Heart to Heart Inherited Cardiovascular Conditions Services

Total Page:16

File Type:pdf, Size:1020Kb

Heart to Heart Inherited Cardiovascular Conditions Services Heart to Heart Inherited Cardiovascular Conditions Services A Needs Assessment and Service Review Hilary Burton Corinna Alberg Alison Stewart June 2009 www.phgfoundation.org PHG Foundation Team Dr Hilary Burton Programme Director Ms Corinna Alberg* Project Manager Dr Alison Stewart Principal Associate The Project Team would like to express their thanks to members of the Inherited Cardiovascular Conditions Services Working Group and in particular to the Cardiomyopathy Association, CRY, Marfan Association UK and SADS UK, who gave so freely of their time and expertise. Thanks are also due to the British Heart Foundation who provided us with meeting rooms and to Gill Cawdron for her excellent organizational support for the meetings. We would also like to acknowledge the contribution of the ELSI sub group members and the patients’ perspective focus group participants. The review was led and funded by the PHG Foundation. This report can be downloaded from our website: www.phgfoundation.org Published by PHG Foundation Strangeways Research Laboratory Worts Causeway Cambridge CB1 8RN UK Tel: +44 (0) 1223 740200 Fax: +44 (0) 1223 740892 First edition, June 2009 © 2009 PHG Foundation ISBN 978-1-907198-01-4 * To whom correspondence should be addressed: [email protected] The PHG Foundation is the working name of the Foundation for Genomics and Population Health, an independent charitable organisation (registered in England and Wales, charity No. 1118664 company No. 5823194), which works with partners to achieve better health through the responsible and evidence-based application of biomedical science. 2 Heart to heart: Inherited Cardiovascular Conditions Services CONTENTS Page Foreword 2 Executive summary and recommendations 3 Chapter 1 Introduction and background 10 Chapter 2 Science, epidemiology and clinical management 14 Chapter 3 The policy context 23 Chapter 4 The patients’ perspective 30 Chapter 5 Comparative survey of ICC services 36 Chapter 6 What makes a specialist service? 62 Chapter 7 Ethical and legal issues 82 Chapter 8 Horizon scanning: new technological developments and their potential 92 impact on services Chapter 9 Conclusions and recommendations 96 Chapter 10 References 103 Appendices 1 Inherited cardiovascular conditions - background document 108 2 Copies of questionnaires to services 3 Calculations for estimating shortfall in activity 4 Service profile of genetic tests listed by UKGTN 5 Working group membership 6 Ethical and legal sub group membership 1 Foreword Professor Peter Weissberg Medical Director British Heart Foundation This document is the product of a huge amount of hard work involving almost everyone in the UK with an interest in Inherited Cardiovascular Conditions (ICC). The findings of the Working Group illustrate what happens when clinical services evolve organically around specialists with a particular interest. Centres of excellence emerge, but not necessarily in the right places, and there is commonly a gross geographical mismatch between service provision and population need. This is typical of an embryonic specialty driven mostly by research orientated clinicians. However, as a consequence of the ongoing and rapidly advancing revolution in genetics, ICC has now come of age. Many of the causative genetic mutations are known and, in many cases, effective treatments are available. Therefore, it is no longer acceptable for someone at risk of an ICC not to receive timely, expert attention. The review contains exemplars of the multidisciplinary approach needed to provide an appropriate service for patients with ICC. As we move into an era of World Class Commissioning it behoves commissioners to pay attention to this document and ensure that there is equity of access to first class specialist services across the UK for all patients suspected to be at risk of an ICC. The BHF is delighted to be partnering the Department of Health in launching a genetics information service that will ensure that relatives of a victim of a presumed ICC will be provided with all the information they need to access appropriate care, advice and support from the health service and other relevant support groups. 2 Heart to heart: Inherited Cardiovascular Conditions Services Review of Services for Inherited Cardiovascular Conditions - Executive Summary Inherited cardiovascular conditions (ICCs) are a group of monogenic disorders primarily affecting the heart, its conducting system or vasculature. In some cases, the first indication that an individual has an ICC is sudden cardiac death (SCD), often in adolescence or early adulthood. When an ICC is diagnosed, or suspected, there are implications for the individual’s relatives, who may also be at risk. Two surveys of service provision for ICCs, undertaken in 2006, highlighted variation in service provision but noted that a more comprehensive review was warranted. The Foundation for Genomics and Population Health (PHG Foundation) was invited to undertake a needs assessment and review of ICC services under the supervision of an expert Working Group. This project is intended to inform the work of commissioners and providers charged with implementing Chapter 8 of the National Service Framework for Coronary Heart Disease (2005), which makes key recommendations for the provision of services for patients and families with SCD and ICCs. It was agreed also to include familial hypercholesterolaemia (FH) within the scope of this review, as this relatively common monogenic disorder is associated with premature coronary heart disease. Science, epidemiology and clinical management The last decade has seen dramatic advances in our understanding of the molecular pathology of ICCs. More than 50 ICCs have been recognised and genetic tests are increasingly available for the more common disorders (such as FH and hypertrophic cardiomyopathy (HCM)) and for some rarer disorders (for example, Marfan syndrome and long QT syndrome (LQTS)). The conditions are highly heterogeneous, both genetically and clinically. Epidemiological evidence is incomplete, but suggests a combined total prevalence for ICCs of about 340,000 in the UK (including approximately 120,000 individuals affected by FH). Risks associated with the conditions are highly variable, depending on the mutation and the spectrum of clinical risk factors. The average annual risk of SCD is about 0.1% for LQTS, and the annual mortality for HCM about 0.3–1%. Risks are substantially higher for patients with the most severe symptoms or in those who have experienced a resuscitated cardiac arrest. Mutation carriers with no identifiable clinical risk factors have lower absolute risks. For FH, annual average mortality is about 0.1–0.5%. Marfan syndrome can be fatal by age 30 or younger if untreated. For many ICCs, careful clinical management can reduce risk. For arrhythmia syndromes (such as LQT) and HCM, treatments can include a variety of drugs, lifestyle advice to avoid triggering events, fitting of implantable defribillator devices or, in some cases, surgical options. FH can be successfully treated by statins. Genetic testing can aid clinical management by enabling more accurate diagnosis and risk assessment, and in some cases guiding the choice of treatment. Importantly, identification of a mutation in an affected person enables their relatives to be offered targeted testing for the same mutation. Those who carry the mutation can then be assessed and offered appropriate surveillance and/or treatment, while those who do not carry the mutation can be spared further investigation. This approach is known as cascade testing. Along with genetic discoveries have come advances in specialist branches of cardiology, such as electrophysiology, echocardiography and imaging techniques, that have improved and refined diagnosis and management of ICCs. The conditions are extraordinarily varied and complex, requiring specialist input at almost every stage of diagnosis and management. 3 Policy background Policy initiatives, particularly Chapter 8 of the National Service Framework for Coronary Heart Disease and England and Wales (and a similar initiative in Scotland) have mandated improved services for ICCs, focusing initially on the arrhythmia syndromes and HCM but more recently broadening in scope to include a wider range of ICCs. For FH, guidance issued by NICE in 2008 recommended systematic cascade genetic testing in the extended families of affected individuals. Initiatives by professional groups (for example, Heart Rhythm UK) and the charitable sector (for example, the British Heart Foundation and patient-representative groups) have raised awareness of ICCs and supported improved recognition and management of families affected by SCD. Policy initiatives described in this report relate primarily to England and Wales but are of relevance to how services are developing in Scotland and Northern Ireland. Patients’ perspective Despite the recent policy impetus, a focus group of representatives of patient-support groups, convened as part of our review, concluded that services are still inadequate to deliver a timely, coordinated and holistic service to patients and their families. Awareness of ICCs among coroners, GPs and general cardiologists is still too low, with the result that patients may not receive appropriate referral to the specialist service. Access to genetic advice and testing was seen as problematic, with insufficient communication between specialist genetics and cardiology elements of the service. Patients would like to see better continuity
Recommended publications
  • Supplemental Information to Mammadova-Bach Et Al., “Laminin Α1 Orchestrates VEGFA Functions in the Ecosystem of Colorectal Carcinogenesis”
    Supplemental information to Mammadova-Bach et al., “Laminin α1 orchestrates VEGFA functions in the ecosystem of colorectal carcinogenesis” Supplemental material and methods Cloning of the villin-LMα1 vector The plasmid pBS-villin-promoter containing the 3.5 Kb of the murine villin promoter, the first non coding exon, 5.5 kb of the first intron and 15 nucleotides of the second villin exon, was generated by S. Robine (Institut Curie, Paris, France). The EcoRI site in the multi cloning site was destroyed by fill in ligation with T4 polymerase according to the manufacturer`s instructions (New England Biolabs, Ozyme, Saint Quentin en Yvelines, France). Site directed mutagenesis (GeneEditor in vitro Site-Directed Mutagenesis system, Promega, Charbonnières-les-Bains, France) was then used to introduce a BsiWI site before the start codon of the villin coding sequence using the 5’ phosphorylated primer: 5’CCTTCTCCTCTAGGCTCGCGTACGATGACGTCGGACTTGCGG3’. A double strand annealed oligonucleotide, 5’GGCCGGACGCGTGAATTCGTCGACGC3’ and 5’GGCCGCGTCGACGAATTCACGC GTCC3’ containing restriction site for MluI, EcoRI and SalI were inserted in the NotI site (present in the multi cloning site), generating the plasmid pBS-villin-promoter-MES. The SV40 polyA region of the pEGFP plasmid (Clontech, Ozyme, Saint Quentin Yvelines, France) was amplified by PCR using primers 5’GGCGCCTCTAGATCATAATCAGCCATA3’ and 5’GGCGCCCTTAAGATACATTGATGAGTT3’ before subcloning into the pGEMTeasy vector (Promega, Charbonnières-les-Bains, France). After EcoRI digestion, the SV40 polyA fragment was purified with the NucleoSpin Extract II kit (Machery-Nagel, Hoerdt, France) and then subcloned into the EcoRI site of the plasmid pBS-villin-promoter-MES. Site directed mutagenesis was used to introduce a BsiWI site (5’ phosphorylated AGCGCAGGGAGCGGCGGCCGTACGATGCGCGGCAGCGGCACG3’) before the initiation codon and a MluI site (5’ phosphorylated 1 CCCGGGCCTGAGCCCTAAACGCGTGCCAGCCTCTGCCCTTGG3’) after the stop codon in the full length cDNA coding for the mouse LMα1 in the pCIS vector (kindly provided by P.
    [Show full text]
  • Gene Symbol Gene Description ACVR1B Activin a Receptor, Type IB
    Table S1. Kinase clones included in human kinase cDNA library for yeast two-hybrid screening Gene Symbol Gene Description ACVR1B activin A receptor, type IB ADCK2 aarF domain containing kinase 2 ADCK4 aarF domain containing kinase 4 AGK multiple substrate lipid kinase;MULK AK1 adenylate kinase 1 AK3 adenylate kinase 3 like 1 AK3L1 adenylate kinase 3 ALDH18A1 aldehyde dehydrogenase 18 family, member A1;ALDH18A1 ALK anaplastic lymphoma kinase (Ki-1) ALPK1 alpha-kinase 1 ALPK2 alpha-kinase 2 AMHR2 anti-Mullerian hormone receptor, type II ARAF v-raf murine sarcoma 3611 viral oncogene homolog 1 ARSG arylsulfatase G;ARSG AURKB aurora kinase B AURKC aurora kinase C BCKDK branched chain alpha-ketoacid dehydrogenase kinase BMPR1A bone morphogenetic protein receptor, type IA BMPR2 bone morphogenetic protein receptor, type II (serine/threonine kinase) BRAF v-raf murine sarcoma viral oncogene homolog B1 BRD3 bromodomain containing 3 BRD4 bromodomain containing 4 BTK Bruton agammaglobulinemia tyrosine kinase BUB1 BUB1 budding uninhibited by benzimidazoles 1 homolog (yeast) BUB1B BUB1 budding uninhibited by benzimidazoles 1 homolog beta (yeast) C9orf98 chromosome 9 open reading frame 98;C9orf98 CABC1 chaperone, ABC1 activity of bc1 complex like (S. pombe) CALM1 calmodulin 1 (phosphorylase kinase, delta) CALM2 calmodulin 2 (phosphorylase kinase, delta) CALM3 calmodulin 3 (phosphorylase kinase, delta) CAMK1 calcium/calmodulin-dependent protein kinase I CAMK2A calcium/calmodulin-dependent protein kinase (CaM kinase) II alpha CAMK2B calcium/calmodulin-dependent
    [Show full text]
  • Adrenocortical Tumors Have a Distinct Long Non-Coding RNA Expression Profile and LINC00271 Is Downregulated in Malignancy
    Edinburgh Research Explorer Adrenocortical tumors have a distinct long non-coding RNA expression profile and LINC00271 is downregulated in malignancy Citation for published version: Buishand, F, Liu-Chittenden, Y, Fan, Y, Tirosh, A, Gara, S, Patel, D, Meerzaman, D & Kebebew, E 2019, 'Adrenocortical tumors have a distinct long non-coding RNA expression profile and LINC00271 is downregulated in malignancy', Surgery. https://doi.org/10.1016/j.surg.2019.04.067 Digital Object Identifier (DOI): 10.1016/j.surg.2019.04.067 Link: Link to publication record in Edinburgh Research Explorer Document Version: Peer reviewed version Published In: Surgery General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 07. Oct. 2021 Elsevier Editorial System(tm) for Surgery Manuscript Draft Manuscript Number: 19-AAES-22R2 Title: Adrenocortical tumors have a distinct long non-coding RNA expression profile and LINC00271 is downregulated in malignancy Article Type: AAES Society Paper Section/Category: Basic Research Keywords: LINC00271; adrenocortical; long noncoding RNA; microarray; prognostic marker; gene signaling pathway. Corresponding Author: Dr.
    [Show full text]
  • Genome Editing with CRISPR/Cas9 in Postnatal Mice Corrects PRKAG2 Cardiac Syndrome
    Cell Research (2016) 26:1099-1111. © 2016 IBCB, SIBS, CAS All rights reserved 1001-0602/16 $ 32.00 ORIGINAL ARTICLE www.nature.com/cr Genome editing with CRISPR/Cas9 in postnatal mice corrects PRKAG2 cardiac syndrome Chang Xie1, 2, *, Ya-Ping Zhang3, *, Lu Song2, *, Jie Luo1, Wei Qi2, Jialu Hu3, Danbo Lu3, Zhen Yang3, Jian Zhang2, Jian Xiao1, Bin Zhou4, Jiu-Lin Du5, Naihe Jing2, Yong Liu1, Yan Wang1, Bo-Liang Li2, Bao-Liang Song1, Yan Yan3 1Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China; 2The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China; 3Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China; 4Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sci- ences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China; 5Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Acade- my of Sciences, 320 Yue-Yang Road, Shanghai 200031, China PRKAG2 cardiac syndrome is an autosomal dominant inherited disease resulted from mutations in the PRK- AG2 gene that encodes γ2 regulatory subunit of AMP-activated protein kinase. Affected patients usually develop ventricular tachyarrhythmia and experience progressive heart failure that is refractory to medical treatment and requires cardiac transplantation. In this study, we identify a H530R mutation in PRKAG2 from patients with famil- ial Wolff-Parkinson-White syndrome. By generating H530R PRKAG2 transgenic and knock-in mice, we show that both models recapitulate human symptoms including cardiac hypertrophy and glycogen storage, confirming that the H530R mutation is causally related to PRKAG2 cardiac syndrome.
    [Show full text]
  • Genetic Mutations and Mechanisms in Dilated Cardiomyopathy
    Genetic mutations and mechanisms in dilated cardiomyopathy Elizabeth M. McNally, … , Jessica R. Golbus, Megan J. Puckelwartz J Clin Invest. 2013;123(1):19-26. https://doi.org/10.1172/JCI62862. Review Series Genetic mutations account for a significant percentage of cardiomyopathies, which are a leading cause of congestive heart failure. In hypertrophic cardiomyopathy (HCM), cardiac output is limited by the thickened myocardium through impaired filling and outflow. Mutations in the genes encoding the thick filament components myosin heavy chain and myosin binding protein C (MYH7 and MYBPC3) together explain 75% of inherited HCMs, leading to the observation that HCM is a disease of the sarcomere. Many mutations are “private” or rare variants, often unique to families. In contrast, dilated cardiomyopathy (DCM) is far more genetically heterogeneous, with mutations in genes encoding cytoskeletal, nucleoskeletal, mitochondrial, and calcium-handling proteins. DCM is characterized by enlarged ventricular dimensions and impaired systolic and diastolic function. Private mutations account for most DCMs, with few hotspots or recurring mutations. More than 50 single genes are linked to inherited DCM, including many genes that also link to HCM. Relatively few clinical clues guide the diagnosis of inherited DCM, but emerging evidence supports the use of genetic testing to identify those patients at risk for faster disease progression, congestive heart failure, and arrhythmia. Find the latest version: https://jci.me/62862/pdf Review series Genetic mutations and mechanisms in dilated cardiomyopathy Elizabeth M. McNally, Jessica R. Golbus, and Megan J. Puckelwartz Department of Human Genetics, University of Chicago, Chicago, Illinois, USA. Genetic mutations account for a significant percentage of cardiomyopathies, which are a leading cause of conges- tive heart failure.
    [Show full text]
  • 32-3099: PRKAB1 Recombinant Protein Description
    9853 Pacific Heights Blvd. Suite D. San Diego, CA 92121, USA Tel: 858-263-4982 Email: [email protected] 32-3099: PRKAB1 Recombinant Protein Alternative Name : AMPK,HAMPKb,5'-AMP-activated protein kinase subunit beta-1,AMPK subunit beta-1,AMPKb,PRKAB1. Description Source : E.coli. PRKAB1 Human Recombinant produced in E.Coli is a single, non-glycosylated, polypeptide chain containing 293 amino acids (1-270 a.a.) and having a molecular mass of 32.8 kDa. The PRKAB1 is fused to a 23 amino acid His Tag at N- Terminus and purified by proprietary chromatographic techniques. 5'-AMP-activated protein kinase subunit beta-1 (PRKAB1) hinders protein, carbohydrate and lipid biosynthesis, in addition to cell growth and proliferation. AMPK is a heterotrimer comprised of an alpha catalytic subunit, and non-catalytic beta and gamma subunits. AMPK acts via direct phosphorylation of metabolic enzymes, and longer-term effects by phosphorylation of transcription regulators. PRKAB1 is a regulator of cellular polarity by remodeling the actin cytoskeleton; most likely by indirectly activating myosin. Beta non-catalytic subunit acts as a scaffold on which the AMPK complex compiles, through its C-terminus that joins alpha (PRKAA1 or PRKAA2) and gamma subunits (PRKAG1, PRKAG2 or PRKAG3). Product Info Amount : 5 µg Purification : Greater than 85% as determined by SDS-PAGE. The PRKAB1 protein solution (0.5mg/ml) contains 20mM Tris-HCl buffer (pH 8.0), 0.15M NaCl, Content : 10% glycerol and 1mM DTT. Store at 4°C if entire vial will be used within 2-4 weeks. Store, frozen at -20°C for longer periods of Storage condition : time.
    [Show full text]
  • Profiling Data
    Compound Name DiscoveRx Gene Symbol Entrez Gene Percent Compound Symbol Control Concentration (nM) JNK-IN-8 AAK1 AAK1 69 1000 JNK-IN-8 ABL1(E255K)-phosphorylated ABL1 100 1000 JNK-IN-8 ABL1(F317I)-nonphosphorylated ABL1 87 1000 JNK-IN-8 ABL1(F317I)-phosphorylated ABL1 100 1000 JNK-IN-8 ABL1(F317L)-nonphosphorylated ABL1 65 1000 JNK-IN-8 ABL1(F317L)-phosphorylated ABL1 61 1000 JNK-IN-8 ABL1(H396P)-nonphosphorylated ABL1 42 1000 JNK-IN-8 ABL1(H396P)-phosphorylated ABL1 60 1000 JNK-IN-8 ABL1(M351T)-phosphorylated ABL1 81 1000 JNK-IN-8 ABL1(Q252H)-nonphosphorylated ABL1 100 1000 JNK-IN-8 ABL1(Q252H)-phosphorylated ABL1 56 1000 JNK-IN-8 ABL1(T315I)-nonphosphorylated ABL1 100 1000 JNK-IN-8 ABL1(T315I)-phosphorylated ABL1 92 1000 JNK-IN-8 ABL1(Y253F)-phosphorylated ABL1 71 1000 JNK-IN-8 ABL1-nonphosphorylated ABL1 97 1000 JNK-IN-8 ABL1-phosphorylated ABL1 100 1000 JNK-IN-8 ABL2 ABL2 97 1000 JNK-IN-8 ACVR1 ACVR1 100 1000 JNK-IN-8 ACVR1B ACVR1B 88 1000 JNK-IN-8 ACVR2A ACVR2A 100 1000 JNK-IN-8 ACVR2B ACVR2B 100 1000 JNK-IN-8 ACVRL1 ACVRL1 96 1000 JNK-IN-8 ADCK3 CABC1 100 1000 JNK-IN-8 ADCK4 ADCK4 93 1000 JNK-IN-8 AKT1 AKT1 100 1000 JNK-IN-8 AKT2 AKT2 100 1000 JNK-IN-8 AKT3 AKT3 100 1000 JNK-IN-8 ALK ALK 85 1000 JNK-IN-8 AMPK-alpha1 PRKAA1 100 1000 JNK-IN-8 AMPK-alpha2 PRKAA2 84 1000 JNK-IN-8 ANKK1 ANKK1 75 1000 JNK-IN-8 ARK5 NUAK1 100 1000 JNK-IN-8 ASK1 MAP3K5 100 1000 JNK-IN-8 ASK2 MAP3K6 93 1000 JNK-IN-8 AURKA AURKA 100 1000 JNK-IN-8 AURKA AURKA 84 1000 JNK-IN-8 AURKB AURKB 83 1000 JNK-IN-8 AURKB AURKB 96 1000 JNK-IN-8 AURKC AURKC 95 1000 JNK-IN-8
    [Show full text]
  • Supplementary Table 1
    SI Table S1. Broad protein kinase selectivity for PF-2771. Kinase, PF-2771 % Inhibition at 10 μM Service Kinase, PF-2771 % Inhibition at 1 μM Service rat RPS6KA1 (RSK1) 39 Dundee AURKA (AURA) 24 Invitrogen IKBKB (IKKb) 26 Dundee CDK2 /CyclinA 21 Invitrogen mouse LCK 25 Dundee rabbit MAP2K1 (MEK1) 19 Dundee AKT1 (AKT) 21 Dundee IKBKB (IKKb) 16 Dundee CAMK1 (CaMK1a) 19 Dundee PKN2 (PRK2) 14 Dundee RPS6KA5 (MSK1) 18 Dundee MAPKAPK5 14 Dundee PRKD1 (PKD1) 13 Dundee PIM3 12 Dundee MKNK2 (MNK2) 12 Dundee PRKD1 (PKD1) 12 Dundee MARK3 10 Dundee NTRK1 (TRKA) 12 Invitrogen SRPK1 9 Dundee MAPK12 (p38g) 11 Dundee MAPKAPK5 9 Dundee MAPK8 (JNK1a) 11 Dundee MAPK13 (p38d) 8 Dundee rat PRKAA2 (AMPKa2) 11 Dundee AURKB (AURB) 5 Dundee NEK2 11 Invitrogen CSK 5 Dundee CHEK2 (CHK2) 11 Invitrogen EEF2K (EEF-2 kinase) 4 Dundee MAPK9 (JNK2) 9 Dundee PRKCA (PKCa) 4 Dundee rat RPS6KA1 (RSK1) 8 Dundee rat PRKAA2 (AMPKa2) 4 Dundee DYRK2 7 Dundee rat CSNK1D (CKId) 3 Dundee AKT1 (AKT) 7 Dundee LYN 3 BioPrint PIM2 7 Invitrogen CSNK2A1 (CKIIa) 3 Dundee MAPK15 (ERK7) 6 Dundee CAMKK2 (CAMKKB) 1 Dundee mouse LCK 5 Dundee PIM3 1 Dundee PDPK1 (PDK1) (directed 5 Invitrogen rat DYRK1A (MNB) 1 Dundee RPS6KB1 (p70S6K) 5 Dundee PBK 0 Dundee CSNK2A1 (CKIIa) 4 Dundee PIM1 -1 Dundee CAMKK2 (CAMKKB) 4 Dundee DYRK2 -2 Dundee SRC 4 Invitrogen MAPK12 (p38g) -2 Dundee MYLK2 (MLCK_sk) 3 Invitrogen NEK6 -3 Dundee MKNK2 (MNK2) 2 Dundee RPS6KB1 (p70S6K) -3 Dundee SRPK1 2 Dundee AKT2 -3 Dundee MKNK1 (MNK1) 2 Dundee RPS6KA3 (RSK2) -3 Dundee CHEK1 (CHK1) 2 Invitrogen rabbit MAP2K1 (MEK1) -4 Dundee
    [Show full text]
  • Dilated Cardiomyopathy Caused by Truncating Titin Variants
    BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance Supplemental material placed on this supplemental material which has been supplied by the author(s) J Med Genet Dilated cardiomyopathy caused by truncating titin variants – Long-term outcomes, arrhythmias, response to treatment and sex differences SUPPLEMENTARY MATERIAL Christoffer Rasmus Vissing1*, MD; Torsten Bloch Rasmussen2, MD, PhD; Anne Mette Dybro2, MD; Morten Salling Olesen3,4, MSc, PhD; Lisbeth Nørum Pedersen5; MSc, PhD; Morten Jensen, MD, PhD2; Henning Bundgaard1, MD, DMSc; Alex Hørby Christensen1,6 MD, PhD 1The Capital Region’s Unit for Inherited Cardiac Diseases, Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark 2Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark 3Laboratory for Molecular Cardiology, University of Copenhagen, Copenhagen, Denmark 4Department of Biomedical Sciences, University of Copenhagen, Copenhagen, 2200 N, Denmark 5Department of Molecular Medicine, Aarhus University Hospital, Denmark. 6Department of Cardiology, Herlev-Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark *Corresponding author: Christoffer Rasmus Vissing, MD The Capital Region’s Unit for Inherited Cardiac Diseases, Department of Cardiology, The Heart Center, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, DK-2100 Copenhagen, Denmark, E-mail: [email protected]; Phone +45 3545 5045 1 Vissing CR, et al. J Med Genet 2020;0:1–10.
    [Show full text]
  • Supplementary Table 1. Pain and PTSS Associated Genes (N = 604
    Supplementary Table 1. Pain and PTSS associated genes (n = 604) compiled from three established pain gene databases (PainNetworks,[61] Algynomics,[52] and PainGenes[42]) and one PTSS gene database (PTSDgene[88]). These genes were used in in silico analyses aimed at identifying miRNA that are predicted to preferentially target this list genes vs. a random set of genes (of the same length). ABCC4 ACE2 ACHE ACPP ACSL1 ADAM11 ADAMTS5 ADCY5 ADCYAP1 ADCYAP1R1 ADM ADORA2A ADORA2B ADRA1A ADRA1B ADRA1D ADRA2A ADRA2C ADRB1 ADRB2 ADRB3 ADRBK1 ADRBK2 AGTR2 ALOX12 ANO1 ANO3 APOE APP AQP1 AQP4 ARL5B ARRB1 ARRB2 ASIC1 ASIC2 ATF1 ATF3 ATF6B ATP1A1 ATP1B3 ATP2B1 ATP6V1A ATP6V1B2 ATP6V1G2 AVPR1A AVPR2 BACE1 BAMBI BDKRB2 BDNF BHLHE22 BTG2 CA8 CACNA1A CACNA1B CACNA1C CACNA1E CACNA1G CACNA1H CACNA2D1 CACNA2D2 CACNA2D3 CACNB3 CACNG2 CALB1 CALCRL CALM2 CAMK2A CAMK2B CAMK4 CAT CCK CCKAR CCKBR CCL2 CCL3 CCL4 CCR1 CCR7 CD274 CD38 CD4 CD40 CDH11 CDK5 CDK5R1 CDKN1A CHRM1 CHRM2 CHRM3 CHRM5 CHRNA5 CHRNA7 CHRNB2 CHRNB4 CHUK CLCN6 CLOCK CNGA3 CNR1 COL11A2 COL9A1 COMT COQ10A CPN1 CPS1 CREB1 CRH CRHBP CRHR1 CRHR2 CRIP2 CRYAA CSF2 CSF2RB CSK CSMD1 CSNK1A1 CSNK1E CTSB CTSS CX3CL1 CXCL5 CXCR3 CXCR4 CYBB CYP19A1 CYP2D6 CYP3A4 DAB1 DAO DBH DBI DICER1 DISC1 DLG2 DLG4 DPCR1 DPP4 DRD1 DRD2 DRD3 DRD4 DRGX DTNBP1 DUSP6 ECE2 EDN1 EDNRA EDNRB EFNB1 EFNB2 EGF EGFR EGR1 EGR3 ENPP2 EPB41L2 EPHB1 EPHB2 EPHB3 EPHB4 EPHB6 EPHX2 ERBB2 ERBB4 EREG ESR1 ESR2 ETV1 EZR F2R F2RL1 F2RL2 FAAH FAM19A4 FGF2 FKBP5 FLOT1 FMR1 FOS FOSB FOSL2 FOXN1 FRMPD4 FSTL1 FYN GABARAPL1 GABBR1 GABBR2 GABRA2 GABRA4
    [Show full text]
  • Cardiogenetics Testing Reference Guide December 2018
    Cardiogenetics Testing reference guide December 2018 Why Choose Ambry More than 1 in 200 people have an inherited cardiovascular condition. Ambry’s mission is to provide the most advanced genetic testing information available to help you identity those at-risk and determine the best treatment options. If we know a patient has a disease-causing genetic change, not only does it mean better disease management, it also indicates that we can test others in the family and provide them with potentially life-saving information. Diseases and Testing Options cardiomyopathies arrhythmias Hypertrophic Cardiomyopathy (HCMNext) Catecholaminergic Polymorphic Ventricular Dilated Cardiomyopathy (DCMNext) Tachycardia (CPVTNext) Arrhythmogenic Right Ventricular Long QT Syndrome, Short QT Syndrome, Cardiomyopathy (ARVCNext) Brugada Syndrome (LongQTNext, RhythmNext) Cardiomyopathies (CMNext, CardioNext) Arrhythmias (RhythmNext, CardioNext) other cardio conditions Transthyretin Amyloidosis (TTR) familial hypercholesterolemia Noonan Syndrome (NoonanNext) and lipid disorders Hereditary Hemorrhagic Telangiectasia Familial Hypercholesterolemia (FHNext) (HHTNext) Sitosterolemia (Sitosterolemia Panel) Comprehensive Lipid Menu thoracic aortic aneurysms (CustomNext-Cardio) and dissections Familial Chylomicronemia Syndrome (FCSNext) Thoracic Aneurysms and Dissections, aortopathies (TAADNext) Marfan Syndrome (TAADNext) Ehlers-Danlos Syndrome (TAADNext) Targeted Panels Gene Comparison ALL PANELS HAVE A TURNAROUND TIME OF 2-3 WEEKS arrhythmias CPVTNext CPVTNext CASQ2,
    [Show full text]
  • PRKAG2 Gene Protein Kinase AMP-Activated Non-Catalytic Subunit Gamma 2
    PRKAG2 gene protein kinase AMP-activated non-catalytic subunit gamma 2 Normal Function The PRKAG2 gene provides instructions for making one part (the gamma-2 subunit) of a larger enzyme called AMP-activated protein kinase (AMPK). This enzyme helps sense and respond to energy demands within cells. It is active in many different tissues, including heart (cardiac) muscle and muscles used for movement (skeletal muscles). AMP-activated protein kinase is likely involved in the development of the heart before birth, although its role in this process is unknown. AMP-activated protein kinase regulates chemical pathways involving the cell's main energy source, a molecule called adenosine triphosphate (ATP). The breakdown of ATP releases energy to drive many types of chemical reactions. AMP-activated protein kinase is activated during times of cellular stress (such as low oxygen levels or muscle exercise), when ATP is broken down rapidly to produce energy. If ATP levels become too low, the enzyme restores the balance of energy by limiting chemical reactions that require ATP and stimulating pathways that generate ATP. Studies suggest that AMP-activated protein kinase may play a role in controlling the activity of other genes, although many of these genes have not been identified. The enzyme may also regulate the activity of certain ion channels in the heart. These channels, which transport positively charged atoms (ions) into and out of heart muscle cells, play critical roles in maintaining the heart's normal rhythm. Health Conditions Related to Genetic Changes Wolff-Parkinson-White syndrome At least seven mutations that cause Wolff-Parkinson-White syndrome have been identified in the PRKAG2 gene.
    [Show full text]