlands, Oceans, and Watersheds. Washington, D.C. 6 U.S. Environmental Protection Agency—Region 8. Denver, CO 7 U.S. Army Corps of Engineers–South Pacific Division. Los Angeles, CA 8 U.S. Environmental Protection Agency—Region 9. San Francisco, CA. 9 U.S. Army Corps of Engineers – South Pacific Division. Sacramento, CA 10 U.S. Army Corps of Engineers—Engineer Research and Development Center Cold Regions Research and Engineering Laboratory. Hanover, NH. Suggested citation: Mazor, R.D., Topping, B., Nadeau, T.-L., Fritz, K.M., Kelso, J., Harrington, R., Beck, W., McCune, K., Lowman, H., Allen, A., Leidy, R., Robb, J.T., and David, G.C.L. 2021. User Manuel for a Beta Streamflow Duration Assessment Method for the Arid West of the United States. Version 1.0. Document No. EPA- 800-5-21001 Cover images The top row shows the biological indicators included in the streamflow duration assessment method for the Arid West: number of hydrophytic plant species, such as seep monkey flowers; abundance of aquatic invertebrates, such as black fly larvae; evidence of mayfly, stonefly, and caddisfly taxa, such as a larva or pupal case of Dicosmoecus gilvipes (photo credit: California Department of Fish and Wildlife’s Aquatic Bioassessment Lab); and algal cover on the streambed.
    [Show full text]
  • Contribution to the Knowledge of the Caddisfly Fauna (Insecta: Trichoptera) of Leqinat Lakes and Adjacent Streams in Bjeshkët E Nemuna (Kosovo)
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE NAT. CROAT. VOL. 28 No 1 35-44 ZAGREB June 30, 2019 original scientific paper / izvorni znanstveni rad DOI 10.20302/NC.2019.28.3 CONTRIBUTION TO THE KNOWLEDGE OF THE CADDISFLY FAUNA (INSECTA: TRICHOPTERA) OF LEQINAT LAKES AND ADJACENT STREAMS IN BJESHKËT E NEMUNA (KOSOVO) Halil Ibrahimi1, Linda Grapci-Kotori1,*, Astrit Bilalli2, Albulena Qamili1 & Robert Schabetsberger3 1Department of Biology, Faculty of Mathematical and Natural Sciences, University of Prishtina, “Mother Theresa” p.n., 10 000 Prishtinë, Kosovo 2Faculty of Agribusiness, University of Peja “Haxhi Zeka”, UÇK street p.n., 30 000 Pejë, Kosovo 3Department of Cell Biology, Faculty of Natural Sciences, University of Salzburg, Hellbrunnerstraße 34, Raum Nr. E-2.050, Salzburg, Austria Ibrahimi, H., Grapci-Kotori, L., Bilalli, A., Qamili, A. & Schabetsberger, R.: Contribution to the knowledge of the caddisfly fauna (Insecta: Trichoptera) of Leqinat lakes and adjacent streams in Bjeshkët e Nemuna (Kosovo). Nat. Croat. Vol. 28, No. 1., 35-44, Zagreb, 2019. Adult caddisflies were collected with entomological nets and ultraviolet light traps during August and September 2018 in Leqinat Lake, Drelaj Lake and five adjacent streams in Bjeshkët e Nemuna in Kosovo. Within the current study we found three first records for the caddisfly fauna of Kosovo: Limnephilus flavospinosus, Limnephilus flavicornis and Oligotricha striata. The genus Oligotricha is reported for the first time from Kosovo. We also found few rare species which have been reported only from few localities in the Balkan Peninsula such as: Plectrocnemia mojkovacensis, Rhyacophila balcanica and Drusus tenellus.
    [Show full text]
  • The Effects of Artificial Illumination on Invertebrate Drift
    The effects of artificial illumination on invertebrate drift Effekten av artificiellt ljus på evertebratdrift Sandra Andersson Faculty of Health, Science and Technology Biology 15 hp Supervisor: Olle Calles Examiner: Larry Greenberg 2015-02-18 Serial number: 15:77 Abstract For the past century, humans have drastically increased the use of artificial light all over the world. This is causing many problems for other organisms. Daytime feeders extend their activity into the night, which causes an increase in predation pressure on their prey. This study focused on macroinvertebrate drift and how it is affected by artificial light. A street light was placed at a Welsh river, and drift nets were staggered across the stream. The stream was then exposed to three different light treatments: (1) the lights were on all night, (2) the lights were off all night (3) the lights were on from 20.30 to 24.00 and then turned off. The results showed that species richness was lower in the net nearest the street light when the light was on for the first part of the night. This indicated a light sensitivity in some invertebrate species in the stream. Drift abundance was lower when the light was on throughout the whole night and when the light was on for the first part of the night than when the lights were never on. This difference was found in the net furthest away from the street light. Two possible explanations for this are: (1) the statistical significance was spurious, (2) There was a local difference in species composition. Some invertebrate species are especially vulnerable to predatory fish, and the difference in drift abundance for one of the nets could have been an indication of the presence of predatory fish in the stream.
    [Show full text]