14 Massachusetts Institute of Technology Organic Chemistry 5.13

Total Page:16

File Type:pdf, Size:1020Kb

14 Massachusetts Institute of Technology Organic Chemistry 5.13 Massachusetts Institute of Technology 14 Organic Chemistry 5.13 October 10, 2003 Prof. Timothy F. Jamison Notes for Lecture #14 Diels-Alder and Other Cycloaddition Reactions Molecule of the Day ferrocene "(The 1973 Nobel Prize in Chemistry is given to Ernst Otto Fischer and Geoffrey Wilkinson) for their pioneering work on the chemistry of the organometallic, so called sandwich compounds." Fe From the presentation of the 1973 Nobel Prize in Chemistry (For more information, see www.noble.se) Cycloaddition: A pericyclic reaction in which 2 separate conjugated, overlapping arrays of orbitals combine. Cycloadditions proceed by way of a cyclic transition state, and 2 sigma bonds are formed during the course of the reaction. A suprafacial process ("s" in the table below) is one in which the bonds made or broken lie on the same face of the orbital array undergoing reaction. In an antarafacial process ("a"), the newly formed or broken bonds lie on opposite faces of the reacting orbital array. Woodward-Hoffmann Rules for Cycloadditions Stereochemical Course # Electrons Thermal Mode Photochemical Mode 4n + 2 [s + s] [s + a] 4n [s + a] [s + s] 14-2 Coefficients of Frontier Molecular Orbitals FMO Analysis of the "Ortho-Para Rule" and the "Alder Endo Rule" For an in-depth discussion, see I. Fleming, "Frontier Molecular Orbitals and Organic Chemical Reactions," Wiley, 1976, pp. 121-181. OMe OMe CO2Me CO2Me HOMO HOMO LUMO LUMO OMe OMe CO2Me CO2Me ignoring OMe considering OMe considering CO2Me ignoring CO2Me OMe OMe O O etc. OMe OMe etc. resonance hybrid description resonance hybrid description OMe OMe • Regioselectivity? "ortho-para rule" Note: changes to coefficients of anti-bonding vs. R orbitals are opposite those seen in bonding orbitals. overlap maximized R • Diastereoselectivity? OMe OMe "Alder endo rule" consider orbitals of CO2Me vs. O MeO secondary orbital interaction OMe LUMO LUMO.
Recommended publications
  • Geoffrey Wilkinson
    THE LONG SEARCH FOR STABLE TRANSITION METAL ALKYLS Nobel Lecture, December 11, 1973 by G EOFFREY W ILKINSON Imperial College of Science & Technology, London, England Chemical compounds in which there is a single bond between a saturated car- bon atom and a transition metal atom are of unusual importance. Quite aside from the significance and role in Nature of the cobalt to carbon bonds in the vitamin B 12 system and possible metal to carbon bonds in other biological systems, we need only consider that during the time taken to deliver this lec- ture, many thousands, if not tens of thousands of tons of chemical compounds are being transformed or synthesised industrially in processes which at some stage involve a transition metal to carbon bond. The nonchemist will pro- bably be most familiar with polyethylene or polypropylene in the form of do- mestic utensils, packaging materials, children’s toys and so on. These materials are made by Ziegler-Natta* or Philipps’ catalysis using titanium and chro- mium respectively. However, transition metal compounds are used as catalysts in the synthesis of synthetic rubbers and other polymers, and of a variety of simple compounds used as industrial solvents or intermediates. For example alcohols are made from olefins, carbon monoxide and hydrogen by use of cobalt or rhodium catalysts, acetic acid is made by carbonylation of methanol using rhodium catalysts and acrylonitrile is dimerised to adiponitrile (for nylon) by nickel catalysts. We should also not forget that the huge quantities of petroleum hydrocarbons processed by the oil and petrochemical industry are re-formed over platinum, platinum-rhenium or platinum-germanium sup- ported on alumina.
    [Show full text]
  • Fischer Carbene Complexes in Organic Synthesis Ke Chen 1/31/2007
    Baran Group Meeting Fischer Carbene Complexes in Organic Synthesis Ke Chen 1/31/2007 Ernst Otto Fischer (1918 - ) Other Types of Stabilized Carbenes: German inorganic chemist. Born in Munich Schrock carbene, named after Richard R. Schrock, is nucleophilic on November 10, 1918. Studied at Munich at the carbene carbon atom in an unpaired triplet state. Technical University and spent his career there. Became director of the inorganic Comparision of Fisher Carbene and Schrock carbene: chemistry institute in 1964. In the 1960s, discovered a metal alkylidene and alkylidyne complexes, referred to as Fischer carbenes and Fischer carbynes. Shared the Nobel Prize in Chemistry with Geoffery Wilkinson in 1973, for the pioneering work on the chemistry of organometallic compounds. Schrock carbenes are found with: Representatives: high oxidation states Isolation of first transition-metal carbene complex: CH early transition metals Ti(IV), Ta(V) 2 non pi-acceptor ligands Cp2Ta CH N Me LiMe Me 2 2 non pi-donor substituents CH3 (CO) W CO (CO)5W 5 (CO)5W A.B. Charette J. Am. Chem. Soc. 2001, 123, 11829. OMe O E. O. Fischer, A. Maasbol, Angew. Chem. Int. Ed., 1964, 3, 580. Persistent carbenes, isolated as a crystalline solid by Anthony J. Arduengo in 1991, can exist in the singlet state or the triplet state. Representative Fischer Carbenes: W(CO) Cr(CO) 5 5 Fe(CO)4 Mn(CO)2(MeCp) Co(CO)3SnPh3 Me OMe Ph Ph Ph NEt2 Ph OTiCp2Cl Me OMe Foiled carbenes were defined as "systems where stabilization is Fischer carbenes are found with : obtained by the inception of the facile reaction which is foiled by the impossibility of attaining the final product geometry".
    [Show full text]
  • Robert Burns Woodward
    The Life and Achievements of Robert Burns Woodward Long Literature Seminar July 13, 2009 Erika A. Crane “The structure known, but not yet accessible by synthesis, is to the chemist what the unclimbed mountain, the uncharted sea, the untilled field, the unreached planet, are to other men. The achievement of the objective in itself cannot but thrill all chemists, who even before they know the details of the journey can apprehend from their own experience the joys and elations, the disappointments and false hopes, the obstacles overcome, the frustrations subdued, which they experienced who traversed a road to the goal. The unique challenge which chemical synthesis provides for the creative imagination and the skilled hand ensures that it will endure as long as men write books, paint pictures, and fashion things which are beautiful, or practical, or both.” “Art and Science in the Synthesis of Organic Compounds: Retrospect and Prospect,” in Pointers and Pathways in Research (Bombay:CIBA of India, 1963). Robert Burns Woodward • Graduated from MIT with his Ph.D. in chemistry at the age of 20 Woodward taught by example and captivated • A tenured professor at Harvard by the age of 29 the young... “Woodward largely taught principles and values. He showed us by • Published 196 papers before his death at age example and precept that if anything is worth 62 doing, it should be done intelligently, intensely • Received 24 honorary degrees and passionately.” • Received 26 medals & awards including the -Daniel Kemp National Medal of Science in 1964, the Nobel Prize in 1965, and he was one of the first recipients of the Arthur C.
    [Show full text]
  • Los Premios Nobel De Química
    Los premios Nobel de Química MATERIAL RECOPILADO POR: DULCE MARÍA DE ANDRÉS CABRERIZO Los premios Nobel de Química El campo de la Química que más premios ha recibido es el de la Quí- mica Orgánica. Frederick Sanger es el único laurea- do que ganó el premio en dos oca- siones, en 1958 y 1980. Otros dos también ganaron premios Nobel en otros campos: Marie Curie (física en El Premio Nobel de Química es entregado anual- 1903, química en 1911) y Linus Carl mente por la Academia Sueca a científicos que so- bresalen por sus contribuciones en el campo de la Pauling (química en 1954, paz en Física. 1962). Seis mujeres han ganado el Es uno de los cinco premios Nobel establecidos en premio: Marie Curie, Irène Joliot- el testamento de Alfred Nobel, en 1895, y que son dados a todos aquellos individuos que realizan Curie (1935), Dorothy Crowfoot Ho- contribuciones notables en la Química, la Física, la dgkin (1964), Ada Yonath (2009) y Literatura, la Paz y la Fisiología o Medicina. Emmanuelle Charpentier y Jennifer Según el testamento de Nobel, este reconocimien- to es administrado directamente por la Fundación Doudna (2020) Nobel y concedido por un comité conformado por Ha habido ocho años en los que no cinco miembros que son elegidos por la Real Aca- demia Sueca de las Ciencias. se entregó el premio Nobel de Quí- El primer Premio Nobel de Química fue otorgado mica, en algunas ocasiones por de- en 1901 al holandés Jacobus Henricus van't Hoff. clararse desierto y en otras por la Cada destinatario recibe una medalla, un diploma y situación de guerra mundial y el exi- un premio económico que ha variado a lo largo de los años.
    [Show full text]
  • Cv Mlhg 2015
    CURRICULUM VITAE Name: GREEN, Malcolm Leslie Hodder Address: St Catherine's College, Oxford or Inorganic Chemistry Laboratory South Parks Road OXFORD, OX1 3QR Date of Birth: 16/4/36, Eastleigh, Hampshire Nationality: British Marital Status: Married. Three children Degrees: B.Sc.(Hons), London; D.I.C., M.A.(Cantab), M.A.(Oxon), C.Chem., F.R.S.C., Ph.D., F.R.S. ACADEMIC CAREER 1953-56 Acton Technical College, University of London, B.Sc Hons. Chemistry 1956-59 Imperial College of Science and Technology, London; D.I.C. Ph.D. in chemistry. Supervisor Professor Sir G. Wilkinson 1959-60 Post-doctoral Research Associates Fellow. Imperial College of Science and Technology 1960-63 Assistant Lecturer in Inorganic Chemistry at Cambridge University 1961 Fellow of Corpus Christi College, Cambridge 1963 Sepcentenary Fellow of Inorganic Chemistry, Balliol College, Oxford and Departmental Demonstrator, University of Oxford 1965 University Lecturer, University of Oxford 1971 Visiting Professor, University of Western Ontario (Spring Term) 1972 Visiting Professor, Ecole de Chimie and Institute des Substances Naturelles, Paris (six months) 1973 A.P. Sloan Visiting Professor, Harvard University, (Spring Semester) 1979-84 Appointed to the British Gas Royal Society Senior Research Fellowship 1981 Sherman Fairchild Visiting Scholar at the California Institute of Technology(4 months) 1984 Re-appointed British Gas Royal Society Senior Research Fellow (1984-6) 1987 Vice-master, Balliol College, Oxford (T.T.) 1989 Appointed Professor of Inorganic Chemistry and Head of Department, Oxford University Fellow of St Catherine's College, Oxford 2004- present Emeritus Research Professor in the Inorganic Chemistry Laboratory, Oxford University Emeritus Fellow of Balliol College and St Catherine’s College Publications Two text books, 646 refereed papers and 8 patents.
    [Show full text]
  • Small Molecule
    National School on Neutron and X-ray Scattering June 24, 2010 Xiaoping Wang Neutron Scattering Science Division Oak Ridge National Laboratory Outline • Small Molecule Crystallography • Accurate Molecular Structural Determination – Impact on Science • Structure and Bonding – Metal-Metal Multiple Bonds – From Small Molecule to Superamolecular Assembly • Case Studies – Gas Adsorption Dynamic in a Meal-Organic Framework – Electronic Communications Between Dimetal Centers – Effects of Crystallization on Molecular Structure – Single Crystal to Single Crystal Chemical Reaction • Future Directions – Single Crystal Crystallography in Higher Dimensions – Charge and Spin Density – Time Resolved Diffraction – Bridging the Gap in Small Molecule and Macromolecule Crystallography Small Molecule Crystallography • Small molecule A neutral or ionic compound of synthetic or biological origin but it is not a polymer, protein or nucleic acid: – Inorganic and Organic Compounds – Catalysts – Natural Products – Pharmaceuticals – Synthetic Chemicals • Small Molecule Crystallography – Use single crystal X-ray/Neutron diffraction methods to determine the three dimensional structure of small molecules at atomic resolution. Chemical Crystallography – The relationship between molecular structure and chemical, biochemical or biological properties. Cambridge Structural Database Stores data for organic molecules & metal-organic compounds http://www.ccdc.cam.ac.uk/ Basic Research at CCDC Mean molecular dimensions Studies of substituent effects Statistical and numerical
    [Show full text]
  • Facts & Figures 2014
    Technische Universität München Facts & Figures 2014 Portrait TUM combines top-class facilities for cutting-edge research with unique learning opportunities for students. TUM scientists are committed to finding solutions to the major challenges facing society as we move forward: • Health & Nutrition • Energy & Natural Resources • Environment & Climate • Information & Communications • Mobility & Infrastructure. TUM thinks and acts with an entrepreneurial spirit. Its aim is ambitious: to create lasting value for society through excellence in education and research, the active promotion of next-generation talent and a strong entre- preneurial spirit. All of which combine to make TUM one of Europe’s leading universities. Departments Locations & Networks 154 programs - 13 departments - 3 locations TUM science network Freising • Max Planck Institutes: Garching Munich Freising 13 Martinsried • Architecture • TUM School of 99 Munich Life Sciences • Civil, Geo and Environ- • Helmholtz Zentrum Weihenstephan mental Engineering 11 München • iwb Anwenderzentrum • Electrical, Electronic and Augsburg Computer Engineering 13 • Fraunhofer Institutes: • TUM School of Medicine Garching 471 Holzkirchen • Sport and Health Freising Sciences 99 99 471 • TUM School of 13 TUM locations Education • Munich • TUM School of 99 • Garching Management • Freising Munich • Iffeldorf Garching 94 • Obernach • Chemistry • Straubing • Wettzell • Informatics • Singapore: TUM Asia • Mathematics 471 • Beijing • Brussels • Mechanical 99 Engineering • Cairo • Mumbai • Physics •
    [Show full text]
  • On the Road to Carbene and Carbyne Complexes
    ON THE ROAD TO CARBENE AND CARBYNE COMPLEXES Nobel Lecture, 11 December 1973 by ERNST OTTO FISCHER Inorganic Chemistry Laboratory, Technical University, Munich, Federal Republic of Germany Translation from the German text INTRODUCTION In the year 1960, I had the honour of giving a talk at this university* about sandwich complexes on which we were working at that time. I think I do not have to repeat the results of those investigations today. I would like to talk instead about a field of research in which we have been intensely interested in recent years: namely, the field of carbene complexes and, more recently, carbyne complexes. If we substitute one of the hydrogen atoms in a hydrocarbon of the alkane type - for example, ethane - by a metal atom, which can of course bind many more ligands, we arrive at an organometallic compound in which the organic radical is bound to the metal atom by a σ-bond (Fig. la). The earliest compounds of this kind were prepared more than a hundred years ago; the first was cacodyl, prepared by R. Bunsen (1), and then zinc dialkyls were prepared by E. Frankland (2). Later V. Grignard was able to synthesise alkyl magnesium halides by treating magnesium with alkyl halides (3). Grignard was awarded the Nobel Prize in 1912 for this effort. We may further recall the organo-aluminium compounds (4) of K. Ziegler which form the basis for the low pressure polymerisation, for example of ethylene. Ziegler and G. Natta were together honoured with the Nobel Prize in 1963 for their work on organometallic compounds.
    [Show full text]
  • Guidelines and Suggested Title List for Undergraduate Chemistry Libraries, Serial Publication Number 44
    DOCUMENT RESUME ED 040 037 SE 008 009 AUTHOR Marquardt, D. N., Ed. TITLE Guidelines and Suggested Title List for Undergraduate Chemistry Libraries, Serial Publication Number 44. INSTITUTION Advisory Council on Coll, Chemistry. PUB DATE Sep 69 NOTE 44p. AVAILABLE FROM Advisory Council on College Chemistry, Dept. of Chemistry, Stanford Univ., Stanford,California 94305 (free) EDRS PRICE EDRS P-: ice MF.40.25 HC-$2.30 DESCRIPTORS Advisory Committees, *Bibliographies,Booklists, *Chemistry, *College Science, *LibraryGuides, Research Reviews (Publications): *Resource Materials, Scholarly Journals IDENTIFIERS Advisory Council on College Chemistry ABSTRACT Contained are guidelines and an extensivelist of books and journals suitable for anundergraduate chemistry library. The guidelines are concerned with theorganization and acquisition policy of chemistry libraries, and withinter-library loan and photoduplication services. Various sections of the reportdeal with journals and abstracts, review serials,foreign language titles, U.S. Government publications and a suggestedtitles list. The books in the titles list are in the areas of analytical,biological, inorganic, organic and physical chemistry. Ingeneral, introductory texts have not been included. The list isarranged alphabetically with entries by author or editor unless the workis better known by title. The library of Congress classification numberand the Dewey Decimal classification number, when available, aregiven for each entry. Book prices are also given. The reportconcludes with a directory of publishers and dealers. This report shouldbe most useful for college libraries, science teachers, and students. (LC) 0 GUIDELINES AND SUGGESTEDTITLE LIST for t...UNDERGRADUATE CHEMISTRY LIBRARIES M CI Revised 1969 Co Co A Report Authorized by the ADVISORY COUNCIL ON COLLEGE CHEMISTRY Edited by D.
    [Show full text]
  • Interview with Harry B. Gray
    HARRY B. GRAY (b. 1935) INTERVIEWED BY SHIRLEY K. COHEN SEPTEMBER 2000 – MARCH 2001 AND HEIDI ASPATURIAN JANUARY – MAY 2016 Photo taken in 1997 ARCHIVES CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California Subject area Chemistry Abstract Two interviews in seven and six sessions respectively, with Harry Gray, the Arnold O. Beckman Professor of Chemistry. The first series of interviews, conducted in 2000-01 with Shirley Cohen, deals with Gray’s life and career up to that time. The second series, conducted in 2016 with Heidi Aspaturian, covers the period 2001–2016, expands on a number of topics discussed in the first interview series, and adds to the account of Gray’s earlier decades. Discussion topics common to the two interviews are cross-referenced in both texts. 2000–01 Interview Gray opens this interview series with a description of his family roots and formative years in Kentucky’s tobacco-farming country, including his youthful career with the local newspaper and early interest in chemistry. He then provides an account of his undergraduate studies at Western Kentucky State College (BS 1957), graduate work with F. Basolo and R. Pearson at Northwestern University http://resolver.caltech.edu/CaltechOH:OH_Gray_H (PhD 1960), and postdoctoral work with C. Ballhausen at the University of Copenhagen, where he pioneered the development of ligand field theory. As a professor at Columbia University, he continued work at the frontiers of inorganic chemistry, published several books and, through an affiliation with Rockefeller University, was drawn to interdisciplinary research, which led him to accept a faculty position at Caltech in 1966. He talks about his approach to teaching and his research in inorganic chemistry and electron transfer at Caltech, his interactions with numerous Caltech personalities, including A.
    [Show full text]
  • Robert Burns Woodward 1917–1979
    NATIONAL ACADEMY OF SCIENCES ROBERT BURNS WOODWARD 1917–1979 A Biographical Memoir by ELKAN BLOUT Any opinions expressed in this memoir are those of the author and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoirs, VOLUME 80 PUBLISHED 2001 BY THE NATIONAL ACADEMY PRESS WASHINGTON, D.C. ROBERT BURNS WOODWARD April 10, 1917–July 8, 1979 BY ELKAN BLOUT OBERT BURNS WOODWARD was the preeminent organic chemist Rof the twentieth century. This opinion is shared by his colleagues, students, and by other distinguished chemists. Bob Woodward was born in Boston, Massachusetts, and was an only child. His father died when Bob was less than two years old, and his mother had to work hard to support her son. His early education was in the Quincy, Massachusetts, public schools. During this period he was allowed to skip three years, thus enabling him to finish grammar and high schools in nine years. In 1933 at the age of 16, Bob Woodward enrolled in the Massachusetts Institute of Technology to study chemistry, although he also had interests at that time in mathematics, literature, and architecture. His unusual talents were soon apparent to the MIT faculty, and his needs for individual study and intensive effort were met and encouraged. Bob did not disappoint his MIT teachers. He received his B.S. degree in 1936 and completed his doctorate in the spring of 1937, at which time he was only 20 years of age. Immediately following his graduation Bob taught summer school at the University of Illinois, but then returned to Harvard’s Department of Chemistry to start a productive period with an assistantship under Professor E.
    [Show full text]
  • Sir James Fraser Stoddart Baran Lab GM 2010-08-14
    Y. Ishihara Sir James Fraser Stoddart Baran Lab GM 2010-08-14 (The UCLA USJ, 2007, 20, 1–7.) 1 Y. Ishihara Sir James Fraser Stoddart Baran Lab GM 2010-08-14 (The UCLA USJ, 2007, 20, 1–7.) 2 Y. Ishihara Sir James Fraser Stoddart Baran Lab GM 2010-08-14 Professor Stoddart's publication list (also see his website for a 46-page publication list): - 9 textbooks and monographs - 13 patents "Chemistry is for people - 894 communications, papers and reviews (excluding book chapters, conference who like playing with Lego abstracts and work done before his independent career, the tally is about 770) and solving 3D puzzles […] - At age 68, he is still very active – 22 papers published in the year 2010, 8 months in! Work is just like playing - He has many publications in so many fields... with toys." - Journals with 10+ papers: JACS 75 Acta Crystallogr Sect C 26 ACIEE 67 JCSPT1 23 "There is a lot of room for ChemEurJ 62 EurJOC 19 creativity to be expressed JCSCC 51 ChemComm 15 in chemis try by someone TetLett 42 Carbohydr Res 12 who is bent on wanting to OrgLett 35 Pure and Appl Chem 11 be inventive and make JOC 28 discoveries." - High-profile general science journals: Nature 4 Science 5 PNAS 8 - Reviews: AccChemRes 8 ChemRev 4 ChemSocRev 6 - Uncommon venues of publication for British or American scientists: Coll. Czechoslovak Chem. Comm. 5 Mendeleev Communications 2 Israel Journal of Chemistry 5 Recueil des Trav. Chim. des Pays-Bas 2 Canadian Journal of Chemistry 4 Actualité chimique 1 Bibliography (also see his website, http://stoddart.northwestern.edu/ , for a 56-page CV): Chemistry – An Asian Journal 3 Bulletin of the Chem.
    [Show full text]