Direct View LED Display Pixel Pitch

Total Page:16

File Type:pdf, Size:1020Kb

Direct View LED Display Pixel Pitch Advanced Display Technologies Presented by: JonathanAlan Brawn, C. Brawn & CTSJonathan Brawn CTS, ISF, ISF-C, DSCE, DSDE, DSNE Principal, PrincipalsBrawn of Brawn Consulting Consulting [email protected] [email protected] Advanced Display Technologies • The central focus of the commercial industry is (and perhaps always will be) displays. • The topic of displays is broad, encompassing many elements built in to the final products that we buy. • This course is intended to take a detailed look at the technologies that go into each type of displays that are commonly available today. • To place it all in context, we will examine the operation and construction of the technologies themselves, and advances and trends that will characterize where we will be going in the future. • We hope you enjoy the journey! Liquid Crystal Display (LCD) Technology LCD Made Possible • There's far more to building an LCD than simply creating a sheet of liquid crystals. • The combination of four principles makes LCDs possible: • Light can be polarized. • Liquid crystal can transmit polarized light or change the plane of polarization. • The structure of liquid crystals can be changed by electric field. • There are transparent substances that can conduct electricity. Polarization of Light • Light is made up of electromagnetic waves, that can be reflected, transmitted, or absorbed by materials. • These waves will naturally have an axis, or a plane that they follow as they move through space. • When light is said to be polarized, all of the waves of light are following the same axis and orientation of the plane. • A polarizing filter is designed to block out light of certain planes, while allowing specific orientations through the filter. • As the axis of the filter rotates in relation to the plane of the incoming light, varying amounts of light are allowed through, reducing or eliminating the light. • A polarizer at 90° to the incoming light will block most of it from passing through. LCD Construction Principle • To create an LCD, you take two pieces of glass with polarizing films applied, which are assembled together with a carefully controlled gap between. • When liquid crystal material is introduced to this cell, the layers adjacent to the glass will align, resulting in a helical structure of molecules between the two glass plates. • As light strikes the first plate, it is polarized. • The molecules in each layer then guide the light through the display, changing the angle of polarization to match. LCD Construction Principle • When light reaches the final layer of the crystal material its plane of polarization will have been rotated through 90 degrees and since the plane of polarization matches the plane of the polarizing film, light will be transmitted. • If we apply an electric field to liquid crystal molecules, they untwist. • When they straighten out, they change the angle of the light passing through them so that it no longer matches the angle of the top polarizing filter. • Consequently, no light can pass through that area of the LCD, which makes that area darker. LCD Pixel Circuit Construction • Each pixel in an LCD display must contain a transistor and a capacitor, to discharge electricity into the liquid crystal material, in order to manipulate it’s degree of rotation. LCD Pixel Circuit Construction • In order to address each sub pixel independently, the transistors must be wired to a control circuit, that defines how bright each subpixel should be. • These control wires are built as a grid, with positive data lines, and ground addressing lines running to each transistor. Data Lines Transistor Switch Pixel LCD Flat Panel Color Production • For an LCD monitor to produce color, each pixel on the screen has to have three sub-pixels, each being a primary color (red, blue and green). By taking each of the three colors, and varying the intensity of each, then blending it all together, the color LCD has a large possible palette of colors. LCD Backlighting • The illumination source in most flat panel LCDs is a backlight, a light source placed behind the first polarizing layer, that provides the light needed for the display. • Today, this is commonly done with LEDs, hence why some call them “LED TVs”. • LEDs allow for a number of benefits: – Uniform light with no color decay over time – Low power consumption – Low heat output – Longer operational lifetime (50K hours or more) – Lower weight – Compact size for smaller display form factors LCD Backlighting • There are two kinds of LED backlight configurations: • Edge lit LED • Edge lit backlights use a ring of LEDs around the outside edge of the LCD panel. This allows for the display to be manufactured with a very shallow depth (hence the less than ½” displays on the market!) • Direct lit LED • Direct light LED backlights use an array of LEDs placed behind the LCD panel, like a standard CCFL backlight. This type of backlight is thicker than an edge lit, but offers the potential for better contrast. LCD Backlighting • Since the LED backlight is made up of many individual LED lamps, and LEDs can be varied in light output by manipulating the input voltage, an LED backlight can achieve what is known as localized dimming. • Localized dimming is the reduction in backlight output in coordination with the video signal. • Areas of the image that are darker will have the backlight dimmed to increase the level of black in the picture. • Direct lit LED backlights have an advantage here, because there are more discrete LEDs in the array behind the LCD panel. LCD Display Brightness • LCDs are typically measured in candela per square meter (cd/m2). • Nit is a common language name also used for this unit (1 nit = 1 cd/m2). • As a measure of light emitted over surface area, this unit is used to specify the brightness of a display device. • The higher the number of nits, the brighter the display. • Typical consumer liquid crystal displays have a luminance of 200 to 350 cd/m2 • Typical commercial LCD monitors range from 350 to about 1500 cd/m2 • In general, 1,500 nits, provides readable text in non-direct sunlight, direct sunlight can require up to 5,000 nits for acceptable color depth. Image Retention Considerations • Every LCD, when run for an extended period of time with a static image on screen, can suffer from a phenomenon known as image retention. • LCD operates by twisting the liquid crystal structure to block or transmit light through the panel. • When a static image is left on the screen for prolonged periods of time, the twist in the liquid crystal is kept fixed in a single position. • When the liquid crystal molecules are kept partially twisted for long periods of time, they can retain that new position, even after voltage is removed. • This leaves a residual ghost image on the screen. • Over time this effect may fade as the display is used, but it can happen repeatedly, and become worse each time. • Heat exacerbates this effect. LCD Duty Cycle • Due to heat and image retention issues, all LCD displays, regardless of manufacturer, will come labeled with a designated duty cycle rating. • This rating, typically between 8 and 16 hours per day, from 5 to 7 days a week, will show how long each day the display may be used without any ill effects. • Some displays are rated at 24/7/365. These displays are a requirement for applications that fit within that duty cycle! Do not use a lower duty cycle display. • Manufacturer warranties will often be tied to the duty cycle for a display model. Feel lucky? High Brightness and Outdoor LCD Flat Panels LCD Brightness • When we consider most commercial installations, the immediate display selection that comes to mind is either an LCD flat panel, or a projector. • The main issue with these technologies is one of brightness; most displays we view in public spaces simply are not bright enough for the application. • High brightness LCD displays and videowalls offer a major benefit compared to traditional flat panels, videowalls, and projection systems. • In a typical conference room where you have 30 foot candles of ambient light, a 350-400 nit LCD is fine, but outside of that kind of controlled environment, you may have many times that amount of ambient light falling on a display, necessitating a high brightness LCD. Display Brightness VS. Ambient Light • Direct sunlight comparison of LCD displays, from 1,500 nits to 5,000 nits: 1,500 Nits 2,500 Nits 3,000 Nits 5,000 Nits Liquid Crystal Properties and Outdoor LCDs • The liquid crystals in an LCD are interesting because they don't exactly fall under the three main states of matter: solid, liquid or gas. • Liquid crystals are actually in a unique intermediate phase between solid and liquid. Nematic, Smectic and Isotropic Properties • Crystals behave differently than most materials. They can exist as a liquid, in a phase called isotropic, or a solid phase called smectic. Liquid crystal exists in between, in a phase known as nematic. • The nematic phase of liquid crystals is what makes LCD screens possible. • During this phase, the molecules are in no positional order, but do have a notable pattern. • This allows the molecules to flow as if they were a liquid, but retain a general alignment to each other. Isotropic Nematic Smectic (Liquid) (Hybrid) (Solid) Nematic, Smectic and Isotropic Properties • When heated, most crystalline solids experience a transition to a different phase - to an isotropic liquid state. • When the nematic liquid crystal is heated, it turns to a true liquid – Isotropic isotropic. This transition temperature is called the clearing point. • When the clearing point is achieved, the liquid crystal loses it’s ability to control light because of the lack of common direction for each molecule.
Recommended publications
  • Quantum Dot-Based Light Emitting Diodes (Qdleds): New Progress
    DOI: 10.5772/intechopen.69014 Provisional chapter Chapter 3 Quantum Dot-Based Light Emitting Diodes (QDLEDs): QuantumNew Progress Dot-Based Light Emitting Diodes (QDLEDs): New Progress Neda Heydari, Seyed Mohammad Bagher NedaGhorashi Heydari,, Wooje Seyed Han Mohammad and Hyung-Ho Bagher Park Ghorashi, WoojeAdditional Han information and Hyung-Ho is available at Parkthe end of the chapter Additional information is available at the end of the chapter http://dx.doi.org/10.5772/intechopen.69014 Abstract In recent years, the display industry has progressed rapidly. One of the most important developments is the ability to build flexible, transparent and very thin displays by organic light emitting diode (OLED). Researchers working on this field try to improve this area more and more. It is shown that quantum dot (QD) can be helpful in this approach. In this chapter, writers try to consider all the studies performed in recent years about quantum dot-based light emitting diodes (QDLEDs) and conclude how this nanoparticle can improve performance of QDLEDs. In fact, the existence of quantum dots in QDLEDs can cause an excellent improvement in their efficiency and lifetime resulted from using improved active layer by colloidal nanocrystals. Finally, the recent progresses on the quantum dot-based light emitting diodes are reviewed in this chapter, and an important outlook into challenges ahead is prepared. Keywords: quantum dot, organic light emitting diode, efficiency, lifetime, active layer 1. Introduction Due to increased population and consumption of more energy, the people of Earth are faced with a serious shortage of energy resources. Therefore, the primary concern of researchers and manufacturers is closely linked to energy consumption.
    [Show full text]
  • LCD Manufacturers Face Price Crisis
    BUSINESS NEWS TECHNOLOGY FOCUS LCD manufacturers face price crisis fter months of price cuts, manufacturers Aof large-size liquid-crystal displays 60,000 (LCDs) are under pressure to reduce panel LCD-TV panels prices further, following a major build-up of LCD-TV set inventory. A recent report from US business analyst iSuppli revealed that the second quarter of 2010 saw the manufacture of 52 40,000 million large (ten inches and above) LCD television panel shipments, but the sale of only 38.7 million LCD television sets. The resulting imbalance between supply 20,000 and demand is having a strong impact on the sector. “This gap is higher than anything seen in 2009. Over-supply persisted in shipments (thousands of units) Total the first two months of the third quarter 0 9 0 0 -0 -1 -1 as buyers cut orders in July and August,” Q1 Q1-09 Q2 Q3-09 Q4-09 Q2 says iSuppli analyst Sweta Dash. “LCD ISUPPLI television brands are expected to lower prices more aggressively to reduce their An imbalance between supply and demand is causing prices to decline in the large-panel LCD industry. inventory levels, thus putting mounting pressure on panel suppliers to reduce and help to steady panel prices by the end of iPhone, iPad and other competing prices further.” the fourth quarter of 2010. products,” explains Jakhanwal. Dash points out that manufacturers of At the same time, rapidly rising sales of “Smart phone manufacturers are now monitor and notebook panels have been smart phones and tablet PCs are predicted adopting TFT LCDs that use in-plane reducing supply to mitigate excessive to see the global market for small- and switching technology, which supports inventory levels, and that panel prices are medium-size thin-film transistor (TFT) a wider viewing angle and better now stabilizing as a result.
    [Show full text]
  • Active Matrix Organic Light Emitting Diode (AMOLED) Environmental Test Report
    JSC-66638 National Aeronautics and RELEASE DATE: November 2013 Space Administration Active Matrix Organic Light Emitting Diode (AMOLED) Environmental Test Report ENGINEERING DIRECTORATE AVIONICS SYSTEMS DIVISION November 2013 National Aeronautics and Space Administration Lyndon B. Johnson Space Center Houston, TX 77058 JSC-66638 Active Matrix Organic Light Emitting Diode (AMOLED) Environmental Test Report November 2013 Prepared by Branch Chief Engineer Human Interface Branch/EV3 281-483-1062 Reviewed by: Glen F. Steele Electronics Engineer Human Interface Branch/EV3 281-483-0191 Approved by: Deborah Buscher Branch Chief Human Interface Branch/EV3 281-483-4422 ii JSC-66638 Table of Contents 1.0 AMOLED Environmental Test Summary ...... ................. .. .. ......... .... .. ... .... ..................... 1 2.0 References ... .......... ... ..... ... .. ...... .. .......................... 2 3.0 Introduction .. ... .. .......... ...... ..... .... ... .... ...... ......... ... ..... ................. ... 3 4.0 Test Article ... ... .... .. .... ... ... ... .. ... .. .. ... ................. .... ... ...... ...... ............. 4 5.0 Environmental Testing ....... ............. .... ... ..... .. ... ....................... .... .... ..... .. ..... ... ...... .. ..... ......... 7 5.1 Electromagnetic Interference (EMI) Test ............... .. .................... ..... .................. ...... 7 5.1.1 Test Description ....................................................... ........................ .. ... .. .... .............. 7 5.1 .2 Results
    [Show full text]
  • AV Solutions Range Guide August 2020 the Sony Solution
    NEW WAYS TO INSPIRE Live Your Vision C AV Solutions Range Guide August 2020 The Sony Solution When it comes to professional AV technology, Sony provides much more than just great products. We create solutions that make visual communications and knowledge sharing even smarter and more efficient. Contents We empower organizations of every industry, sector and size with advanced audio-visual tools that help them go further. From schools to universities, small business to big business, retail to automotive, healthcare to faith-based worship and more, we have the perfect solution. Visual Imaging Welcome Projectors Cameras Our comprehensive suite of TEOS solutions intelligently manage all of your connected devices, while our powerful collaboration tools enable real-time The Sony Solution 3 F-Series laser 18 SRG Series 43 knowledge sharing. Discover new levels of detail with our class-leading P-Series laser 24 POV and BOX cameras 44 BRAVIA Professional Displays, and take your presentations further with our bright, captivating range of Laser Projectors.While our renowned lineup of CW-Series 26 BRC Series 45 Service and Support PTZ cameras feature progressive technologies ideal for remote working and F-lamp 28 IP Remote Controllers 46 distance learning applications. CH-lamp 30 SupportNET 5 E-lamp 32 Visual Simulation and Support is at the heart of everything we do. With our SupportNET, you’ll Visual Entertainment always get the best service for your business. With specialist advice and a host of support features included as standard, we’ve got
    [Show full text]
  • Catalog-Web-ONYX-And-STAX.Pdf
    1 ABOUT NEXT LED Table of Contents Our Focus Next LED is a leading American manufacturer of 2 About Next LED commercial, billboard, sports, and indoor LED displays. We pour the quality and work ethic of 4 LED 101 the heartland into every sign we engineer and assemble from our headquarters in Wichita, 6 Pitch / Dealer Tools Kansas. As the LED signage industry matures and businesses and organizations around the world realize the benefits of dynamic marketing 8 Commercial Signs through digital signs, it is our sole focus to provide the most reliable products and related services 10 Franchise / Dynamic Data that go beyond the physical components of the display. In a word, every Next LED product comes 12 Billboards loaded with VALUE. 14 Sports Highest Quality Parts While all LED signs aren’t created equal, they are, 16 Operating Software for the most part, created using the same types of components, often supplied by the exact same OEM companies. Next LED uses the highest quality 18 Custom Content LED diodes, lamps, ribbon cables, power supplies, data, and aluminum cabinetry to create a rugged, Questions? Call us at: reliable product for both on and off premise use. 2 888.263.6530 5 Year Parts, Labor, & Brightness Warranty Experience the Best Warranty in the Industry 5 YEARS It’s one thing to say you’ve got a great product; it’s another to stand behind it. Next LED’s industry leading warranty guarantees that you won’t have TM NO PARTS LABOR BRIGHTNESS anything to worry about for up to five years.
    [Show full text]
  • Holographic Optics for Thin and Lightweight Virtual Reality
    Holographic Optics for Thin and Lightweight Virtual Reality ANDREW MAIMONE, Facebook Reality Labs JUNREN WANG, Facebook Reality Labs Fig. 1. Left: Photo of full color holographic display in benchtop form factor. Center: Prototype VR display in sunglasses-like form factor with display thickness of 8.9 mm. Driving electronics and light sources are external. Right: Photo of content displayed on prototype in center image. Car scenes by komba/Shutterstock. We present a class of display designs combining holographic optics, direc- small text near the limit of human visual acuity. This use case also tional backlighting, laser illumination, and polarization-based optical folding brings VR out of the home and in to work and public spaces where to achieve thin, lightweight, and high performance near-eye displays for socially acceptable sunglasses and eyeglasses form factors prevail. virtual reality. Several design alternatives are proposed, compared, and ex- VR has made good progress in the past few years, and entirely perimentally validated as prototypes. Using only thin, flat films as optical self-contained head-worn systems are now commercially available. components, we demonstrate VR displays with thicknesses of less than 9 However, current headsets still have box-like form factors and pro- mm, fields of view of over 90◦ horizontally, and form factors approach- ing sunglasses. In a benchtop form factor, we also demonstrate a full color vide only a fraction of the resolution of the human eye. Emerging display using wavelength-multiplexed holographic lenses that uses laser optical design techniques, such as polarization-based optical folding, illumination to provide a large gamut and highly saturated color.
    [Show full text]
  • Ultra HD Playout & Delivery
    Ultra HD Playout & Delivery SOLUTION BRIEF The next major advancement in television has arrived: Ultra HD. By 2020 more than 40 million consumers around the world are projected to be watching close to 250 linear UHD channels, a figure that doesn’t include VOD (video-on-demand) or OTT (over-the-top) UHD services. A complete UHD playout and delivery solution from Harmonic will help you to meet that demand. 4K UHD delivers a screen resolution four times that of 1080p60. Not to be confused with the 4K digital cinema format, a professional production and cinema standard with a resolution of 4096 x 2160, UHD is a broadcast and OTT standard with a video resolution of 3840 x 2160 pixels at 24/30 fps and 8-bit color sampling. Second-generation UHD specifications will reach a frame rate of 50/60 fps at 10 bits. When combined with advanced technologies such as high dynamic range (HDR) and wide color gamut (WCG), the home viewing experience will be unlike anything previously available. The expected demand for UHD content will include all types of programming, from VOD movie channels to live global sporting events such as the World Cup and Olympics. UHD-native channel deployments are already on the rise, including the first linear UHD channel in North America, NASA TV UHD, launched in 2015 via a partnership between Harmonic and NASA’s Marshall Space Flight Center. The channel highlights incredible imagery from the U.S. space program using an end-to-end UHD playout, encoding and delivery solution from Harmonic. The Harmonic UHD solution incorporates the latest developments in IP networking and compression technology, including HEVC (High- Efficiency Video Coding) signal transport and HDR enhancement.
    [Show full text]
  • Whitepaper Head Mounted Displays & Data Glasses Applications and Systems
    Whitepaper Head Mounted Displays & Data Glasses Applications and Systems Dr.-Ing. Dipl.-Kfm. Christoph Runde Virtual Dimension Center (VDC) Fellbach Auberlenstr. 13 70736 Fellbach www.vdc-fellbach.de © Competence Centre for Virtual Reality and Cooperative Engineering w. V. – Virtual Dimension Center (VDC) System classes Application fields Directions of development Summary Content . System classes Head Mounted Display (HMD) – Video glasses – Data glasses . Simulator disease / Cyber Sickness . Application fields HMDs: interior inspections, training, virtual hedging engineering / ergonomics . Application fields data glasses: process support, teleservice, consistency checks, collaboration . Directions of development: technical specifications, (eye) tracking, retinal displays, light field technology, imaging depth sensors . Application preconditions information & integration (human, IT, processes) . Final remark 2 SystemSystem classes classes Application fields Directions of development Summary Head Mounted Displays (HMDs) – Overview . 1961: first HMD on market . 1965: 3D-tracked HMD by Ivan Sutherland . Since the 1970s a significant number of HMDs is applied in the military sector (training, additional display) Table: Important HMD- projects since the 1970s [Quelle: Li, Hua et. al.: Review and analysis of avionic helmet-mounted displays. In : Op-tical Engineering 52(11), 110901, Novembre2013] 3 SystemSystem classes classes Application fields Directions of development Summary Classification HMD – Video glasses – Data glasses Head Mounted Display
    [Show full text]
  • New Display Technologies (Crts), Displays Have Become Ubiquitous and Have Taken Many Different Forms
    1.0 Introduction Mini Briefing Electronic displays are one of the fastest-growing worldwide technologies. Once reserved for televisions and computers, and composed of large cathode-ray tubes New Display Technologies (CRTs), displays have become ubiquitous and have taken many different forms. Flat-panel displays are overtaking the CRT and are being used in larger quantities for Steve Statham portable computers, a variety of handheld devices, desktop computers and televisions, as well as tiny microdisplays, which are being used in projection televisions, for near-eye applications, where a virtual screen is presented to the viewer. The world of displays is Advances in new display technologies are rapidly changing to meet the evolving needs of the beginning to open up many new possibilities to electronic-device user. consumers and manufacturers. Unfortunately there is always a large time lag between the discoveries made, and the time when practical applications 2.0 Applications finally appear. Even once they have been incorporated into everyday items, they are The electronic-display device industry caters mainly for the sometimes expensive. automation and electronics appliance industries. Characteristic of OEM products, the growth of the display However, major developments are now taking industry is directly linked to the demand trends in end-user place in a variety of display materials with the markets. Display manufacturers, mainly concentrated in potential to enable handheld computers and mobile Japan and East Asian countries, account for over 80% of phones to be more functional and user-friendly, total display production. which could greatly aid in the convergence of functionality and convenience that these products The end-user market (which includes televisions, are intended to deliver.
    [Show full text]
  • JPEG-HDR: a Backwards-Compatible, High Dynamic Range Extension to JPEG
    JPEG-HDR: A Backwards-Compatible, High Dynamic Range Extension to JPEG Greg Ward Maryann Simmons BrightSide Technologies Walt Disney Feature Animation Abstract What we really need for HDR digital imaging is a compact The transition from traditional 24-bit RGB to high dynamic range representation that looks and displays like an output-referred (HDR) images is hindered by excessively large file formats with JPEG, but holds the extra information needed to enable it as a no backwards compatibility. In this paper, we demonstrate a scene-referred standard. The next generation of HDR cameras simple approach to HDR encoding that parallels the evolution of will then be able to write to this format without fear that the color television from its grayscale beginnings. A tone-mapped software on the receiving end won’t know what to do with it. version of each HDR original is accompanied by restorative Conventional image manipulation and display software will see information carried in a subband of a standard output-referred only the tone-mapped version of the image, gaining some benefit image. This subband contains a compressed ratio image, which from the HDR capture due to its better exposure. HDR-enabled when multiplied by the tone-mapped foreground, recovers the software will have full access to the original dynamic range HDR original. The tone-mapped image data is also compressed, recorded by the camera, permitting large exposure shifts and and the composite is delivered in a standard JPEG wrapper. To contrast manipulation during image editing in an extended color naïve software, the image looks like any other, and displays as a gamut.
    [Show full text]
  • Microdisplays - Market, Industry and Technology Trends 2020 Market and Technology Report 2020
    From Technologies to Markets Microdisplays - Market, Industry and Technology Trends 2020 Market and Technology Report 2020 Sample © 2020 TABLE OF CONTENTS • Glossary and definition • Industry trends 154 • Table of contents o Established technologies players 156 • Report objectives o Emerging technologies players 158 • Report scope o Ecosystem analysis 160 • Report methodology o Noticeable collaborations and partnerships 170 • About the authors o Company profiles 174 • Companies cited in this report • Who should be interested by this report • Yole Group related reports • Technology trends 187 o Competition benchmarking 189 • Executive Summary 009 o Technology description 191 o Technology roadmaps 209 • Context 048 o Examples of products and future launches 225 • Market forecasts 063 • Outlooks 236 o End-systems 088 o AR headsets 104 • About Yole Group of Companies 238 o Automotive HUDs 110 o Others 127 • Market trends 077 o Focus on AR headsets 088 o A word about VR 104 o Focus on Auto HUDs 110 o Focus on 3D Displays 127 o Summary of other small SLM applications 139 Microdisplays - Market, Industry and Technology Trends 2020 | Sample | www.yole.fr | ©2020 2 ACRONYMS AMOLED: Active Matrix OLED HMD: Head mounted Device/Display PPI: Pixel Per Inch AR: Augmented Reality HOE: Holographic Optical Element PWM: Pulse Width Modulation BLU: Back Lighting Unit HRI: High Refractive Index QD: Quantum Dot CF LCOS: Color Filter LCOS HVS: Human Vision System RGB: Red-Green-Blue CG: Computer Generated IMU: Inertial measurement Unit RMLCM: Reactive Monomer
    [Show full text]
  • Senior Tech Tuesday 11 Iphone Camera App Tour
    More Info: Links.SeniorTechClub.com/Tuesdays Welcome to Senior Tech Tuesday Live: 1/19/2021 Photography Series Tour of the Camera App Don Frederiksen Our Tuesday Focus ➢A Tour of the Camera App - Getting Beyond Point & Shoot ➢Selfies ➢Flash ➢Zoom ➢HDR is Good ➢What is a Live Photo ➢Focus & Exposure ➢Filters ➢Better iPhone Photography Tip ➢What’s Next www.SeniorTechClub.com Zoom Setup Zoom Speaker View Computer iPad or laptop Laptop www.SeniorTechClub.com Our Learning Tools ◦ Zoom Video Platform ◦ Slides – Downloadable from class page ◦ Demonstrations ◦ Your Questions ◦ “Hey Don” or Chat ◦ Email: [email protected] ◦ Online Class Page at: Links.SeniorTechClub.com/STT11 ◦ Tuesdays Page for Future Topics Links.SeniorTechClub.com/tuesdays www.SeniorTechClub.com Our Class Page Find our class page at: ◦ Links.SeniorTechClub.com/STT11 ◦ Bottom of the Tuesday page Purpose of the Class Page ◦ Relevant Information ◦ Fill in gaps from the online session ◦ Participate w/o being online www.SeniorTechClub.com Tour of our Class Page Slide Deck Video Archive Links & Resources Recipes & Nuggets www.SeniorTechClub.com A Tour of the Camera App Poll www.SeniorTechClub.com A Tour of the Camera App - Classic www.SeniorTechClub.com A Tour of the Camera App - New www.SeniorTechClub.com Switch Camera - Selfie Reminder: Long Press Shortcut Zoom Two kinds of zoom on iPhones Optical Zoom via a Lens Zoom Digital Zoom via a Pinch Better to zoom with your feet then digital Zoom Digital Zoom – Pinch Screen in or out Optical ◦ If your iPhone has more than one lens, tap: ◦ .5x or 1x or 2x (varies by model) Flash Focus & Exposure HDR Photos High Dynamic Range iPhone takes multiple photos to balance shadows and highlights.
    [Show full text]