Neurotoxicity: Identifying and Controlling Poisons of the Nervous System

Total Page:16

File Type:pdf, Size:1020Kb

Neurotoxicity: Identifying and Controlling Poisons of the Nervous System Neurotoxicity: Identifying and Controlling Poisons of the Nervous System April 1990 OTA-BA-436 NTIS order #PB90-252511 Recommended Citation: U.S. Congress, Office of Technology Assessment, Neurotoxicity: Identifying and Controlling Poisons of the Nervous System, OTA-BA-436 (Washington, DC: U.S. Government Printing Office, April 1990). For sale by the Superintendent of Documents U.S. Government Printing Office, Washington, DC 20402-9325 (order form can be found in the back of this report) . Foreword Extraordinary developments in the neuroscience in recent years have been paralleled by a growing congressional interest in their policy implications. The designation of the 1990s by the 101st Congress as the “Decade of the Brain” is one indication of the promise shown by scientific advances for treating diseases of the nervous system and for increased general understanding of the human mind. Other advances, however, have led us to the disturbing realization that many commonly used chemicals can adversely affect the human nervous system. Concern about this issue provided the motivation for hearings held in October 1985 on ‘‘Neurotoxins in the Home and in the Workplace’ by the Subcommittee on Investigations and Oversight of the House Committee on Science and Technology. Another result of heightened congressional interest was a request that OTA undertake a series of assessments on major public policy issues related to the neuroscience. Requesting committees included the House Committees on Science, Space, and Technology; Energy and Commerce; Appropriations; and Veterans’ Affairs; and the Senate Subcommittee on Science, Technology, and Space of the Committee on Commerce, Science, and Transportation. In addition, the Senate Committee on Environment and Public Works recently requested a study of the noncancer health risks posed by toxic substances. This Report, the first of the neuroscience series, discusses the risks posed by neurotoxic substances—substances that can adversely affect the nervous system—and evaluates the Federal research and regulatory programs now in place to address these risks. One finding of this Report is that considerably more research and testing are necessary to determine which substances have neurotoxic potential. Neurotoxic effects can often go unrecognized because symptoms are varied and may not appear for months or even years. Adverse effects range from impaired movement, anxiety, and confusion to memory loss, convulsions, and death. Another important finding is the need for greater public awareness. Neurotoxic chemicals constitute a major public health threat; the social and economic consequences of excessive exposure to them are potentially very large. Minimizing exposure requires action not just by regulatory and other public officials, but also by individual citizens who can take steps to avoid these substances both at home and in the workplace. Many individuals and institutions contributed their time and expertise to the project. Scientists and regulatory officials in several Federal agencies and experts in academia and industry served on the project’s advisory panel, in workshop groups, and as reviewers. OTA gratefully acknowledges the assistance of these contributors. As with all OTA assessments, however, responsibility for the content of the Report is OTA’s alone and does not necessarily constitute the consensus or endorsement of the advisory panel or the Technology Assessment Board. JOHN H. GIBBONS Director . .,. Ill New Developments in Neuroscience Advisory Panel Peter S. Spencer, Chair Oregon Health Sciences University, Portland, OR Robert H. Blank Laurane G. Mendelssohn Northern Illinois University Lilly Research Laboratories DeKalb, IL Indianapolis, IN James F. Childress Franklin E. Mirer University of Virginia United Auto Workers Charlottesville, VA Detroit, MI Fred H. Gage Albert S. Moraczewski University of California-San Diego Pope John XXIII Center La Jolla, CA Houston, TX Bernice Grafstein Herbert Paroles Cornell University Columbia University New York, NY New York, NY Ronald Kartzine} Richard M. Restak CIBA-GIGY Corp. Neurological Associates, P.C. Summit, NJ Washington, DC Alan Kraut American Psychological Association Washington, DC Neurotoxic Substances Study Panel Stanley H. Abramson Marion Moses King & Spalding University of California-San Francisco Washington, DC San Francisco, CA Louis W. Chang John O’Donoghue University of Arkansas Eastman Kodak Co. Little Rock, AR Rochester, NY Alan M. Goldberg Bernard Weiss Johns Hopkins University University of Rochester Baltimore, MD Rochester, NY NOTE: OTA appreciates and is grateful for the valuable assistance and thoughtful critiques provided by the advisory and study panel members. The panels do not, however, necessarily approve, disapprove, or endorse this report. OTA assumes full responsibility for the report and the accuracy of its contents. iv Neurotoxicity Roger C. Herdman, Assistant Director, OTA, Health and Life Sciences Division Gretchen S. Kolsrud, Biological Applications Program Manager1 OTA Project Staff Mark Schaefer, Study & Project Director Timothy P. Condon, Project Director2 Peter R. Andrews, Research Assistant Joyce Ann Brentley, Analyst Claire L. Pouncey, Research Assistant E. Blair Wardenburg, Research Analyst3 Monica Bhattacharyya, Research Assistant Catherine A. Laughlin, NIH Detailee4 Gladys B. White, Analyst5 Support Staff Cecile Parker, Office Administrator Linda Rayford-Journiette, Administrative Secretary Jene Lewis, Secretary Sharon Oatman, Administrative Assistant6 Lori B. Idian, Secretary7 Contractors Zoltan Annau, Johns Hopkins University Jacqueline Courteau, Hampshire Research Associates Warren R. Muir, Hampshire Research Associates George Provenzano, University of Maryland at Baltimore Brenda Seidman, Environ Corp. Ellen Widess, University of Texas Ronald Wood, New York University Medical Center John S. Young, Hampshire Research Associates Jeffrey L. Fox, Washington, DC Blair Potter (editor), Bethesda, MD Julie Phillips (indexer), Vienna, VA Raymond Driver (graphics artist), Damascus, MD OTA Publishing Staff Kathie Boss, Publishing Officer Dorinda Edmondson, Desktop Publishing Christine Onrubia, Graphic Designer/Illustrator Susan Zimmerman, Graphic Artist lmou~ September 1989. 2mou@ August 1989. 3~ou~ August 1989. 4Th17Nl@ hdy 1989. fThrough June 1989. %ough February 1989 7ThOU#l July 1989. Contents Page Chapter 1. Summary, Policy Issues, and Options for Congressional Action . 3 Chapter 2. Introduction . 43 Chapter 3. Fundamentals of Neurotoxicology . 63 Chapter 4. Research and Education Programs . 81 Chapter 5. Testing and Monitoring . 105 Chapter 6. Assessing and Managing Risk . 145 Chapter 7. The Federal Regulatory Response . 159 Chapter 8. Economic Considerations in Regulating Neurotoxic Substances . 211 Chapter 9. International Regulatory and Research Activities . 237 Chapter 10. Case Studies: Exposure to Lead, Pesticides in Agriculture, and Organic Solvents in the Workplace . 267 Appendix A, The Food Additive Approval Process: A Case Study . 315 Appendix B. Workshop on Federal Interagency Coordination of Neurotoxicity Research and Regulatory Programs . 321 Appendix C. Decade of the Brain . 330 Appendix D. Acknowledgments . 332 Appendix E. List of Contractor Documents . 335 Appendix F. Glossary of Terms and List of Acronyms . 336 Index . 343 Chapter 1 Summary, Policy Issues, and Options for Congressional Action CONTENTS Page SUMMARY .. ... .. .. ... .. .. .. .. ... .,. .....+. .....,, . 3 Scope of This Study . .. .. .. .. .. .. .. .. +.. ... .+.+..., 4 What Is Neurotoxicity? . .+ .. .. .. .. .. ..+. 4 Who Is At Risk? ... ... ...+.... 8 Research and Education Programs . 9 Testing and Monitoring .. .. .. .. .. .. .. .. ... ....+... .. .. .. .. .. .. .. .. ... ... ... ...~. 12 Risk Assessment . .. .. .. .. .. ... ... +...... ,...,.. 13 Federal Regulatory Response . .. .. .. .. .. .. ... +.. ....+... 15 Federal Interagency Coordination . 19 Economic Considerations in Regulation . 19 ~ . A c. t i. 6 N International Issues . oR 60ieki loN k . 21 POLICY ISSUES AND OPTIONS . 22 Boxes Box Page I-A. Vulnerability of the NervousSystem to Toxic Substances . 5 l-13. MPTP and Parkinson’s Disease ......+..........++.. .. .. .. .+ . 6 l-C. had: A Continuing Threat to the Nation’s Children . 8 l-1). Cocaine and the Developing Fetus . .+ . 10 l-E. Neurotoxic Pesticides . 26 l-F. Limitations of FDA’s Postmarked Monitoring System for Adverse Drug Reactions: Halcyon . .29 I-G. Organic Solvents in the Workplace . ..+.. 30 Figures Figure Page l-1. Average Annual Motor Neuron Disease Mortality in the United States, White Males . ,..,.... 3 l-2. The Fundamental Structure of the Nerve Cell . 5 l-3. Neurotoxic Effect of MDMA on Serotonin Nerve Fibers in the Cerebral Cortex of the Monkey . + . +........ 9 l-4.Neurotoxic Substances Are Prominent Among the Toxics Release Inventory’s Top 25 Chemicals Emitted Into the Air 1987 .. .. .. .. .. .. .. .. .. .. ... ... ..+...+ 14 Tables Table Page l-1. Federal Funding for Civilian Neurotoxicity-Related Research . 11 l-2+ Major Federal Laws Controlling Toxic Substances . 16 Chapter 1 Summary, Policy Issues, and Options for Congressional Action SUMMARY substantial number of therapeutic drugs have neurotoxic potential. Chemicals are an integral part of our daily lives and are responsible for substantially im- In recent years, concern about the neurotoxic proving them. Chemicals can also endanger our effects of chemicals has increased as evidence health, even our survival. This assessment
Recommended publications
  • Neurotoxicity: Identifying and Controlling Poisons of the Nervous System
    Index -i abused drugs activities of, 33, 81, 88, 322 addiction, 6, 52,74, 75 aldicarb, 47, 173,251 designer drugs, 51 aldrin, 250,252,292 effects on nervous system, 6,9, 51–53, 71 allyl chloride, 303 health costs of, 20,53,232 aluminum, 48 psychoactive drugs, 6, 10,27,44,50 and Alzheimer’s disease, 54-55 withdrawal from, 74 oxide, 14, 136 see also specific drugs Alzheimer’s disease academic research effects on hippocampus, 71 cooperative agreements with government, 94 environmental cause, 3, 6, 54-55, 70, 72 factors influencing directions of, 92-94 research on, 259 acetaldehyde, 297 American Academy of Pediatrics, 189 acetone, 14, 136,296, 297,303 American Conference of Governmental Industrial Hygienists, acetylcholine, 26, 66, 109, 124,294, 336 28, 151, 185, 186,203,302-303 acetylcholinesterase, 11,50,74,84,187,203, 289,290-292,336 American National Standards Institute, 185 acetylethyl tetramethyl tetralin (AETT) ammonia, 14, 136 exposure route, 108 amphetamines, 74 incidents of poisoning, 47, 54 amyotrophic lateral sclerosis neurological effects of, 54 characteristics of, 54 acrylamide, 73, 120 environmental cause, 3, 6, 54-55, 70, 72 neurotoxicity testing, 166, 175 incidence of, 54, 55 regulation for neurotoxicity, 178 research on, 259 risk assessment approaches, 150, 151,216 anencephaly, 70 research on neurotoxicity, 258 anilines and substituted anilines, 179 acrylates, 175 animal tests, 13 acrylonitrile, 203 accuracy and reliability, 106, 115 neurotoxicity testing, 166, 173 advantages and limitations of, 105, 106, 111, 112, 114,
    [Show full text]
  • Neuromuscular Disorders Neurology in Practice: Series Editors: Robert A
    Neuromuscular Disorders neurology in practice: series editors: robert a. gross, department of neurology, university of rochester medical center, rochester, ny, usa jonathan w. mink, department of neurology, university of rochester medical center,rochester, ny, usa Neuromuscular Disorders edited by Rabi N. Tawil, MD Professor of Neurology University of Rochester Medical Center Rochester, NY, USA Shannon Venance, MD, PhD, FRCPCP Associate Professor of Neurology The University of Western Ontario London, Ontario, Canada A John Wiley & Sons, Ltd., Publication This edition fi rst published 2011, ® 2011 by Blackwell Publishing Ltd Blackwell Publishing was acquired by John Wiley & Sons in February 2007. Blackwell’s publishing program has been merged with Wiley’s global Scientifi c, Technical and Medical business to form Wiley-Blackwell. Registered offi ce: John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK Editorial offi ces: 9600 Garsington Road, Oxford, OX4 2DQ, UK The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK 111 River Street, Hoboken, NJ 07030-5774, USA For details of our global editorial offi ces, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com/wiley-blackwell The right of the author to be identifi ed as the author of this work has been asserted in accordance with the UK Copyright, Designs and Patents Act 1988. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.
    [Show full text]
  • Question of the Day Archives: Monday, December 5, 2016 Question: Calcium Oxalate Is a Widespread Toxin Found in Many Species of Plants
    Question Of the Day Archives: Monday, December 5, 2016 Question: Calcium oxalate is a widespread toxin found in many species of plants. What is the needle shaped crystal containing calcium oxalate called and what is the compilation of these structures known as? Answer: The needle shaped plant-based crystals containing calcium oxalate are known as raphides. A compilation of raphides forms the structure known as an idioblast. (Lim CS et al. Atlas of select poisonous plants and mushrooms. 2016 Disease-a-Month 62(3):37-66) Friday, December 2, 2016 Question: Which oral chelating agent has been reported to cause transient increases in plasma ALT activity in some patients as well as rare instances of mucocutaneous skin reactions? Answer: Orally administered dimercaptosuccinic acid (DMSA) has been reported to cause transient increases in ALT activity as well as rare instances of mucocutaneous skin reactions. (Bradberry S et al. Use of oral dimercaptosuccinic acid (succimer) in adult patients with inorganic lead poisoning. 2009 Q J Med 102:721-732) Thursday, December 1, 2016 Question: What is Clioquinol and why was it withdrawn from the market during the 1970s? Answer: According to the cited reference, “Between the 1950s and 1970s Clioquinol was used to treat and prevent intestinal parasitic disease [intestinal amebiasis].” “In the early 1970s Clioquinol was withdrawn from the market as an oral agent due to an association with sub-acute myelo-optic neuropathy (SMON) in Japanese patients. SMON is a syndrome that involves sensory and motor disturbances in the lower limbs as well as visual changes that are due to symmetrical demyelination of the lateral and posterior funiculi of the spinal cord, optic nerve, and peripheral nerves.
    [Show full text]
  • Strengthening Poison Control Centres in the Region
    REGIONAL COMMITTEE Provisional Agenda item 12 Fifty-second Session SEA/RC52/8 25 June 1999 STRENGTHENING POISON CONTROL CENTRES IN THE REGION TOWARDS SUSTAINABLE DEVELOPMENT THROUGH SOUND MANAGEMENT OF CHEMICALS SEA/RC52/8 CONTENTS Page 1. INTRODUCTION 1 2. PROBLEM OF EXPOSURE TO TOXIC CHEMICALS 1 3. EXISTING CAPACITIES FOR POISON CONTROL 2 4. INTERNATIONAL POLICY FRAMEWORK IN POISON CONTROL 3 5. STRATEGIES PROPOSED FOR ESTABLISHING POISON CONTROL PROGRAMME 4 5.1 Political Commitment: Leading Role of Ministry of Health 4 5.2 Partnership with NGOs, Private Sectors and Other Disciplines 4 5.3 Prevention and Awareness Programme 5 5.4 Training and Education 5 5.5 Capacity Building and Institutional Strengthening 5 5.6 Support Role of IPCS/WHO and Centres of Excellence 5 6. SUMMARY AND CONCLUSIONS 6 7. POINTS FOR CONSIDERATION FOR IMPLEMENTATION OF THE STRATEGIES 7 7.1 Leading Role of Ministries of Health 7 7.2 Partnership with NGOs, Private Sector and Other Disciplines 7 7.3 Prevention and Awareness Programme 7 7.4 Training and Capacity Building 7 7.5 Role of WHO 8 SEA/RC52/8 1. INTRODUCTION The growing incidence of poisoning from accidental, occupational or intentional exposure to chemicals has drawn worldwide attention. While global incidence of poisoning is not known, it is estimated that up to half a million people die each year as a result of poisonings, due to pesticides and natural toxins. WHO conservatively estimated that though developing countries account for only 15% of the worldwide use of pesticides, about 50% of pesticide poisonings occur in these countries, especially through misuse of chemicals.
    [Show full text]
  • Diseases Tiunsmitted by Foods
    DISEASES TIUNSMITTED BY FOODS ( A CLASSIFICATION AND SUMMARY) SECOND EDITION U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES PUBLIC HEALTH SERVICE CENTERS FOR DISEASE CONTROL CENTER FOR PROFESSIONAL DEVELOPMENT AND TRAINING ATLANTA. GEORGIA 30333 DISEASES TIUNSMITTED BY FOODS ( A CIJiSSIFICATION AND SUMMARY) SECOND EDITION Frank L. Bryan, Ph.D., M.P.H. — U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES PUBLIC HEALTH SERVICE CENTERS FOR DISEASE CONTROL CENTER FOR PROFESSIONAL DEVE~PMENR AN_QTRAtNING ATLANTA, GEORGIA 30333 1982 DISEASES TRANSMITTED BY FOODS CONTENTS Page 1 INTRODUCTION 2 BACTERIAL DISEASES 2 Diseases of Contemporary Importance 7 Usually Transmitted by Other Means but Sometimes Foodborne Diseases in Which Proof of Transmission by Foods Is Inconclusive Unknown Role in Foodborne Transmission (Pathogenic and 16 Isolated from Foods) 17 VIRAL AND RICKETTSIW DISEASES 17 Epidemiological Evidence of Foodborne Transmission Viral Diseases which Could Possible be Transmitted by Foods but Proof Is Lacking 18 -I.-I PAMSITIC DISEASES LL 22 Always or Usually Transmitted by Foods 29 Usually Transmitted by Other Means but Sometimes Foodborne 33 FUNGAL DISEASES ‘- 33 Mycotoxicoses 37 Mushrooms 42 Mycotic Infections 43 PLANT TOXICANTS AND TOXINS 43 Alkaloids 47 Glycosides 4.9 Toxalbumins Resins 50 50 Other Toxicants, Toxins, and Allergens 54 TOXIC ANIM4LS 54 Fish Shellfish 53 60 Other Marine Animals 62 Non-Marine Animals 64 POISONOUS CHEMICALS 64 Metallic’Containers 65 Intentional Additives 68 Incidental and Accidental Food Additives 75 Allergens
    [Show full text]
  • New Findings and Symptomatic Treatment for Neurolathyrism, a Motor Neuron Disease Occurring in North West Bangladesh
    Paraplegia 32 (1994) 193-195 © 1994 International Medical Society of Paraplegia New findings and symptomatic treatment for neurolathyrism, a motor neuron disease occurring in North West Bangladesh A Haque MD,! M Hossain MD,! JK Khan DPharm,2 YH Kuo PhD,2 F Lambein PhD,2 J De Reuck MD3 I Department of Neurology, Institute of Postgraduate Medicine and Research, Dhaka, Bangladesh; 2 Laboratory of Physiological Chemistry, Faculty of Medicine, University of Ghent, KL Ledeganckstraat 35, B-9000, Gent, Belgium; 3 Department of Neurology, Faculty of Medicine, University of Ghent, De Pintelaan 185, B-9000, Gent, Belgium. Neurolathyrism is a form of spastic paraparesis caused by the neuroexcitatory amino acid 3-N-oxalyl-L-2,3-diaminopropanoic acid (f3-0DAP) present in the seeds and foliage of Lathyrus sativus. The disease is irreversible and usually nonprogressive. Tolperisone HCI, a centrally acting muscle relaxant, has been shown to reduce significantly the spasticity in neurolathyrism patients. Sporadic occurrence of HTLV-l infection (0.9% ) and of osteolathyrism was found among the neurolathyrism patients. Osteolathyrism is linked to the consumption of the green shoots of Lathyrus sativus. Keywords: neurolathyrism; Lathyrus sativus; HTLV-I; osteolathyrism; tolperisone HCI; motor neuron disease. Introduction of these patients were affected during the epidemic of 1970-74. Patients were selected Neurolathyrism is a motor neuron disease for treatment with tolperisone HCI (Mydo­ caused by overconsumption of the seeds of calm, chemical name: 2,4-dimethyl-3-pipe­ Lathyrus sativus, 1 a pulse grown and con­ ridinopropiophenone, Gedeon Richter, sumed in some Asian and African countries. Budapest, Hungary) along with controls.
    [Show full text]
  • Cause, Symptoms and Treatment of Lathyrism
    well. Minchin also noted affection of the bladder. Ruge and his co-workers (1925) and Ranjan (1944) described incontinence of urine and faeces as well as sexual impairment. It has been postulated that the disease is never pro- gressive after a few days or weeks beyond the initial paralysis (Bicknell and Prescott, 1942). Ranjan (1944), however, notes rapid progress of the disease. The published accounts of the reflexes in lathyrism are equally puzzling. Minchin (1940) observed normal cremasteric and abdominal reflexes along with spastic legs and extensor plantar responses. Trabaud and Mouharram (1932) found completely normal reflexes, including the plantar responses, though there was spasticity and clonus of the legs. A common symptom associated with lathyrism is night-blindness according to McCombie Young (1928), and Ranjan (1944) reports marked dimness of vision. Even the diseases which can experimentally be produced in animals by feeding them on certain species of legumes of the genus Lathyrus have also been called lathyrism, although they do not show the characteristic symptoms of the human lathyrism. Geiger et al. (1933) fed rats with a diet consisting of Lathyrus odoratus, the flowering sweet pea (at levels of 80, 50 and 25 per cent of the diet). Characteristic symptoms were lame- ness, paralysis and contracture of the spine and sternum. In other experiments on white rats also fed with a Lathyrus odoratus diet, carried out by Lewis and Esterer (1943), these authors produced a disease which they call lathyrism showing the following symptoms : Incon- tinence, lameness, paralysis of limbs, spinal curvature of the thoracic region. Another nutritional disease by feeding sheep with a certain species of legumes, viz, cull beans, has experimentally been produced by Willman and his co-workers.
    [Show full text]
  • Homeopathy, Longevity and Lathyrus Sativus Toxicity
    Lathyrus Lathyrism Newsletter 1 (2000) Homeopathy, longevity and far? In an Encyclopaedia of Plants published in 1855 (Loudun) it was already reported that bread made Lathyrus sativus toxicity. from a 50/50 mixture of grass pea and wheat seems to have no deleterious effect, while bread made only Fernand Lambein from grass pea causes paralysis of the legs “when used in continuance”. Thus, if taken with cereals and Lab Physiological Chemistry, Faculty of Medicine only 0.5 kg of grass pea is consumed, the tolerance and Health Sciences, Ghent University. J. level might be closer to an intake of about 2 grammes Kluyskensstraat 27, B-9000 Ghent, Belgium. of β–ODAP per day. Any nutritionist will explain that the amino acid score of a mixed diet containing Email: [email protected] cereals and legume seeds is much higher than for either cereals or legume seeds alone. From numerous publications, we know that lathyrism occurs mainly in periods when grass pea is consumed almost The re-launching of the Lathyrus Lathyrism exclusively, when cereals are unavailable or too Newsletter offers an occasion for renewed contacts expensive for the poor. Do we then need to select and perhaps also for reflections on viewpoints and more healthy grass pea varieties on the basis of goals. The last international and interdisciplinary amino acid score instead of only looking at β-ODAP? meeting where Lathyrus/lathyrism researchers could exchange ideas was in Addis Ababa in November “It is generally assumed that β-ODAP is the causative 1995. Smaller meetings took place in Hyderabad at agent for the crippling neurodegeneration the occasion of the retirement of Professor SLN Rao neurolathyrism” is a sentence that can be found in in March 1997, in Radom, Eastern Poland in June many variations in all careful publications 1997, and in Delhi we had a meeting of the Lathyrus mentioning the aetiology of lathyrism.
    [Show full text]
  • Food Poisoning a Threat to Humans
    Food Poisoning A Threat to Humans Hema Ramanathan Marsland Press PO Box 180432, Richmond Hill, New York 11418, USA Food Poisoning 2010 Food Poisoning INDEX Unit I-Food Poisoning Introduction Food-Borne Intoxications Food-Borne Infections Bacterial Food Poisoning Unit II- Food Poisoning Bacteria Salmonella sp. Campylobacter Listeria monocytogenes Escherichia coli Staphylococcus aureus Clostridium botulinum Clostridium perfringens Bacillus cereus Brucella sp. Vibrio Sp. Yersinia enterocolitica Unit III-Viruses Viral Gastroenteritis Norwalk-like Viruses Rotavirus Astrovirus Hepatitis A & E What should We do, if We get sick? How to prevent these microorganisms making our self and our family sick Food hygiene Animal surveillance data Some ways of preventing Food Poisoning 1 Food Poisoning 2010 Food Poisoning Unit IV- Mycotoxigenic Moulds as Agents of Food Poisoning Aspergillus flavus and Aspergillus parasiticus Occurance of the Moulds Aflatoxins Aspergillus ochraceus Aspergillus versicolor Aspergillus fumigatus Aspergillus terreus Aspergillus clavatus Eurotium Penicillium sp. Unit V – Algal Food Poisoning Toxic Syndromes Associated with Marine Algal Toxins Paralytic Shellfish Poisoning Diarrheic Shellfish Poisoning Neurotoxic Shellfish Poisoning Amnesic Shellfish Poisoning Ciguatera Poisoning Unit VI - Food Hygiene, Food Regulation and Standards Introduction Advantages of the Food laws/ Food Control Services Food Hygiene Milk Hygiene Meat Hygiene Fish Hygiene Egg hygiene Vegetable and Fruit Hygiene Hygiene for Food-Handlers Personal hygiene to be promoted Hygiene in Public Eating Places Food Control Administration Genesis of the PFA Act Provisions of the Original PFA Act, 1954 Food standards References 2 Food Poisoning 2010 Food Poisoning Unit I Introduction Food poisoning includes ill effects caused by the ingestion of contaminated food by many ways apart from microbial agents.
    [Show full text]
  • Poisonous and Injurious Plants of the United States: a Bibliography
    Humboldt State University Digital Commons @ Humboldt State University Botanical Studies Open Educational Resources and Data 5-2020 Poisonous and Injurious Plants of the United States: A Bibliography James P. Smith Jr Humboldt State University, [email protected] Follow this and additional works at: https://digitalcommons.humboldt.edu/botany_jps Part of the Botany Commons Recommended Citation Smith, James P. Jr, "Poisonous and Injurious Plants of the United States: A Bibliography" (2020). Botanical Studies. 67. https://digitalcommons.humboldt.edu/botany_jps/67 This Poisonous Plants is brought to you for free and open access by the Open Educational Resources and Data at Digital Commons @ Humboldt State University. It has been accepted for inclusion in Botanical Studies by an authorized administrator of Digital Commons @ Humboldt State University. For more information, please contact [email protected]. POISONOUS & INJURIOUS PLANTS OF THE UNITED STATES: A BIBLIOGRAPHY James P. Smith, Jr. Professor Emeritus of Botany Department of Biological Sciences Humboldt State University Arcata, California 23 May 2020 TABLE OF CONTENTS 1 • Introduction. 1 2 • General References . 2 3 • Symptoms & Sites . 8 4 • Poisonous Principles (Toxins). 12 5 • Food & Beverage Plants . 17 6 • Plants of Home & Garden . 19 7 • Medicinal Plants . 20 8 • Plants Poisonous to Pets & Horses . 21 9 • Purposeful Uses of Poisonous Plants Arrow and Dart Poisons. 22 Fish Poisons (Piscicides) . 23 Insecticides . 24 Rat Poisons (Raticides) . 25 Snail Poisons (Molluscides) . 25 10 • Plants by Major Group and Family Lycophytes . 26 Ferns. 26 Gymnosperms . 28 Flowering Plants . 30 11 • Plants by Region & State. 82 12 • Plants by Common & Scientific Names . 88 13 • Plants by Genus and Family .
    [Show full text]
  • Guam ALS/Parkinsonism-Dementia: a Long-Latency Neurotoxic Disorder Caused by "Slow Toxin(S)" in Food? Peter S
    LE JOURNAL CANADIEN DES SCIENCES NEUROLOGIQUES Guam ALS/Parkinsonism-Dementia: A Long-Latency Neurotoxic Disorder Caused by "Slow Toxin(s)" in Food? Peter S. Spencer ABSTRACT: Parkinsonism (P) with progressive dementia (D) of the Alzheimer type is recognized as a clinical variant of a form of amyotrophic lateral sclerosis (ALS) that has occurred in high incidence among the Chamorro people of the islands of Guam and Rota in the Marianas chain of Micronesia. The declining annual incidence, upward shifting of the age of onset, narrowing of the sex ratio, and occurrence of the disease among non-Chamorros, point to a disappearing environmental causation peculiar to the traditional culture of these islands. Evidence is presented in support of the proposal that heavy use of certain toxic plants, notably cycads, a traditional source of food and medicine for the Chamorro people, plays an important etiological role. Clinical and epidemiological approaches are offered to test for a relationship between ALS/P-D and long-latency plant toxicity. RESUME: Le syndrome SLA-Parkinsonisme-Demence de Guam: une affection neurotoxique avec periode de latence prolongee causee par des "toxines alimentaires lentes"? Le parkinsonisme (P) associe a une demence (D) progressive de type Alzheimer est reconnu comme une variante clinique d'une forme de sclerose laterale amyotrophique (SLA) qu'on retrouvait avec une incidence elevee parmi le peuple Chamorro des iles de Guam et de Rota dans la chaine des lies Marianas en Micronesie. La baisse de l'incidence annuelle, l'elevation de l'age de debut, une distribution plus egale selon le sexe et la presence de la maladie chez des non-Chamorros suggerent qu'il existe une cause environnementale a cette maladie, cause qui est en voie de disparition et qui est particuliere a la culture traditionnelle de ces iles.
    [Show full text]
  • Original and Review Articles
    70 THE NATIONAL MEDICAL JOURNAL OF INDIA VOL. I, NO.2 87 Romer FK. Sarcoidosis and Cancer: A critical review. In: Jones 100 Eisenberg H, Terasaki P, Sharma OP. HLA association studies in Williams W, Davis BH (eds), Eighth International Conference on black patients with sarcoidosis. Tissue Antigens 1978;11:484. Sarcoidosis and Other Granulomatous Diseases. Alpha Omega 101 Newill CA, John CJ, Cohen BH, et al. Sarcoidosis, HLA and im- Publishing Ltd, Cardiff, UK, 1980;567-71. munoglobulin markers in Baltimore Blacks. In: Chretien 1, Mar- 88 James DG. Is sarcoidosis a precursor of lung cancer? Cancer Con- sac J, Saltiel JC (eds), Sarcoidosis and Other Granulomatous Dis- sultation 1985;1(2):19. orders. Pergamon Press, Paris, 1981;253-6. 89 Kyle RA, Bayrd ED. Amyloidosis: Review of236 cases. Medicine 102 Tachibana T, Shirakura R, Yamazaki Y. HLA-DR antigens in sar- (Baltimore) 1975;54:271. coidosis. Sarcoidosis 1985;2:83. 90 Gordonson JS, Sargent J, Jacobson G, et al. Roentgenographic 103 Thunell M, Soundell K, Stjerberg N. HLA-antigens in patients manifestations of pulmonary amyloidosis. J Can Assoc Radiol with sarcoidosis from Northern Sweden. Sarcoidosis 1985;2:48. 1972;23:269. 104 Nowack D, Goebel K. Genetic Aspects of Sarcoidosis: Class II his- 91 Cole SR, McCormick, Sulavik SB. Granulomatous lymph node in- tocompatibility antigens and family study. Arch Intern Med volvement in amyloidosis. Sarcoidosis 1985;2:78. 1987;147:481. 92 Fresko D, Lazarus SS. Reactive systemic amyloidosis complicating 105 Crystal R, Roberts WC, Hunninghake GW, et at.' Pulmonary sar- longstanding sarcoidosis. NY State J Med 1982;82:232.
    [Show full text]