Quantum dots based full-color display on MicroLED technology CHIH-HAO LIN1, CHUN-FU LEE1, CHIEN-CHUNG LIN2, CHEN-HSIEN CHU2, CHIN-WEI SHER3, ZHAO-JUN LIU4, AND HAO-CHUNG KUO1,* 1Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan 2Institute of Photonic System, National Chiao Tung University, Tainan 711, Taiwan 3Fok Ying Tung Research Institute, Hong Kong University of Science and Technology, Hong Kong 4Department Of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China *Corresponding author:
[email protected] Abstract ten times of brightness. Hence, the present approach i.e. In this paper, we would like to review our lab's result " a photo-luminescent (PL) QDs based micro-LEDs can replace the quantum-dot (QD)-based full-color emission red–green–blue (RGB) color filters and wider color gamut (1.52 times that of NTSC 1976). micro-light-emitting-diode (micro-LED) array ". By using Color gamut was an evaluation metric, which was determined by the photoresist as the masking material for micro-LED arrays, also the maximum colors in the display. Rec.2020., a new color triangle was photoresist mold can reduce optical cross-talk effect. The colloidal quantum dots (QDs) are used as photon conversion layer and the devised to strictly define the color gamut standard. Our previous Aerosol Jet ® technology was applied for dispensing the QDs. A research demonstrated a QD micro display with over 80% of the full-color array can be demonstrated and the isolation between color gamut of Rec.