Trihydrate, 99.9% (Metals Basis), Pt 45.2% Potassium Tetracyano
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Effect of Bath Temperature on the Electrodeposition of Snse Thin
The 4th Annual Seminar of National Science Fellowship 2004 [AMT10] Aqueous electrodeposition and properties of tin selenide thin films Saravanan Nagalingam1, Zulkarnain Zainal1, Anuar Kassim1, Mohd. Zobir Hussein1, Wan Mahmood Mat Yunus2 1Department of Chemistry, 2Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia Introduction Motivated by the potential applications of composition of the electrolytic solution tin chalcogenides, investigations on these (Riveros et al., 2001). We report here the compounds are becoming particularly active electrodeposition of SnSe thin films under in the field of materials chemistry. Tin aqueous conditions in the presence of chalcogenides offer a range of optical band ethylendiaminetetraacetate (EDTA) as a gaps suitable for various optical and chelating agent. optoelectronic applications. These compounds are also used as sensor and laser materials, Materials and Methods thin films polarizers and thermoelectric A conventional three-electrode cell was cooling materials (Zweibel, 2000). employed in this study. Ag/AgCl was used as Considerable attention has been given by the reference electrode to which all potentials various researchers in studying the properties were quoted. The working and counter of tin selenide (SnSe). SnSe is a narrow band electrodes were made from indium tin oxide gap binary IV-VI semiconductor with an (ITO) glass substrate and platinum, orthorhombic crystal structure. Among the respectively. The ITO glass substrates were uses of tin selenide (SnSe) are as memory cleaned ultrasonically in ethanol and distilled switching devices, holographic recording water before the deposition process. The systems, and infrared electronic devices counter electrode was polished prior to the (Lindgren et al., 2002). SnSe has been studied insertion into the electrolyte cell. -
Electronic Structure of Designed [(Snse)1+D ]M [Tise2]
Invited Paper DOI: 10.1557/jmr.2019.128 Electronic structure of designed [(SnSe)1+d]m[TiSe2]2 heterostructure thin films with tunable layering sequence https://doi.org/10.1557/jmr.2019.128 . Fabian Göhler1 , Danielle M. Hamann2, Niels Rösch1, Susanne Wolff1, Jacob T. Logan2, Robert Fischer2, Florian Speck1, David C. Johnson2, Thomas Seyller1,a) 1Institute of Physics, Chemnitz University of Technology, D-09126 Chemnitz, Germany 2Department of Chemistry, University of Oregon, Eugene, Oregon 97401, USA a)Address all correspondence to this author. e-mail: [email protected] Received: 18 February 2019; accepted: 21 March 2019 fi m A series of [(SnSe)1+d]m[TiSe2]2 heterostructure thin lms built up from repeating units of bilayers of SnSe and two layers of TiSe2 were synthesized from designed precursors. The electronic structure of the films was https://www.cambridge.org/core/terms investigated using X-ray photoelectron spectroscopy for samples with m = 1, 2, 3, and 7 and compared to binary samples of TiSe2 and SnSe. The observed binding energies of core levels and valence bands of the heterostructures are largely independent of m. For the SnSe layers, we can observe a rigid band shift in the heterostructures compared to the binary, which can be explained by electron transfer from SnSe to TiSe2. The electronic structure of the TiSe2 layers shows a more complicated behavior, as a small shift can be observed in the valence band and Se3d spectra, but the Ti2p core level remains at a constant energy. Complementary UV photoemission spectroscopy measurements confirm a charge transfer mechanism where the SnSe layers donate electrons into empty Ti3d states at the Fermi energy. -
Chloroform 18.08.2020.Pdf
Chloroform Chloroform, or trichloromethane, is an organic compound with formula CHCl3. It is a colorless, sweet-smelling, dense liquid that is produced on a large scale as a precursor to PTFE. It is also a precursor to various refrigerants. It is one of the four chloromethanes and a trihalomethane. It is a powerful anesthetic, euphoriant, anxiolytic and sedative when inhaled or ingested. Formula: CHCl₃ IUPAC ID: Trichloromethane Molar mass: 119.38 g/mol Boiling point: 61.2 °C Density: 1.49 g/cm³ Melting point: -63.5 °C The molecule adopts a tetrahedral molecular geometry with C3v symmetry. Chloroform volatilizes readily from soil and surface water and undergoes degradation in air to produce phosgene, dichloromethane, formyl chloride, carbon monoxide, carbon dioxide, and hydrogen chloride. Its half-life in air ranges from 55 to 620 days. Biodegradation in water and soil is slow. Chloroform does not significantly bioaccumulate in aquatic organisms. Production:- In industry production, chloroform is produced by heating a mixture of chlorine and either chloromethane (CH3Cl) or methane (CH4). At 400–500 °C, a free radical halogenation occurs, converting these precursors to progressively more chlorinated compounds: CH4 + Cl2 → CH3Cl + HCl CH3Cl + Cl2 → CH2Cl2 + HCl CH2Cl2 + Cl2 → CHCl3 + HCl Chloroform undergoes further chlorination to yield carbon tetrachloride (CCl4): CHCl3 + Cl2 → CCl4 + HCl The output of this process is a mixture of the four chloromethanes (chloromethane, dichloromethane, chloroform, and carbon tetrachloride), which can then be separated by distillation. Chloroform may also be produced on a small scale via the haloform reaction between acetone and sodium hypochlorite: 3 NaClO + (CH3)2CO → CHCl3 + 2 NaOH + CH3COONa Deuterochloroform[ Deuterated chloroform is an isotopologue of chloroform with a single deuterium atom. -
PRAJNA - Journal of Pure and Applied Sciences ISSN 0975 2595 Volume 19 December 2011 CONTENTS
PRAJNA - Journal of Pure and Applied Sciences ISSN 0975 2595 Volume 19 December 2011 CONTENTS BIOSCIENCES Altered energy transfer in Phycobilisomes of the Cyanobacterium, Spirulina Platensis under 1 - 3 the influence of Chromium (III) Ayya Raju, M. and Murthy, S. D. S. PRAJNA Volume 19, 2011 Biotransformation of 11β , 17 α -dihydroxy-4-pregnene-3, 20-dione-21-o-succinate to a 4 - 7 17-ketosteroid by Pseudomonas Putida MTCC 1259 in absence of 9α -hydroxylase inhibitors Rahul Patel and Kirti Pawar Influence of nicking in combination with various plant growth substances on seed 8 - 10 germination and seedling growth of Noni (Morinda Citrifolia L.) Karnam Jaya Chandra and Dasari Daniel Gnana Sagar Quantitative analysis of aquatic Macrophytes in certain wetlands of Kachchh District, 11 - 13 Journal of Pure and Applied Sciences Gujarat J.P. Shah, Y.B. Dabgar and B.K. Jain Screening of crude root extracts of some Indian plants for their antibacterial activity 14 - 18 Purvesh B. Bharvad, Ashish R. Nayak, Naynika K. Patel and J. S. S. Mohan ________ Short Communication Heterosis for biometric characters and seed yield in parents and hybrids of rice 19 - 20 (Oryza Sativa L.) M. Prakash and B. Sunil Kumar CHEMISTRY Adsorption behavior and thermodynamics investigation of Aniline-n- 21 - 24 (p-Methoxybenzylidene) as corrosion inhibitor for Al-Mg alloy in hydrochloric acid V.A. Panchal, A.S. Patel and N.K. Shah Grafting of Butyl Acrylate onto Sodium Salt of partially Carboxymethylated Guar Gum 25 - 31 using Ceric Ions J.H. Trivedi, T.A. Bhatt and H.C. Trivedi Simultaneous equation and absorbance ratio methods for estimation of Fluoxetine 32 - 36 Hydrochloride and Olanzapine in tablet dosage form Vijaykumar K. -
Designing Isoelectronic Counterparts to Layered Group V Semiconductors
Designing isoelectronic counterparts to layered group V semiconductors Zhen Zhu, Jie Guan, Dan Liu, and David Tom´anek∗ Physics and Astronomy Department, Michigan State University, East Lansing, Michigan 48824, USA In analogy to III-V compounds, which have significantly broadened the scope of group IV semi- conductors, we propose IV-VI compounds as isoelectronic counterparts to layered group V semi- conductors. Using ab initio density functional theory, we study yet unrealized structural phases of silicon mono-sulfide (SiS). We find the black-phosphorus-like α-SiS to be almost equally stable as the blue-phosphorus-like β-SiS. Both α-SiS and β-SiS monolayers display a significant, indirect band gap that depends sensitively on the in-layer strain. Unlike 2D semiconductors of group V elements with the corresponding nonplanar structure, different SiS allotropes show a strong polarization either within or normal to the layers. We find that SiS may form both lateral and vertical heterostructures with phosphorene at a very small energy penalty, offering an unprecedented tunability in structural and electronic properties of SiS-P compounds. INTRODUCTION RESULTS AND DISCUSSION 2D semiconductors of group V elements, including Since all atoms in sp3 layered structures of group V el- phosphorene and arsenene, have been rapidly attract- ements are threefold coordinated, the different allotropes ing interest due to their significant fundamental band can all be topologically mapped onto the honeycomb lat- gap, large density of states near the Fermi level, and tice of graphene with 2 sites per unit cell.[11] An easy high and anisotropic carrier mobility[1{4]. Combina- way to generate IV-VI compounds that are isoelectronic tion of these properties places these systems very favor- to group V monolayers is to occupy one of these sites by ably in the group of contenders for 2D electronics ap- a group IV and the other by a group VI element. -
Underactive Thyroid
Underactive Thyroid PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Thu, 21 Jun 2012 14:27:58 UTC Contents Articles Thyroid 1 Hypothyroidism 14 Nutrition 22 B vitamins 47 Vitamin E 53 Iodine 60 Selenium 75 Omega-6 fatty acid 90 Borage 94 Tyrosine 97 Phytotherapy 103 Fucus vesiculosus 107 Commiphora wightii 110 Nori 112 Desiccated thyroid extract 116 References Article Sources and Contributors 121 Image Sources, Licenses and Contributors 124 Article Licenses License 126 Thyroid 1 Thyroid thyroid Thyroid and parathyroid. Latin glandula thyroidea [1] Gray's subject #272 1269 System Endocrine system Precursor Thyroid diverticulum (an extension of endoderm into 2nd Branchial arch) [2] MeSH Thyroid+Gland [3] Dorlands/Elsevier Thyroid gland The thyroid gland or simply, the thyroid /ˈθaɪrɔɪd/, in vertebrate anatomy, is one of the largest endocrine glands. The thyroid gland is found in the neck, below the thyroid cartilage (which forms the laryngeal prominence, or "Adam's apple"). The isthmus (the bridge between the two lobes of the thyroid) is located inferior to the cricoid cartilage. The thyroid gland controls how quickly the body uses energy, makes proteins, and controls how sensitive the body is to other hormones. It participates in these processes by producing thyroid hormones, the principal ones being triiodothyronine (T ) and thyroxine which can sometimes be referred to as tetraiodothyronine (T ). These hormones 3 4 regulate the rate of metabolism and affect the growth and rate of function of many other systems in the body. T and 3 T are synthesized from both iodine and tyrosine. -
Novel Reactions of Ceph-3-Ems
NOVEL REACTIONS OF CEPH-3-EMS Jacqueline M Torrance B.Sc. (Hons) A thesis submitted in partial fulfilment of the requirements of the University of Abertay Dundee for the degree of Doctor of Philosophy June 1995 I certify that this thesis is the true and accurate version of the thesis approved by the examiners. Signed Date (Director of Studies) DECLARATION I hereby declare that the work presented in this thesis was carried out by me at University of Abertay Dundee, Dundee, except where due acknowledgement is made, and has not been submitted by me for any other degree. Signed Date CONTENTS 1 INTRODUCTION 1 1.1 INTRODUCTION 2 1.1.1 History of Penicillin 2 1.1.2 History of Cephalosporins 4 1.2 REACTIONS AT SULPHUR 7 1.2.1 Oxidation 7 1.2.2 De-oxygenation 13 1.3 REACTIONS AT C-2 15 1.3.1 2-Alkylcephems 15 1.3.2 2-Alkoxycephems 17 1.3.3 2-Exocyclic Cephems 22 1.4 REACTIONS AT C-3 30 1.4.1 3-Exomethylene 30 1.4.2 3-Vinyl-and 3-Allylcephalosporins 38 1.4.3 3-Azidocephems 42 1.4.4 3-Alkoxy- and 3-Alkylcephems 44 1.5 REACTIONS AT C-4 46 1.5.1 A2-Cephems 46 1.5.2 Addition to the A3-Double Bond 51 1.5.3 Reactions at the C-4 Carboxyl Group 54 1.5.4 Ester Formation and Deprotection 59 1.6 REACTIONS AT C-7 62 1.6.1 7a-Methoxycephalosporins 62 1.6.2 7a-Formamidocephalosporins 66 1.6.3 Other 7a-Substituents 69 ii 1.6.4 7-Spirocyclic Cephalosporins 71 1.6.5 Reactions at N-7 73 1.7 MISCELLANEOUS CEPHALOSPORIN REACTIONS 74 1.7.1 Conversion of Penicillin to Cephalosporins 74 1.7.2 Conversion of Cephalosporins to Penicillins 78 1.7.3 Tricyclics and Tetracyclics -
Maximizing Thermoelectric Figures of Merit by Uniaxially Straining Indium Selenide † † † ‡ † Leonard W
Article Cite This: J. Phys. Chem. C 2019, 123, 25437−25447 pubs.acs.org/JPCC Maximizing Thermoelectric Figures of Merit by Uniaxially Straining Indium Selenide † † † ‡ † Leonard W. Sprague Jr., Cancan Huang, Jeong-Pil Song,*, , and Brenda M. Rubenstein † Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States ‡ Department of Physics, University of Arizona, Tucson, Arizona 85721, United States *S Supporting Information ABSTRACT: A majority of the electricity currently generated is regrettably lost as heat. Engineering high-efficiency thermo- electric materials which can convert waste heat back into electricity is therefore vital for reducing our energy fingerprint. ZT, a dimensionless figure of merit, acts as a beacon of promising thermoelectric materials. However, engineering materials with large ZT values is practically challenging, since maximizing ZT requires optimizing many interdepend- ent material properties. Motivated by recent studies on bulk indium selenide that suggest it may have favorable thermo- electric properties, here we present the thermoelectric properties of monolayer indium selenide in the presence of uniaxial strain using first-principles calculations conjoined with semiclassical Boltzmann transport theory. Our calculations indicate that conduction band convergence occurs at a compressive strain of −6% along the zigzag direction and results in an enhancement of ZT for p-type indium selenide at room temperature. Further enhancements occur at −7% as the valence bands similarly converge, reaching a maximum ZT value of 0.46, which is one of the largest monolayer InSe figures of merit recorded to date at room temperature. The importance of strain is directly reflected by the enhanced transport coefficients observed at strains nearing those which give rise to the band degeneracies we observe. -
ARTICLE Designing Isoelectronic Counterparts to Layered Group V Semiconductors Zhen Zhu, Jie Guan, Dan Liu, and David Toma´Nek*
ARTICLE Designing Isoelectronic Counterparts to Layered Group V Semiconductors Zhen Zhu, Jie Guan, Dan Liu, and David Toma´nek* Physics and Astronomy Department, Michigan State University, East Lansing, Michigan 48824, United States ABSTRACT In analogy to IIIÀV compounds, which have significantly broadened the scope of group IV semiconductors, we propose a class of IVÀVI compounds as isoelectronic counterparts to layered group V semiconductors. Using ab initio density functional theory, we study yet unrealized structural phases of silicon monosulfide (SiS). We find the black-phosphorus-like R-SiS to be almost equally stable as the blue-phosphorus-like β-SiS. Both R-SiS and β- SiS monolayers display a significant, indirect band gap that depends sensitively on the in-layer strain. Unlike 2D semiconductors of group V elements with the corresponding nonplanar structure, different SiS allotropes show a strong polarization either within or normal to the layers. We find that SiS may form both lateral and vertical heterostructures with phosphorene at a very small energy penalty, offering an unprecedented tunability in structural and electronic properties of SiS-P compounds. KEYWORDS: silicon sulfide . isoelectronic . phosphorene . ab initio . electronic band structure wo-dimensional semiconductors of monosulfide (SiS). We use ab initio density Tgroup V elements, including phos- functional theory (DFT) to identify stable phorene and arsenene, have been allotropes and determine their equilibrium rapidly attracting interest due to their sig- geometry and electronic structure. We have nificant fundamental band gap, large den- identified two nearly equally stable allo- sity of states near the Fermi level, and high tropes, namely, the black-phosphorus-like and anisotropic carrier mobility.1À4 Combi- R-SiS and the blue-phosphorus-like β-SiS, nation of these properties places these and show their structure in Figure 1a and d. -
Bacterial Selenoproteins: a Role in Pathogenesis and Targets for Antimicrobial Development
University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2009 Bacterial Selenoproteins: A Role In Pathogenesis And Targets For Antimicrobial Development Sarah Rosario University of Central Florida Part of the Medical Sciences Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Rosario, Sarah, "Bacterial Selenoproteins: A Role In Pathogenesis And Targets For Antimicrobial Development" (2009). Electronic Theses and Dissertations, 2004-2019. 3822. https://stars.library.ucf.edu/etd/3822 BACTERIAL SELENOPROTEINS: A ROLE IN PATHOGENESIS AND TARGETS FOR ANTIMICROBIAL DEVELOPMENT. by SARAH E. ROSARIO B.S. Florida State University, 2000 M.P.H. University of South Florida, 2002 A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Burnett School of Biomedical Sciences in the College of Medicine at the University of Central Florida Orlando, Florida Summer Term 2009 Major Professor: William T. Self © 2009 Sarah E. Rosario ii ABSTRACT Selenoproteins are unique proteins in which selenocysteine is inserted into the polypeptide chain by highly specialized translational machinery. They exist within all three kingdoms of life. The functions of these proteins in biology are still being defined. In particular, the importance of selenoproteins in pathogenic microorganisms has received little attention. We first established that a nosocomial pathogen, Clostridium difficile, utilizes a selenoenzyme dependent pathway for energy metabolism. -
Chemical Names and CAS Numbers Final
Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number C3H8O 1‐propanol C4H7BrO2 2‐bromobutyric acid 80‐58‐0 GeH3COOH 2‐germaacetic acid C4H10 2‐methylpropane 75‐28‐5 C3H8O 2‐propanol 67‐63‐0 C6H10O3 4‐acetylbutyric acid 448671 C4H7BrO2 4‐bromobutyric acid 2623‐87‐2 CH3CHO acetaldehyde CH3CONH2 acetamide C8H9NO2 acetaminophen 103‐90‐2 − C2H3O2 acetate ion − CH3COO acetate ion C2H4O2 acetic acid 64‐19‐7 CH3COOH acetic acid (CH3)2CO acetone CH3COCl acetyl chloride C2H2 acetylene 74‐86‐2 HCCH acetylene C9H8O4 acetylsalicylic acid 50‐78‐2 H2C(CH)CN acrylonitrile C3H7NO2 Ala C3H7NO2 alanine 56‐41‐7 NaAlSi3O3 albite AlSb aluminium antimonide 25152‐52‐7 AlAs aluminium arsenide 22831‐42‐1 AlBO2 aluminium borate 61279‐70‐7 AlBO aluminium boron oxide 12041‐48‐4 AlBr3 aluminium bromide 7727‐15‐3 AlBr3•6H2O aluminium bromide hexahydrate 2149397 AlCl4Cs aluminium caesium tetrachloride 17992‐03‐9 AlCl3 aluminium chloride (anhydrous) 7446‐70‐0 AlCl3•6H2O aluminium chloride hexahydrate 7784‐13‐6 AlClO aluminium chloride oxide 13596‐11‐7 AlB2 aluminium diboride 12041‐50‐8 AlF2 aluminium difluoride 13569‐23‐8 AlF2O aluminium difluoride oxide 38344‐66‐0 AlB12 aluminium dodecaboride 12041‐54‐2 Al2F6 aluminium fluoride 17949‐86‐9 AlF3 aluminium fluoride 7784‐18‐1 Al(CHO2)3 aluminium formate 7360‐53‐4 1 of 75 Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number Al(OH)3 aluminium hydroxide 21645‐51‐2 Al2I6 aluminium iodide 18898‐35‐6 AlI3 aluminium iodide 7784‐23‐8 AlBr aluminium monobromide 22359‐97‐3 AlCl aluminium monochloride -
Ep 3130580 A1
(19) TZZ¥_¥ZZ_T (11) EP 3 130 580 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 15.02.2017 Bulletin 2017/07 C07C 217/74 (2006.01) C07C 215/64 (2006.01) C07D 265/16 (2006.01) C07B 59/00 (2006.01) (2006.01) (21) Application number: 16183223.3 C07C 211/64 (22) Date of filing: 13.03.2008 (84) Designated Contracting States: • SEPEHR, Sarshar AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Vista, CA 92081-8356 (US) HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT • WOO, Soon, Hyung RO SE SI SK TR Vista, CA 92081-8356 (US) (30) Priority: 15.03.2007 US 895049 P (74) Representative: Smaggasgale, Gillian Helen 15.06.2007 US 944399 P WP Thompson 138 Fetter Lane (62) Document number(s) of the earlier application(s) in London EC4A 1BT (GB) accordance with Art. 76 EPC: 08732084.2 / 2 125 698 Remarks: This application was filed on 08-08-2016 as a (71) Applicant: Auspex Pharmaceuticals, Inc. divisional application to the application mentioned Vista, CA 92081-8356 (US) under INID code 62. (72) Inventors: • GANT, Thomas G Vista, CA 92081-8356 (US) (54) PREPARATION OF DEUTERATED VENLAFAXINES (57) Processes for preparaing deuterated venlafaxines whcih can be used as inhibitors of the uptake of monoamine neurotransmitters. EP 3 130 580 A1 Printed by Jouve, 75001 PARIS (FR) EP 3 130 580 A1 Description [0001] This application claims the benefit of priority of United States provisional applications No.