Bekah's Embryology Assignment #6

Total Page:16

File Type:pdf, Size:1020Kb

Bekah's Embryology Assignment #6 1 Part 1 Read pages 289 – 362 (Chapter 13 through Chapter 14) in The Developing Human For all fill in the blank questions you only need to provide the missing word or phrase. For all other questions including definitions please ensure you write in complete sentences using appropriate grammar. A question will be deemed to have been answered when the question has been restated in your answer along with all pertinent information. Ensure you do not miss any information in multi-part questions. Simply listing facts is less important than explaining the information so that we can be sure you fully grasp the content. 1. What is the first major system to function in the embryo? The first major system to function in the embryo is the cardiovascular system. 2. When do the primordial heart and vascular system appear? The primordial heart and vascular system appear in the middle of the third week of development. 3. Briefly explain the development of the heart and veins associated with the embryonic heart. The heart starts off as a pair of endothelial strands (called angioblastic cords) that are from the cardiogenic mesoderm. These appear in the third week. These cords then form a few thin heart tubes. Later, these heart tubes fuse together to form a single heart tube. This begins at the cranial end of the developing heart and it extends caudally. The heart then begins to beat at 22-23 days and blood begins to flow during the 4th week. Various cells give rise to certain parts of the heart with progenitor cells giving rise to the ventricular myocardium and the myocardial wall. Progenitor cells also help with the rapid growth and elongation of the heart tube. At 4 weeks, there are 3 paired veins that drain into the tubular heart. These veins are: vitelline veins (which return poorly oxygenated blood from the umbilical vesicle), umbilical veins (which carry well-oxygenated blood from the chorionic sac), and common cardinal veins (which return poorly oxygenated blood from the body of the embryo). As development continues, the right umbilical vein disappears at about week 7 which leaves only the left umbilical vein to carry well-oxygenated blood from the placenta to the embryo. The vitelline veins is in the mid-gut region of an embryo, 2 traveling to the heart and the liver. The cardinal veins form the main venous drainage system of the embryo. 4. Define the inferior vena cava and its function. The inferior vena cava is a vein that carries de-oxygenated blood from the lower half of the body back to the right side of the heart for oxygenation. 5. Define the superior vena cava and its function. The superior vena cava is a vein that carries de-oxygenated blood from the upper half of the body (above the diaphragm) to the right side of the heart for oxygenation. 6. Explain the anatomy and development of the fetal heart. The fetal heart continues to develop and mature. The endothelial tube develops into the internal endothelial lining of the heart, the endocardium. The primordial myocardium further develops into the muscular walls of the heart and becomes the mature myocardium. The epicardium, is derived from mesothelial cells that came from the external surface of the sinus venosus and that spread over the myocardium. Even before the early heart tube was formed, the homeobox transcription factor was expressed in the left heart that helped to form the left-right patterning of the heart tube which aids in the formation of the cardiac loop that is necessary for mature heart functions. The tubular heart continues to elongate and develop and the bulbus cordis (which is composed of the truncus arteriosus, the conus arteriosus, and the conus cordis), ventricle, atrium, and sinus venosus develops. These 4 structures develop into the 4 chambers of the heart. The arterial and venous ends of the heart are fixed due to the pharyngeal arches and the septum transversum. At about 23-28 days, the heart tube gets looped so that a U-shaped D-loop is formed with the apex of the heart pointing to the left. As the heart continues to elongate and bend, it gradually goes into the pericardial cavity. Initially, the early heart is suspended from the dorsal wall by the dorsal mesocardium, however, this soon begins to degenerate, leaving just the transverse pericardial sinus between the right and left sides of the pericardial cavity. At this point, the heart is only attached at both its cranial and caudal ends. 7. Explain tetralogy of fallot. Tetralogy of fallot is a heart defect that consists of a grouping of four cardiac defects. These defects include: pulmonary artery stenosis (which is the obstruction of the right ventricular outflow), VSD (ventricular septal defect), dextroposition of aorta (overriding or straddling aorta), and right ventricular hypertrophy. With tetralogy of fallot, the 3 pulmonary trunk is usually small and there can be varying amounts of pulmonary artery stenosis. The obvious sign for tetralogy of fallot is cyanosis, indicating a deficiency in the oxygenation of blood. Cyanosis is not typically present right away at birth but typically a bit after birth. With this, surgical intervention is typically needed almost immediately to either place a shunt for a temporary fix or to perform a full surgical repair. 8. Explain the fetal and neonatal circulation/9. Explain transitional neonatal circulation. Fetal circulation: Fetal circulation before birth is vastly different than adult circulation. The main source of oxygen is the placenta, not the lungs. In fact, the lungs are largely bypassed in fetal circulation (before birth). There are several additional structures in the circulatory system that are present. These include: umbilical vein, umbilical arteries, ductus venosus, ductus arteriosis and the foramen ovale. Oxygenated blood is taken from the placenta through the umbilical vein into the baby’s abdominal wall where it travels through the ductus venosus and into the inferior vena cava where it then travels throughout the body going to the heart and traveling through the foramen ovale (which allows blood to move from the right atrium to the left atrium) before then going into the umbilical arteries where it returns to the placenta to pick up oxygen and nutrients and then repeat its path in the baby’s body. Transitional Neonatal circulation: After birth, the fetal circulation changes quite rapidly to become like an adult’s circulatory system. This change starts immediately after the baby is born and may continue for a few weeks. Instead of relying on the placenta for oxygen, the baby must not breathe and rely on its lungs. One of the big changes is that pulmonary circulation changes from high-resistance to low-resistance. Vasoconstriction also occurs which helps to decrease placental circulation which prevents blood flow from going from the baby back to the placenta. Many of the structures that were needed for fetal circulation are no longer needed in mature human circulation after birth. For instance, the foramen ovale gets pushed closed due to decreased umbilical flow and pressure. The ductus venosus and ductus arteriosus constrict and close shortly after birth as these are no longer needed, instead other veins and arteries become the primaries (vena cava, aorta, etc.). Some of these changes begin as a newborn takes its first breath. However, other changes occur over hours and days. During this transitional stage, there may be some right-to-left blood flow through the foramen ovale. Also, while initially the closure of the fetal vessels and foramen ovale is a functional change, later the anatomic closure results due to a proliferation of endothelial and fibrous tissues that close off these vessels/structure. 10. What is associated with aeration of the lungs? Aeration of the lungs is associated with: 4 • Dramatic decrease in pulmonary vascular resistance • Marked increase in pulmonary blood flow • Progressive thinning of the pulmonary arteries 11. Explain the development of the lymphatic system. The development of the lymphatic system starts at the end of the 6th week of development, about 2 weeks after the primordia of the cardiovascular system are present and recognizable. The development of lymphatic vessels is very similar to that of the development of blood vessels. The lymphatic system functions closely with the circulatory system as the lymph vessels make connections with the venous system. Early capillaries of the lymphatic system join together to form a network of lymphatics. At the end of the embryonic stage, there are 6 primary lymph sacs that are present. These include: 2 jugular lymph sacs, 2 iliac lymph sacs, 1 retroperitoneal lymph sac, and 1 cisterna chyli. Lymphatic vessels connect to these lymph sacs as they pass along near the main veins of the body. Most parts of the lymph sacs (except a small superior part of the cisterna chyli) will develop into groups of lymph nodes during the early fetal period. Part 2 For this assignment you will become familiar with ultrasounds. They are a tool often used in fetal development and it can be confusing to know exactly how they work, even if you have been pregnant and had ultrasounds yourself. Watch these two films and take notes. You will be learning the specifics of ultrasound generally and then obstetrically. Once you have your information from the two videos you can write a 2-3 paragraph synopsis of what you learned. Video 1 Video 2 The unaided human ear can hear sounds that are between 20Hz - 20,000Hz. Above this range is called ultrasound (above sound). In an ultrasound, a transducer sends out multiple, fast pulses and will reflect off of certain items and note any difference there is in time.
Recommended publications
  • Te2, Part Iii
    TERMINOLOGIA EMBRYOLOGICA Second Edition International Embryological Terminology FIPAT The Federative International Programme for Anatomical Terminology A programme of the International Federation of Associations of Anatomists (IFAA) TE2, PART III Contents Caput V: Organogenesis Chapter 5: Organogenesis (continued) Systema respiratorium Respiratory system Systema urinarium Urinary system Systemata genitalia Genital systems Coeloma Coelom Glandulae endocrinae Endocrine glands Systema cardiovasculare Cardiovascular system Systema lymphoideum Lymphoid system Bibliographic Reference Citation: FIPAT. Terminologia Embryologica. 2nd ed. FIPAT.library.dal.ca. Federative International Programme for Anatomical Terminology, February 2017 Published pending approval by the General Assembly at the next Congress of IFAA (2019) Creative Commons License: The publication of Terminologia Embryologica is under a Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0) license The individual terms in this terminology are within the public domain. Statements about terms being part of this international standard terminology should use the above bibliographic reference to cite this terminology. The unaltered PDF files of this terminology may be freely copied and distributed by users. IFAA member societies are authorized to publish translations of this terminology. Authors of other works that might be considered derivative should write to the Chair of FIPAT for permission to publish a derivative work. Caput V: ORGANOGENESIS Chapter 5: ORGANOGENESIS
    [Show full text]
  • The Evolving Cardiac Lymphatic Vasculature in Development, Repair and Regeneration
    REVIEWS The evolving cardiac lymphatic vasculature in development, repair and regeneration Konstantinos Klaourakis 1,2, Joaquim M. Vieira 1,2,3 ✉ and Paul R. Riley 1,2,3 ✉ Abstract | The lymphatic vasculature has an essential role in maintaining normal fluid balance in tissues and modulating the inflammatory response to injury or pathogens. Disruption of normal development or function of lymphatic vessels can have severe consequences. In the heart, reduced lymphatic function can lead to myocardial oedema and persistent inflammation. Macrophages, which are phagocytic cells of the innate immune system, contribute to cardiac development and to fibrotic repair and regeneration of cardiac tissue after myocardial infarction. In this Review, we discuss the cardiac lymphatic vasculature with a focus on developments over the past 5 years arising from the study of mammalian and zebrafish model organisms. In addition, we examine the interplay between the cardiac lymphatics and macrophages during fibrotic repair and regeneration after myocardial infarction. Finally, we discuss the therapeutic potential of targeting the cardiac lymphatic network to regulate immune cell content and alleviate inflammation in patients with ischaemic heart disease. The circulatory system of vertebrates is composed of two after MI. In this Review, we summarize the current complementary vasculatures, the blood and lymphatic knowledge on the development, structure and function vascular systems1. The blood vasculature is a closed sys- of the cardiac lymphatic vasculature, with an emphasis tem responsible for transporting gases, fluids, nutrients, on breakthroughs over the past 5 years in the study of metabolites and cells to the tissues2. This extravasation of cardiac lymphatic heterogeneity in mice and zebrafish.
    [Show full text]
  • The Reproductive System: Embryology and Human Development
    28 The Reproductive System: Embryology and Human Development PowerPoint® Lecture Presentations prepared by Steven Bassett Southeast Community College Lincoln, Nebraska © 2012 Pearson Education, Inc. Introduction • Development involves: • Differentiation of cells • Reorganization of cells • Development can be characterized by different periods of time • Prenatal development • Embryology • Postnatal development © 2012 Pearson Education, Inc. An Overview of Development • Development can be characterized by different periods of time • Prenatal development • Conception to delivery • Involves embryology (development during the prenatal period) • Postnatal development • Development from birth to maturity © 2012 Pearson Education, Inc. Fertilization • Fertilization is the joining of two haploid cells to create a diploid cell • Function of the haploid cells • Spermatozoon • Delivers the paternal chromosomes to the ovum • Ovum • Provides the maternal chromosomes • Provides nourishment for embryonic development © 2012 Pearson Education, Inc. Fertilization • Fertilization occurs in the ampulla of the uterine tube • 200 million sperm cells enter the vaginal canal • Only about 10,000 make it to the uterine tubes • Less than 100 actually contact the egg • Only one will fertilize the egg © 2012 Pearson Education, Inc. Fertilization • Fertilization details • When the egg is ovulated, it is surrounded by the corona radiata, which protects the egg as it is being ovulated • Numerous sperm cells release hyaluronidase, from their acrosomal cap, in an effort
    [Show full text]
  • Lymph Node Development Ontogeny of Stromal Organizer Cells During
    Ontogeny of Stromal Organizer Cells during Lymph Node Development Cécile Bénézech, Andrea White, Emma Mader, Karine Serre, Sonia Parnell, Klaus Pfeffer, Carl F. Ware, Graham This information is current as Anderson and Jorge H. Caamaño of September 28, 2021. J Immunol 2010; 184:4521-4530; Prepublished online 17 March 2010; doi: 10.4049/jimmunol.0903113 http://www.jimmunol.org/content/184/8/4521 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2010/03/15/jimmunol.090311 Material 3.DC1 http://www.jimmunol.org/ References This article cites 47 articles, 22 of which you can access for free at: http://www.jimmunol.org/content/184/8/4521.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 28, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2010 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Ontogeny of Stromal Organizer Cells during Lymph Node Development Ce´cile Be´ne´zech,* Andrea White,* Emma Mader,* Karine Serre,* Sonia Parnell,* Klaus Pfeffer,† Carl F.
    [Show full text]
  • The Rediscovery of the Lymphatic System: Old and New Insights Into the Development and Biological Function of the Lymphatic Vasculature
    Downloaded from genesdev.cshlp.org on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW The rediscovery of the lymphatic system: old and new insights into the development and biological function of the lymphatic vasculature Guillermo Oliver1,3 and Michael Detmar2,3 1Department of Genetics, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, USA; 2Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA The lymphatic system is composed of a vascular net- control lymphatic development and function. These work of thin-walled capillaries that drain protein-rich findings include the identification of specific genetic de- lymph from the extracellular spaces within most organs. fects in certain hereditary diseases that are associated A continuous single-cell layer of overlapping endothelial with lymphatic hypoplasia and dysfunction (i.e., lymph- cells lines the lymphatic capillaries, which lack a con- edemas; Milroy 1892; Meige 1898), and evidence that tinuous basement membrane and are, therefore, highly malignant tumors can directly activate lymphangiogen- permeable. Lymph returns to venous circulation via the esis and lymphatic metastasis (Karpanen et al. 2001; larger lymphatic collecting vessels, which contain a Mandriota et al. 2001; Skobe et al. 2001a; Stacker et al. muscular and adventitial layer, and the thoracic duct. 2001). The lymphatic system also includes lymphoid organs such as the lymph nodes, tonsils, Peyer’s patches, spleen,
    [Show full text]
  • Cardiovascular System Heart Development Cardiovascular System Heart Development
    Cardiovascular System Heart Development Cardiovascular System Heart Development In human embryos, the heart begins to beat at approximately 22-23 days, with blood flow beginning in the 4th week. The heart is one of the earliest differentiating and functioning organs. • This emphasizes the critical nature of the heart in distributing blood through the vessels and the vital exchange of nutrients, oxygen, and wastes between the developing baby and the mother. • Therefore, the first system that completes its development in the embryo is called cardiovascular system. https://www.slideshare.net/DrSherifFahmy/intraembryonic-mesoderm-general-embryology Mesoderm is one of the three • Connective tissue primary germ layers that • Smooth and striated muscle • Cardiovascular System differentiates early in • Kidneys development that collectively • Spleen • Genital organs, ducts gives rise to all subsequent • Adrenal gland cortex tissues and organs. The cardiovascular system begins to develop in the third week of gestation. Blood islands develop in the newly formed mesoderm, and consist of (a) a central group of haemoblasts, the embryonic precursors of blood cells; (b) endothelial cells. Development of the heart and vascular system is often described together as the cardiovascular system. Development begins very early in mesoderm both within (embryonic) and outside (extra embryonic, vitelline, umblical and placental) the embryo. Vascular development occurs in many places. • Blood islands coalesce to form a vascular plexus. Preferential channels form arteries and veins. • Day 17 - Blood islands form first in the extra-embryonic mesoderm • Day 18 - Blood islands form next in the intra-embryonic mesoderm • Day 19 - Blood islands form in the cardiogenic mesoderm and coalesce to form a pair of endothelial heart tubes Development of a circulation • A circulation is established during the 4th week after the myocardium is differentiated.
    [Show full text]
  • Cardiovascular System Note: the Cardiovascular System Develops Early (Week 3), Enabling the Embryo to Grow Beyond the Short
    Lymphatics: Lymph vessel formation is similar to blood angiogenesis. Lymphatics begin as lymph sacs in three regions: jugular (near brachiocephalic veins); cranial abdominal (future cysterna chyla); and iliac region. Lym- phatic vessels (ducts) form as outgrowths of the sacs. mesenchyme Lymph nodes are produced by localized mesoder- sinusoid lymph duct lumen mal invaginations that partition the vessel lumen into sinu- soids. The mesoderm develops a reticular framework within which mesodermal lymphocytes accumulate. The spleen and hemal nodes (in ruminants) invagination develop similar to the way lymph nodes develop. Lymph Node Formation Prior to birth, fetal circulation is designed for an in utero aqueous environment where the pla- centa oxygenates fetal blood. Suddenly, at birth... Three In-Utero Adjustments ductus Stretching and constriction of arteriosus umbilical arteries shifts fetal blood flow aortic arch from the placenta to the fetus. Reduced pulmonary trunk L atrium venous return through the (left) umbili- foramen ovale R cal vein and ductus venosus allows the atrium latter to gradually close (over a period caudal vena cava of days). Bradykinin released by expand- ductus venosus ing lungs and increased oxygen concen- tration in blood triggers constriction of aorta the ductus arteriosus which, over two liver months, is gradually converted to a fibrous structure, the ligamentum arte- umbilical v. riosum. portal v. The increased blood flow to the lungs and then to the left atrium equalizes pres- sure in the two atria, resulting in closure umbilical aa. of the foramen ovale that eventually grows permanent. 29 The cardiogenic area, the place where the embryonic heart originates, is located .
    [Show full text]
  • The Lymphatic System in Human Embryos, with a Consideration of the Morphology of the System As a Whole
    THE LYXPHATIC SYSTEX IN HUMAN EMBRYOS, WITH X CONSIDERATION OF THE MORPHOLOGY OF THE SYSTEN AS A WHOLE. RT FLOBENCE R. SABIN. From the Anatoinical Laboratory of the Johns Hopkins University. When we consider the history of our knowledge of the lymphatic system, it is clear that there have been two wholly different lines of thought with regards to our general conceptions. To establish its general morphology is the fundamental task for each of the systems of the body, and upon such a general conception is based all future elaboration of the system. I need only to refer to the neurone theory as establishing such a foundation for our knowledge of the nervous system. In connection with the lymphatic system, the idea that it arises from mesenchyme spaces dominates anatomical and zoijlogical literature as is evidenced by examining most of the text books. This conception is based on the work of Budge, Sala, Gulland and many others. It allies the lymphatic system with tissue spaces and serous cavities. The other theory, which seems in a fair way to displace the earlier conception, is that the lymphatics are derived from the veins, that they are vascular rather than mesenchymal in origin. This theory, only recently crystallized, has had an interesting evo- lution ; beginning with Langer and Ranvier, it has been formulated and developed by a group of American anatomists. In this paper I hope to add evidence for this theory and give a genera1 picture of the primitive lymphatic system as a whole. The great usefulness of this theory, aside from the fact that we believe it to be true, is that it gives a key by which to work out the entire developme& of the lymphatic system down to its ultimate capillaries, and it will be readily conceded that the old theory of the relation of the lymphatics to the tissue spaces gave us no such point of attack.
    [Show full text]
  • LAC.12 Embryology 2019-2020 Dr.Mahdi Alheety
    LAC.12 Embryology 2019-2020 Dr.Mahdi ALheety Cardiovascular System Establishment of the Cardiogenic Field The vascular system appears in the middle of the third week, when the embryo is no longer able to satisfy its nutritional requirements by diffusion alone. Progenitor heart cells lie in the epiblast, immediately adjacent to the cranial end of the primitive streak. From there, they migrate through the streak and into the splanchnic layer of lateral plate mesoderm where they form a horseshoe-shaped cluster of cells called the primary heart field (PHF) cranial to the neural folds. As the progenitor heart cells migrate and form the PHF during days 16 to18, they are specified on both sides from lateral to medial to become the atria, left ventricle, and most of the right ventricle. Patterning of these cells occurs at the same time that laterality (left-right sidedness) is being established for the entire embryo and this process and the signaling pathway it is dependent upon is essential for normal heart development. The remainder of the heart, including part of the right ventricle and outflow tract (conus cordis and truncus arteriosus), is derived from the secondary heart field (SHF). This field of cells appears slightly later (days 20 to 21) than those in the PHF, resides in splanchnic mesoderm ventral to the posterior pharynx, and is responsible for lengthening the outflow tract. Cells in the SHF also exhibit laterality, such that those on the right side contribute to the left of the outflow tract region and those on the left contribute to the right.
    [Show full text]
  • Cardiovascular System Note: the Cardiovascular System Develops Early (Week-3), Enabling the Embryo to Grow Beyond the Short
    Cardiovascular System Note: The cardiovascular system develops early (week-3), enabling the embryo to grow beyond the short distances over which diffusion is efficient for transferring 2O , CO2, and cellular nutrients & wastes. Heart: Beginning as a simple tube, the heart undergoes differential growth into a four chambered struc- ture, while it is pumping blood throughout the embryo and into extra-embryonic membranes. Angiogenesis begins with blood island formation in splanchnic mesoderm of the yolk sac and allantois. Vessel formation occurs when island vesicles coalesce, sprout buds, and fuse to form vascular channels. Hematopoiesis (blood cell formation) occurs in the liver and spleen and later in the bone marrow. The transition from fetal to adult circulation involves new vessel formation, vessel merger, and degeneration of early vessels. Formation of a Tubular Heart: The first evidence of heart develop- amnionic cavity ment is bilateral vessel formation within ectoderm the cardiogenic plate (splanchnic meso- embryo derm situated anterior to the embryo). The cardiogenic plate moves ven- tral to the pharynx as the head process cardiogenic yolk sac endoderm mesoderm grows upward and outward. plate Bilateral endocardial tubes meet at the midline & fuse into a single endo- embryo cardial tube, the future heart. Splanchnic mesoderm surround- ing the tube forms cardiac muscle cells heart capable of pumping blood. yolk sac Primitive Heart Regions: Differential growth of the endocardial tube establishes five primitive heart regions: 1] Truncus arteriosus — the output region of the heart. It will develop into the ascending aorta and pulmonary trunk. truncus 2] Bulbus cordis — a bulb-shaped region des- arteriosus tined to become right ventricle.
    [Show full text]
  • Lymphangiogenesis Guidance by Paracrine and Pericellular Factors
    Downloaded from genesdev.cshlp.org on October 10, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW Lymphangiogenesis guidance by paracrine and pericellular factors Kari Vaahtomeri,1 Sinem Karaman,1 Taija Mäkinen,2 and Kari Alitalo1 1Wihuri Research Institute, Translational Cancer Biology Program, Biomedicum Helsinki, University of Helsinki, FI-00014 Helsinki, Finland; 2Department of Immunology, Genetics, and Pathology, Uppsala University, 75185 Uppsala, Sweden Lymphatic vessels are important for tissue fluid homeo- in the downstream collector vessels (Bazigou and Maki- stasis, lipid absorption, and immune cell trafficking and nen 2013). are involved in the pathogenesis of several human diseas- With the exception of the Schlemm’s canal in the eyes, es. The mechanisms by which the lymphatic vasculature meningeal lymphatic vessels, and the majority of the (lac- network is formed, remodeled, and adapted to physiolog- teal) lymphatic vessels in the intestine, most lymphatic ical and pathological challenges are controlled by an intri- networks are generated during embryonic development cate balance of growth factor and biomechanical cues. (Kim et al. 2007; Aspelund et al. 2014, 2015; Kizhatil These transduce signals for the readjustment of gene ex- et al. 2014; Nurmi et al. 2015). However, they also under- pression and lymphatic endothelial migration, prolifera- go dynamic changes in adults. Lymphatic vessels can tion, and differentiation. In this review, we describe grow in length and caliber (lymphangiogenesis) in various several of these cues and how they are integrated for the pathological conditions, such as inflammation, wound generation of functional lymphatic vessel networks. healing, tumorigenesis, and in association with tissue transplantation. A common feature in many of these con- ditions is tissue edema and inflammation, which increase Some of the most dense lymphatic networks are located the demand for fluid drainage and immune cell traffick- under various epithelia that form the interface between ing.
    [Show full text]
  • Lymphangiogenesis, Inflammation and Metastasis
    ANTICANCER RESEARCH 25: 4503-4512 (2005) Review Lymphangiogenesis, Inflammation and Metastasis SEBASTIAN F. SCHOPPMANN Department of Surgery, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria Abstract. The lymphatic vascular system is necessary for the cells (1). In the periphery, antigen-presenting cells and return of extravasated interstitial fluid and macromolecules to lymphocytes enter the capillaries and migrate through the the blood circulation, for immune defense, and for the uptake lymphatic system to the lymph nodes to elicit acquired of dietary fats. Impaired functioning of lymphatic vessels results immune response in the body. In the small intestine, the in lymphedema, whereas tumor-associated lymphangiogenesis lymphatics play a special role in the process of fat may contribute to the spread of cancer cells from solid tumors. absorption. Recent studies have identified lymphatic molecular markers and This extensive drainage network is lined by a single, thin, growth factors necessary for lymphangiogenesis. In particular, non-fenestrated lymphatic endothelial cell (LECs) layer (2). lymphatic endothelial receptor tyrosine kinase VEGFR-3, and An incomplete basement membrane is characteristic, and the its ligands VEGF-C and VEGF-D, are major players in lymphatic endothelial cells are anchored to the extracellular promoting lymphatic vascular growth both during development matrix through elastic fibers, which keep the vessels open, and in pathological conditions. Lymphatic vessels play a crucial allowing for changes in interstitial pressure (3). role in a variety of human cancers, since invasion of lymphatic Two theories about the development of the lymphatic vessels by tumor cells and subsequent development of lymph system were proposed at the beginning of the last century: i) node metastases significantly influence the prognosis of cancer the venous origin of lymphatic vessels and ii) the de novo patients and, therefore, represent an integral part of tumor formation of primary lymph sacs in the mesenchyme (4, 5).
    [Show full text]