Technology Brief 6: Display Technologies
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Catalog-Web-ONYX-And-STAX.Pdf
1 ABOUT NEXT LED Table of Contents Our Focus Next LED is a leading American manufacturer of 2 About Next LED commercial, billboard, sports, and indoor LED displays. We pour the quality and work ethic of 4 LED 101 the heartland into every sign we engineer and assemble from our headquarters in Wichita, 6 Pitch / Dealer Tools Kansas. As the LED signage industry matures and businesses and organizations around the world realize the benefits of dynamic marketing 8 Commercial Signs through digital signs, it is our sole focus to provide the most reliable products and related services 10 Franchise / Dynamic Data that go beyond the physical components of the display. In a word, every Next LED product comes 12 Billboards loaded with VALUE. 14 Sports Highest Quality Parts While all LED signs aren’t created equal, they are, 16 Operating Software for the most part, created using the same types of components, often supplied by the exact same OEM companies. Next LED uses the highest quality 18 Custom Content LED diodes, lamps, ribbon cables, power supplies, data, and aluminum cabinetry to create a rugged, Questions? Call us at: reliable product for both on and off premise use. 2 888.263.6530 5 Year Parts, Labor, & Brightness Warranty Experience the Best Warranty in the Industry 5 YEARS It’s one thing to say you’ve got a great product; it’s another to stand behind it. Next LED’s industry leading warranty guarantees that you won’t have TM NO PARTS LABOR BRIGHTNESS anything to worry about for up to five years. -
New Display Technologies (Crts), Displays Have Become Ubiquitous and Have Taken Many Different Forms
1.0 Introduction Mini Briefing Electronic displays are one of the fastest-growing worldwide technologies. Once reserved for televisions and computers, and composed of large cathode-ray tubes New Display Technologies (CRTs), displays have become ubiquitous and have taken many different forms. Flat-panel displays are overtaking the CRT and are being used in larger quantities for Steve Statham portable computers, a variety of handheld devices, desktop computers and televisions, as well as tiny microdisplays, which are being used in projection televisions, for near-eye applications, where a virtual screen is presented to the viewer. The world of displays is Advances in new display technologies are rapidly changing to meet the evolving needs of the beginning to open up many new possibilities to electronic-device user. consumers and manufacturers. Unfortunately there is always a large time lag between the discoveries made, and the time when practical applications 2.0 Applications finally appear. Even once they have been incorporated into everyday items, they are The electronic-display device industry caters mainly for the sometimes expensive. automation and electronics appliance industries. Characteristic of OEM products, the growth of the display However, major developments are now taking industry is directly linked to the demand trends in end-user place in a variety of display materials with the markets. Display manufacturers, mainly concentrated in potential to enable handheld computers and mobile Japan and East Asian countries, account for over 80% of phones to be more functional and user-friendly, total display production. which could greatly aid in the convergence of functionality and convenience that these products The end-user market (which includes televisions, are intended to deliver. -
Microdisplays - Market, Industry and Technology Trends 2020 Market and Technology Report 2020
From Technologies to Markets Microdisplays - Market, Industry and Technology Trends 2020 Market and Technology Report 2020 Sample © 2020 TABLE OF CONTENTS • Glossary and definition • Industry trends 154 • Table of contents o Established technologies players 156 • Report objectives o Emerging technologies players 158 • Report scope o Ecosystem analysis 160 • Report methodology o Noticeable collaborations and partnerships 170 • About the authors o Company profiles 174 • Companies cited in this report • Who should be interested by this report • Yole Group related reports • Technology trends 187 o Competition benchmarking 189 • Executive Summary 009 o Technology description 191 o Technology roadmaps 209 • Context 048 o Examples of products and future launches 225 • Market forecasts 063 • Outlooks 236 o End-systems 088 o AR headsets 104 • About Yole Group of Companies 238 o Automotive HUDs 110 o Others 127 • Market trends 077 o Focus on AR headsets 088 o A word about VR 104 o Focus on Auto HUDs 110 o Focus on 3D Displays 127 o Summary of other small SLM applications 139 Microdisplays - Market, Industry and Technology Trends 2020 | Sample | www.yole.fr | ©2020 2 ACRONYMS AMOLED: Active Matrix OLED HMD: Head mounted Device/Display PPI: Pixel Per Inch AR: Augmented Reality HOE: Holographic Optical Element PWM: Pulse Width Modulation BLU: Back Lighting Unit HRI: High Refractive Index QD: Quantum Dot CF LCOS: Color Filter LCOS HVS: Human Vision System RGB: Red-Green-Blue CG: Computer Generated IMU: Inertial measurement Unit RMLCM: Reactive Monomer -
Various Display Technologiess
VARIOUS DISPLAY TECHNOLOGIESS Mr. Virat C. Gandhi1 1Computer Department, C. U. Shah Technical Institute of Diploma Studies Abstract—A lot has been invented from the past till now in regards with the display technologies. It gives an immense life to electronic device when good display technology are being used. Now a days displays are coming in various sizes for different portable devices like smart phones, tablets, smart watch, televisions, laptops etc. People are expecting better display no matter what device they use. In this paper I have given an overview of some of the past technologies to the technologies till now. Flat-panel displays use Liquid-crystal display (LCD) technology to make them much lighter and thinner when compared with a traditional monitor. A liquid crystal display consists of an array of tiny segments (called pixels) that can be manipulated to present information. Plasma panels, also called gas discharge displays, are constructed by filling the region between two glass plates with a mixture of gases that usually include neon. In LED, A matrix of diodes is arranged to form the pixel positions in the display, and picture definition is stored in refresh buffer. OLED (Organic Light Emitting Diode) technology relies on the organic materials. Keywords— Display Technology; LCD; LED; Flexible display; Curved display; I. INTRODUCTION In today’s smart world, people are carrying smart devices all over the places they visit. Wherever people are they are surrounded or accompanied by display devices, such as smart phones, tablets, notebooks and advertising screens. Different devices uses different display technologies to enrich devices facilities. -
State-Of-The-Art in Holography and Auto-Stereoscopic Displays
State-of-the-art in holography and auto-stereoscopic displays Daniel Jönsson <Ersätt med egen bild> 2019-05-13 Contents Introduction .................................................................................................................................................. 3 Auto-stereoscopic displays ........................................................................................................................... 5 Two-View Autostereoscopic Displays ....................................................................................................... 5 Multi-view Autostereoscopic Displays ...................................................................................................... 7 Light Field Displays .................................................................................................................................. 10 Market ......................................................................................................................................................... 14 Display panels ......................................................................................................................................... 14 AR ............................................................................................................................................................ 14 Application Fields ........................................................................................................................................ 15 Companies ................................................................................................................................................. -
Digital Light Processing™: a New MEMS-Based Display Technology
Digital Light Processing™: A New MEMS-Based Display Technology Larry J. Hornbeck Texas Instruments 1.0 Introduction Sights and sounds in our world are analog, yet when we electronically acquire, store, and communicate these analog phenomena, there are significant advantages in using digital technology. This was first evident with audio as it was transformed from a technology of analog tape and vinyl records to digital audio CDs. Video is now making the same conversion to digital technology for acquisition, storage, and communication. Witness the development of digital CCD cameras for image acquisition, digital transmission of TV signals (DBS), and video compression techniques for more efficient transmission, higher density storage on a video CD, or for video conference calls. The natural interface to digital video would be a digital display. But until recently, this possibility seemed as remote as developing a digital loudspeaker to interface with digital audio. Now there is a new MEMS-based projection display technology called Digital Light Processing (DLP) that accepts digital video and transmits to the eye a burst of digital light pulses that the eye interprets as a color analog image(Figure 1). Figure 1 DLP Processing System DLP is based on a microelectromechanical systems (MEMS) device known as the Digital Micromirror Device (DMD). Invented in 1987 at Texas Instruments, the DMD microchip[1,2] is a fast, reflective digital light switch. It can be combined with image processing, memory, a light source, and optics to form a DLP system capable of projecting large, bright, seamless, high- contrast color images with better color fidelity and consistency than current displays[3-24]. -
Light-Emitting Diode - Wikipedia, the Free Encyclopedia
Light-emitting diode - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Light-emitting_diode From Wikipedia, the free encyclopedia A light-emitting diode (LED) (pronounced /ˌɛl iː ˈdiː/[1]) is a semiconductor Light-emitting diode light source. LEDs are used as indicator lamps in many devices, and are increasingly used for lighting. Introduced as a practical electronic component in 1962,[2] early LEDs emitted low-intensity red light, but modern versions are available across the visible, ultraviolet and infrared wavelengths, with very high brightness. When a light-emitting diode is forward biased (switched on), electrons are able to recombine with holes within the device, releasing energy in the form of photons. This effect is called electroluminescence and the color of the light (corresponding to the energy of the photon) is determined by the energy gap of Red, green and blue LEDs of the 5mm type 2 the semiconductor. An LED is usually small in area (less than 1 mm ), and Type Passive, optoelectronic integrated optical components are used to shape its radiation pattern and assist in reflection.[3] LEDs present many advantages over incandescent light sources Working principle Electroluminescence including lower energy consumption, longer lifetime, improved robustness, Invented Nick Holonyak Jr. (1962) smaller size, faster switching, and greater durability and reliability. LEDs powerful enough for room lighting are relatively expensive and require more Electronic symbol precise current and heat management than compact fluorescent lamp sources of comparable output. Pin configuration Anode and Cathode Light-emitting diodes are used in applications as diverse as replacements for aviation lighting, automotive lighting (particularly indicators) and in traffic signals. -
Epson Projector Fact Sheet
EPSON PROJECTOR FACT SHEET 3LCD – A CLEAR DIFFERENCE As the number one projector manufacturer globally1, Epson leads the market in the development of projector technology. Epson projectors use a 3LCD projection engine to deliver bright, clear images that are rich in detail and colour. 2 Many of Epson’s competitors use 1-chip DLP™ projector systems, which create thousands of pulses of coloured light per second. They do this by shining lamp light 3 through red, green, blue and white parts of a rotating colour wheel. These light pulses are 4 then reflected by a DMD™ device, which is on a hinge and has a tiny mirror for each pixel of the image. The series of rapid colour bursts is then projected onto the screen. The viewer’s brain can’t pick out the individual flickers - it mixes the basic colours that appear in succession in each pixel to come up with the final colour the viewer sees. Epson’s 3LCD system works differently, using a combination of dichroic mirrors to separate the white light from the projector lamp into red, green and blue light. Each of the three light colours is then passed through its own LCD panel and recombined using a prism before being projected onto the screen. With 1-chip DLP technology, colour break-up or the ‘rainbow effect’ can sometimes be seen. This occurs when the eye perceives the individual colours, and is a result of the colours being projected sequentially by the colour wheel. Epson’s 3LCD technology avoids this by including all three basic colours in each pixel of the projection, delivering superior Colour Light Output that’s easier on the eyes. -
Review of Display Technologies Focusing on Power Consumption
Sustainability 2015, 7, 10854-10875; doi:10.3390/su70810854 OPEN ACCESS sustainability ISSN 2071-1050 www.mdpi.com/journal/sustainability Review Review of Display Technologies Focusing on Power Consumption María Rodríguez Fernández 1,†, Eduardo Zalama Casanova 2,* and Ignacio González Alonso 3,† 1 Department of Systems Engineering and Automatic Control, University of Valladolid, Paseo del Cauce S/N, 47011 Valladolid, Spain; E-Mail: [email protected] 2 Instituto de las Tecnologías Avanzadas de la Producción, University of Valladolid, Paseo del Cauce S/N, 47011 Valladolid, Spain 3 Department of Computer Science, University of Oviedo, C/González Gutiérrez Quirós, 33600 Mieres, Spain; E-Mail: [email protected] † These authors contributed equally to this work. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +34-659-782-534. Academic Editor: Marc A. Rosen Received: 16 June 2015 / Accepted: 4 August 2015 / Published: 11 August 2015 Abstract: This paper provides an overview of the main manufacturing technologies of displays, focusing on those with low and ultra-low levels of power consumption, which make them suitable for current societal needs. Considering the typified value obtained from the manufacturer’s specifications, four technologies—Liquid Crystal Displays, electronic paper, Organic Light-Emitting Display and Electroluminescent Displays—were selected in a first iteration. For each of them, several features, including size and brightness, were assessed in order to ascertain possible proportional relationships with the rate of consumption. To normalize the comparison between different display types, relative units such as the surface power density and the display frontal intensity efficiency were proposed. -
Display Devices
ELEKTRONIKOS ĮTAISAI 2009 1 DISPLAY DEVICES VGTU EF ESK [email protected] ELEKTRONIKOS ĮTAISAI 2009 2 Display devices Display devices are used for the visual presentation of information. 1. Analog display devices (cathode-ray tubes) • Oscilloscope tubes •TV CRTs 2. Digital display devices • LED (including OLED) displays • VF (vacuum fluorescent ) displays • LCD (liquid crystal) displays • Nixie tube displays and PDPs (plasma display panels) • Electroluminescent displays (ELDs) 3. Others: • Electronic paper • Using principles of nanoelectronics (carbon nanotubes, nanocrystals) • Laser TV VGTU EF ESK [email protected] ELEKTRONIKOS ĮTAISAI 2009 3 Classification of electronic information technologies with high information content; highlighted technologies are treated in this article w4.siemens.de/.../heft2_97/artikel08/index.html VGTU EF ESK [email protected] ELEKTRONIKOS ĮTAISAI 2009 4 Display devices Electronic display devices based on various principles were developed. Active display devices are based on luminescence. Luminescence is the general term used to describe the emission of electromagnetic radiation from a substance due to a non-thermal process. Luminescence occurs from a solid when it is supplied with some form of energy. Photoluminescence arises as a result of absorption of photons. In the case of cathodoluminescence material is excited by bombardment with a beam of electrons. Electroluminescence is a result of excitation from the application of an electric field. Fluorescence persists for a short lifetime of the transition between the two energy levels. Phosphorescence persists for much longer time (more than 10-8 s). Passive display devices reflect or modulate light… VGTU EF ESK [email protected] ELEKTRONIKOS ĮTAISAI 2009 5 Display devices. -
[Display Dynamics] Micro LED and Flexible OLED Are the Key Displays for the Automotive Application in SID 2020
Publication date: 24 Aug 2020 Author: Stacy Wu Principal Analyst, Small Medium Display & Automotive Display [Display Dynamics] Micro LED and flexible OLED are the key displays for the automotive application in SID 2020 Brought to you by Informa Tech [Display Dynamics] Micro LED and flexible OLED 1 are the key displays for the automotive application in SID 2020 Table of Figures: michellewhitcombinformacom_2020_8_24_23_49_29_capturejpg1 ..............................................2 michellewhitcombinformacom_2020_8_24_23_50_32_capturejpg2 ..............................................3 michellewhitcombinformacom_2020_8_24_23_51_26_capturejpg3 ..............................................4 michellewhitcombinformacom_2020_8_24_23_52_25_capturejpg4 ..............................................4 michellewhitcombinformacom_2020_8_24_23_53_33_capturejpg5 ..............................................5 michellewhitcombinformacom_2020_8_24_23_56_48_capturejpg6 ..............................................6 © 2020 Omdia. All rights reserved. Unauthorized reproduction prohibited. [Display Dynamics] Micro LED and flexible OLED 2 are the key displays for the automotive application in SID 2020 Key Findings . Automotive has become a key application to adopt advanced display technologies. During the virtual Society for Information Display’s (SID) Display Week 2020, held on August 3–7, 2020, several OLED and micro LED displays for the automotive application were demonstrated. Both OLED and micro LED display technologies can provide true-black, transparency, -
The Digital Micromirror Device a Historic Mechanical Engineering Landmark
Plano, Texas ■ May 1, 2008 The Digital Micromirror Device A Historic Mechanical Engineering Landmark The Beginning of the Digital Micromirror Device In 1977, at Texas Instruments (TI), a small team formed under the direction of Dr. Larry Hornbeck. This group would eventually develop the Digital Micromirror Device (DMD) – an optical micromachine that would power the most versatile display technologies in the world, including pocket projectors weighing less than one pound (0.5 kg) and digital cinema projectors lighting up 70-foot (21.5 m) screens. The artifact being designated as an ASME Historic Mechanical Engineering Landmark is one of the earliest usable digital micromirror devices produced. The innovative pursuit of digital light processing technology began with the invention of the light-manipulating DMD, but success wasn’t achieved instantaneously. Instead, the journey was littered with mistakes, failures and shattered concepts, all fueled by dogged perseverance and sheer determination that refused to quit on an idea destined to revolutionize the television and film industry. As Hornbeck, a noted physicist, would remember, “If you’re afraid you may fail, then your actions may not be as bold, aggressive or creative as you need them to be in order to accomplish your goal. You may play it so conservative you never get there.” Hornbeck and his team were determined to get there. The Digital Micromirror Device – Texas Instruments Incorporated 1 The DMD and the Department of Defense In the mid 1970s, TI worked with the Department of proposed a more easily fabricated hybrid structure, Defense (DoD) to develop charge-coupled-device (CCD) using n-type metal-oxide semiconductor (nMOS) imagers, a light sensitive integrated circuit which converts transistors to control a deformable mirror manufactured a light image into an electronic image.