Phylogenetic Diversity, Functional Convergence, and Stress Response of the Symbiotic System Between Sponges and Microorganisms

Total Page:16

File Type:pdf, Size:1020Kb

Phylogenetic Diversity, Functional Convergence, and Stress Response of the Symbiotic System Between Sponges and Microorganisms Phylogenetic Diversity, Functional Convergence, and Stress Response of the Symbiotic System Between Sponges and Microorganisms Lu Fan A thesis submitted to the University of New South Wales for the degree of Doctor of Philosophy April 2012 Abstract All living multicellular organisms contain associated microorganisms, which often make substantial symbiotic contributions to host physiology, behaviors and evolution. Marine sponges host dense and highly diverse communities of symbiotic microorganisms. These symbionts are assembled in stable and host-specific community structures and are often inherited through the sponge’s generations. Previous investigations have provided a good understanding of the phylogenetic diversity of microbial symbionts in marine sponges. However the functional features that underpin their symbiotic interactions are largely unknown. This thesis uses sponges as models to address fundamental concepts of microbial symbiosis, including community diversity and assembly, metabolic interactions with the host and other symbionts, as well as symbiosis stability under perturbations. State-of-the-art techniques including 16S rRNA gene pyro-tag-sequencing, metagenomics and metaproteomics were applied. Specifically, a pipeline was developed to reconstruct full-length ribosomal rRNA genes from pyrosequencing metagenomic shotgun data. This work showed that a substantial proportion of microbial diversity has been typically missed by the PCR-based approaches. Detailed metagenomic analyses then identified the functional core in symbiont communities from taxonomically distinct sponge species. The result indicated that common functions were provided by distinct but functionally equivalent symbionts and enzymes in different sponge hosts. Moreover, the abundant elements involved in horizontal gene transfer suggested their key roles in distributing core functions between co-evolutionary symbionts and in facilitating functional convergence on the community scale. To investigate the expression profile of sponge symbionts, metaproteogenomic analysis was conducted on the sponge Cymbastela concentrica. The analysis detected abundant protein expression for the functions of substrate transport, aerobic and anaerobic metabolisms, stress response, and host-symbiont interactions. To study the stability and dynamics of the sponge holobiont during perturbation, the sponge Rhopaloeides odorabile was examined under controlled thermal stress. Dramatic changes in community structure, functional composition and gene expression were observed along with the host stress response suggesting that a decline in symbiotic interactions was likely to be the key factor in the loss of holobiont function. i These discoveries combined with a theoretical framework advanced our knowledge in sponge microbiology and provided new insights into the ecology and evolution of microbial symbiosis. ii Acknowledgements First, I would like to thank Torsten Thomas for being such a cool supervisor and helpful friend to me. I admire his great knowledge in research, detailed research insights, and creative thinking. His constant demand for ‘German precision’ towards data analysis trained me in the ability to examine every experimental result or conclusion independently and critically with requirement for definative results. Besides the training to be a hard-nosed scientist, I also feel grateful for the freedom and trust he gave me to fulfill my science aspirations. Torsten’s wonderful personality, his positive thinking towards life and great sense of humor has had a great influence on me. I still remember the words he gave me before I started my PhD study that, ‘The first thing to be a good scientist is to be a good person’. It has been my great honour to have had the chance to work with Torsten for the last four years. The remarks on my research from my co-supervisor Staffan Kjelleberg have always been insightful. I appreciate his guidance throughout my PhD study including project design, progress review and manuscript writing. Staffan’s views in the big picture of science and his endeavours in combining science and industry have been of great influence to me. I would also like to show my gratitude to Nicole Webster, my supervisor during my visit to AIMS as well as my wonderful collaborator. Nicole was excellent in coordinating the heat- stress experiment described in this thesis and provided important data for the GeXP analysis. As a colleague, I am very impressed by her passion towards her research and her love to the sponges. I thank her for her wonderful arrangement for my sampling at AIMS. I really enjoyed my stay there, especially the exclusive ship trip and I deeply fell in love with the fascinating nature of the GBR. I hope to have the chance to re-visit AIMS one day and get seasick there again. I thank Michael Liu as my wonderful colleague and good friend. Michael contributed to the proteomic sample analyses described in this thesis. Working with him has been great fun. I owe sincere and earnest thankfulness for all his help in life over the last four years, especially when I first came to Australia. I would like to congratulate him on his recent marriage and I wish him a bright future in his career. I also want to thank David Reynolds, iii who did a wonderful analysis for the ELPs described in this thesis. David is a quick learner and very interesting person. It has been my pleasure to supervise him and I wish him joy for whatever he decides to do in the future. My thanks also go to other colleagues and collaborators who have had a direct contribution to the analyses in this thesis, including Manuel Stark, Rachel Simister, and Ling Zhong. Special thanks to the smart super girl Kerensa McElroy, who contributed a number of neat scripts used in my bioinformatic analyses and to Bill O’Sullivan and Susan Cooke for proofreading of this thesis. Thank you to everyone from AIMS for their support in sample collection and shipment; including Rose, Rochelle, Chris B, Raffaella, Florita, Heidi, and Shawn. I thank Martin from UNSW for his help in server operation and Patricia and Merrick from the Queensland Museum for sponge identification. I thank my former and present colleagues at CMB, especially Kirsty and Adam for their grateful support with my scholarship, reagent ordering, sample shipment and conference travel arrangements. My experiments would not have been successful without their assistance. I cherish the memory I had in Lab 304 especially at the beginning of my PhD study. Thanks to Neil, Shaun, Cathy, Maria, Gee, Vickey, Sharon, Melani, Raymond, Carla, and Alex for their great help and advice during the time when I was establishing my experiments. I am also thankful for the 'golden old days' I had with Francesco, Kathrine, Adrian, Sylvain and others whilst enjoying camping, surfing, soccer and badminton. Lastly, I am exceedingly grateful to my parents and my grandmothers. Thanks for supporting my decision to study in Australia. Thanks for your countless sacrifices that you made on my part over the years and the education you gave me to be honest, responsible and grateful. I am really indebted to the endless love and encouragement I receive from you. Last but not the least, I would like to thank my friends in China and Australia who appreciated me for my work and made my PhD life more enjoyable. iv Table of Contents Abstract ..................................................................................................................................... i Acknowledgements ............................................................................................................... iii Table of Contents .................................................................................................................... v List of Figures .......................................................................................................................... x List of Tables ....................................................................................................................... xiii List of Abbreviations ........................................................................................................... xiv Chapter One General Introduction ....................................................................................... 1 1.1 Common features of eukaryota-associated microorganisms ................................. 1 1.1.1 Diversity, distribution and functional significance of the micro-biosphere .......... 1 1.1.2 Significance of eukaryote-associated microbial community and the holobiont concept .............................................................................................................................. 3 1.1.3 Loosely associated microbiota and host-restricted symbionts .............................. 4 1.1.4 Microbial community assembly mechanisms ....................................................... 5 1.1.5 Evolution of symbiont genomes ............................................................................ 7 1.2 Sponge-microbiota holobionts ................................................................................... 8 1.2.1 General background and basic biology of sponges ............................................... 8 1.2.2 Diversity and distribution of sponge microorganisms ........................................ 10 1.2.3 Evolution of sponge holobiont ............................................................................ 10 1.2.4 Functional features in the sponge holobiont .......................................................
Recommended publications
  • Functional Equivalence and Evolutionary Convergence In
    Functional equivalence and evolutionary convergence PNAS PLUS in complex communities of microbial sponge symbionts Lu Fana,b, David Reynoldsa,b, Michael Liua,b, Manuel Starkc,d, Staffan Kjelleberga,b,e, Nicole S. Websterf, and Torsten Thomasa,b,1 aSchool of Biotechnology and Biomolecular Sciences and bCentre for Marine Bio-Innovation, University of New South Wales, Sydney, New South Wales 2052, Australia; cInstitute of Molecular Life Sciences and dSwiss Institute of Bioinformatics, University of Zurich, 8057 Zurich, Switzerland; eSingapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, Republic of Singapore; and fAustralian Institute of Marine Science, Townsville, Queensland 4810, Australia Edited by W. Ford Doolittle, Dalhousie University, Halifax, NS, Canada, and approved May 21, 2012 (received for review February 24, 2012) Microorganisms often form symbiotic relationships with eukar- ties (11, 12). Symbionts also can be transmitted vertically through yotes, and the complexity of these relationships can range from reproductive cells and larvae, as has been demonstrated in those with one single dominant symbiont to associations with sponges (13, 14), insects (15), ascidians (16), bivalves (17), and hundreds of symbiont species. Microbial symbionts occupying various other animals (18). Vertical transmission generally leads equivalent niches in different eukaryotic hosts may share func- to microbial communities with limited variation in taxonomy and tional aspects, and convergent genome evolution has been function among host individuals. reported for simple symbiont systems in insects. However, for Niches with similar selections may exist in phylogenetically complex symbiont communities, it is largely unknown how prev- divergent hosts that lead comparable lifestyles or have similar alent functional equivalence is and whether equivalent functions physiological properties.
    [Show full text]
  • Analysis of the Complete Mitochondrial DNA Sequence of the Brachiopod Terebratulina Retusa Places Brachiopoda Within the Protostomes
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/12415870 Analysis of the complete mitochondrial DNA sequence of the brachiopod Terebratulina retusa places Brachiopoda within the protostomes Article in Proceedings of the Royal Society B: Biological Sciences · November 1999 DOI: 10.1098/rspb.1999.0885 · Source: PubMed CITATIONS READS 83 50 2 authors, including: Martin Schlegel University of Leipzig 151 PUBLICATIONS 2,931 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Rare for a reason? Scale-dependence of factors influencing rarity and diversity of xylobiont beetles View project Bat diversity and vertical niche activity in the fluvial flood forest Leipzig View project All content following this page was uploaded by Martin Schlegel on 22 May 2014. The user has requested enhancement of the downloaded file. Analysis of the complete mitochondrial DNA sequence of the brachiopod Terebratulina retusa places Brachiopoda within the protostomes Alexandra Stechmann* and Martin Schlegel UniversitÌt Leipzig, Institut fÏr Zoologie/Spezielle Zoologie,Talstr. 33, 04103 Leipzig, Germany Brachiopod phylogeny is still a controversial subject. Analyses using nuclear 18SrRNA and mitochondrial 12SrDNA sequences place them within the protostomes but some recent interpretations of morphological data support a relationship with deuterostomes. In order to investigate brachiopod a¤nities within the metazoa further,we compared the gene arrangement on the brachiopod mitochondrial genome with several metazoan taxa. The complete (15 451bp) mitochondrial DNA (mtDNA) sequence of the articulate brachiopod Terebratulina retusa was determined from two overlapping long polymerase chain reaction products. All the genes are encoded on the same strand and gene order comparisons showed that only one major rearrangement is required to interconvert the T.retusa and Katharina tunicata (Mollusca: Polyplaco- phora) mitochondrial genomes.
    [Show full text]
  • Hemichordate Phylogeny: a Molecular, and Genomic Approach By
    Hemichordate Phylogeny: A molecular, and genomic approach by Johanna Taylor Cannon A dissertation submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Auburn, Alabama May 4, 2014 Keywords: phylogeny, evolution, Hemichordata, bioinformatics, invertebrates Copyright 2014 by Johanna Taylor Cannon Approved by Kenneth M. Halanych, Chair, Professor of Biological Sciences Jason Bond, Associate Professor of Biological Sciences Leslie Goertzen, Associate Professor of Biological Sciences Scott Santos, Associate Professor of Biological Sciences Abstract The phylogenetic relationships within Hemichordata are significant for understanding the evolution of the deuterostomes. Hemichordates possess several important morphological structures in common with chordates, and they have been fixtures in hypotheses on chordate origins for over 100 years. However, current evidence points to a sister relationship between echinoderms and hemichordates, indicating that these chordate-like features were likely present in the last common ancestor of these groups. Therefore, Hemichordata should be highly informative for studying deuterostome character evolution. Despite their importance for understanding the evolution of chordate-like morphological and developmental features, relationships within hemichordates have been poorly studied. At present, Hemichordata is divided into two classes, the solitary, free-living enteropneust worms, and the colonial, tube- dwelling Pterobranchia. The objective of this dissertation is to elucidate the evolutionary relationships of Hemichordata using multiple datasets. Chapter 1 provides an introduction to Hemichordata and outlines the objectives for the dissertation research. Chapter 2 presents a molecular phylogeny of hemichordates based on nuclear ribosomal 18S rDNA and two mitochondrial genes. In this chapter, we suggest that deep-sea family Saxipendiidae is nested within Harrimaniidae, and Torquaratoridae is affiliated with Ptychoderidae.
    [Show full text]
  • Implications for Dredging Management
    www.nature.com/scientificreports OPEN Effects of light attenuation on the sponge holobiont- implications for dredging management Received: 08 June 2016 Mari-Carmen Pineda1,2, Brian Strehlow1,2,3, Alan Duckworth1,2, Jason Doyle1, Ross Jones1,2 & Accepted: 17 November 2016 Nicole S. Webster1,2 Published: 13 December 2016 Dredging and natural sediment resuspension events can cause high levels of turbidity, reducing the amount of light available for photosynthetic benthic biota. To determine how marine sponges respond to light attenuation, five species were experimentally exposed to a range of light treatments. Tolerance thresholds and capacity for recovery varied markedly amongst species. Whilst light attenuation had no effect on the heterotrophic speciesStylissa flabelliformis and Ianthella basta, the phototrophic species Cliona orientalis and Carteriospongia foliascens discoloured (bleached) over a 28 day exposure period to very low light (<0.8 mol photons m−2 d−1). In darkness, both species discoloured within a few days, concomitant with reduced fluorescence yields, chlorophyll concentrations and shifts in their associated microbiomes. The phototrophic species Cymbastela coralliophila was less impacted by light reduction. C. orientalis and C. coralliophila exhibited full recovery under normal light conditions, whilst C. foliascens did not recover and showed high levels of mortality. The light treatments used in the study are directly relevant to conditions that can occur in situ during dredging projects, indicating that light attenuation poses a risk to photosynthetic marine sponges. Examining benthic light levels over temporal scales would enable dredging proponents to be aware of conditions that could impact on sponge physiology. Sponges are filter-feeding organisms with important ecosystem roles including habitat provision, seawater filtra- tion, primary production and binding and/or erosion of the carbonate reef structure1.
    [Show full text]
  • Biodiversity
    Founded in 1888 as the Marine Biological Laboratory Catalyst SPRING 2012 VOLUME 7, NUMBER 1 IN THIS ISSUE 4 All Species, Great and Small 8 Microbial Diversity, Leaf by Leaf 10 Life, Literature, and the Pursuit of Global Access BIODIVERSITY: Exploring Life on Earth Page 2 F R OM THE D ir ECTO R MBL Catalyst Dear Friends, SPRING 2012 VOLUME 7, NUMBER 1 In February, a group of MBL trustees, overseers, and friends took a memorable MBL Catalyst is published twice yearly by the Office of “eco-expedition” by safari through East Africa. For most of us, the most exciting Communications at the Marine Biological Laboratory aspect was seeing the megafauna – giraffes, zebras, lions, warthogs, wildebeests, (MBL) in Woods Hole, Massachusetts. The MBL is rhinoceroses—roaming wild in a pristine landscape. Except in tropical Asia, these dedicated to scientific discovery and improving the human condition through research and education large, charismatic animals aren’t found anywhere else on the planet—not in the in biology, biomedicine, and environmental science. Americas, Europe, Australia, or New Zealand. Founded in 1888, the MBL is an independent, nonprofit corporation. Why did they disappear? The reasons are debated, but there is good evidence Senior Advisors that overkill by prehistoric humans caused major losses. Unfortunately, the near- President and Director: Gary Borisy Chief Academic and extinction of these species 10,000 to 50,000 years ago is not the end of the story. Scientific Officer: Joshua Hamilton It is generally agreed that the Earth is facing another biodiversity crisis in this Director of External Relations: Pamela Clapp Hinkle century, with extinctions largely driven by destruction of habitat.
    [Show full text]
  • The Fox/Forkhead Transcription Factor Family of the Hemichordate Saccoglossus Kowalevskii
    The Fox/Forkhead transcription factor family of the hemichordate Saccoglossus kowalevskii The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters. Citation Fritzenwanker, Jens H, John Gerhart, Robert M Freeman, and Christopher J Lowe. 2014. “The Fox/Forkhead transcription factor family of the hemichordate Saccoglossus kowalevskii.” EvoDevo 5 (1): 17. doi:10.1186/2041-9139-5-17. http://dx.doi.org/10.1186/2041-9139-5-17. Published Version doi:10.1186/2041-9139-5-17 Accessed February 16, 2015 3:46:47 PM EST Citable Link http://nrs.harvard.edu/urn-3:HUL.InstRepos:12717458 Terms of Use This article was downloaded from Harvard University's DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms- of-use#LAA (Article begins on next page) The Fox/Forkhead transcription factor family of the hemichordate Saccoglossus kowalevskii Fritzenwanker et al. Fritzenwanker et al. EvoDevo 2014, 5:17 http://www.evodevojournal.com/content/5/1/17 Fritzenwanker et al. EvoDevo 2014, 5:17 http://www.evodevojournal.com/content/5/1/17 RESEARCH Open Access The Fox/Forkhead transcription factor family of the hemichordate Saccoglossus kowalevskii Jens H Fritzenwanker1*, John Gerhart2, Robert M Freeman Jr3 and Christopher J Lowe1 Abstract Background: The Fox gene family is a large family of transcription factors that arose early in organismal evolution dating back to at least the common ancestor of metazoans and fungi. They are key components of many gene regulatory networks essential for embryonic development.
    [Show full text]
  • Uncorrected Proof
    JrnlID 12526_ArtID 933_Proof# 1 - 07/12/2018 Marine Biodiversity https://doi.org/10.1007/s12526-018-0933-2 1 3 ORIGINAL PAPER 2 4 5 On the larva and the zooid of the pterobranch Rhabdopleura recondita 6 Beli, Cameron and Piraino, 2018 (Hemichordata, Graptolithina) 7 F. Strano1,2 & V. Micaroni3 & E. Beli4,5 & S. Mercurio6 & G. Scarì7 & R. Pennati6 & S. Piraino4,8 8 9 Received: 31 October 2018 /Revised: 29 November 2018 /Accepted: 3 December 2018 10 # Senckenberg Gesellschaft für Naturforschung 2018 11 Abstract 12 Hemichordates (Enteropneusta and Pterobranchia) belong to a small deuterostome invertebrate group that may offer insights on 13 the origin and evolution of the chordate nervous system. Among them, the colonial pterobranchOF Rhabdopleuridae are recognized 14 as living representatives of Graptolithina, a taxon with a rich fossil record. New information is provided here on the substrate 15 selection and the life cycle of Rhabdopleura recondita Beli, Cameron and Piraino, 2018, and for the first time, we describe the 16 nervous system organization of the larva and the adult zooid, as well as the morphological, neuroanatomical and behavioural 17 changes occurring throughout metamorphosis. Immunohistochemical analyses disclosed a centralized nervous system in the 18 sessile adult zooid, characterized by different neuronal subsets with three distinctPRO neurotransmitters, i.e. serotonin, dopamine and 19 RFamide. The peripheral nervous system comprises GABA-, serotonin-, and dopamine-immunoreactive cells. These observa- 20 tions support and integrate previous neuroanatomical findings on the pterobranchD zooid of Cephalodiscus gracilis. Indeed, this is 21 the first evidence of dopamine, RFamide and GABA neurotransmittersE in hemichordates pterobranchs. In contrast, the 22 lecithotrophic larva is characterized by a diffuse basiepidermal plexus of GABAergic cells, coupled with a small group of 23 serotonin-immunoreactive cells localized in the characteristic ventral depression.
    [Show full text]
  • Halogenation Enzymes in Bacteria Associated with the Red-Banded Acorn Worm, Ptychodera Jamaicensis" (2011)
    San Jose State University SJSU ScholarWorks Master's Theses Master's Theses and Graduate Research Fall 2011 Halogenation Enzymes in Bacteria Associated with the Red- banded Acorn Worm, Ptychodera jamaicensis Milena May Lilles San Jose State University Follow this and additional works at: https://scholarworks.sjsu.edu/etd_theses Recommended Citation Lilles, Milena May, "Halogenation Enzymes in Bacteria Associated with the Red-banded Acorn Worm, Ptychodera jamaicensis" (2011). Master's Theses. 4099. DOI: https://doi.org/10.31979/etd.snbx-gv6x https://scholarworks.sjsu.edu/etd_theses/4099 This Thesis is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been accepted for inclusion in Master's Theses by an authorized administrator of SJSU ScholarWorks. For more information, please contact [email protected]. HALOGENATION ENZYMES IN BACTERIA ASSOCIATED WITH THE RED- BANDED ACORN WORM, PTYCHODERA JAMAICENSIS A Thesis Presented to The Faculty of the Department of Biology San José State University In Partial Fulfillment of the Requirements for the Degree Master of Science by Milena M. Lilles December 2011 © 2011 Milena M. Lilles ALL RIGHTS RESERVED The Designated Thesis Committee Approves the Thesis Titled HALOGENATION ENZYMES IN BACTERIA ASSOCIATED WITH THE RED- BANDED ACORN WORM, PTYCHODERA JAMAICENSIS by Milena M. Lilles APPROVED FOR THE DEPARTMENT OF BIOLOGY SAN JOSÉ STATE UNIVERSITY December 2011 Dr. Sabine Rech Department of Biology Dr. Brandon White Department of Biology Dr. Roy Okuda Department of Chemistry ABSTRACT HALOGENATION ENZYMES IN BACTERIA ASSOCIATED WITH THE RED- BANDED ACORN WORM, PTYCHODERA JAMAICENSIS by Milena M. Lilles Organohalogens have diverse biological functions in the environment.
    [Show full text]
  • Paired Sequence Difference in Ribosomal Rnas: Evolutionary and Phylogenetic Implications’
    Paired Sequence Difference in Ribosomal RNAs: Evolutionary and Phylogenetic Implications’ Ward C. Wheeler and Rodney L. Honey&t Department of Organismic and Evolutionary Biology and the Museum of Comparative Zoology, Harvard University Ribosomal RNAs have secondary structures that are maintained by internal Watson- Crick pairing. Through analysis of chordate, arthropod, and plant 5s ribosomal RNA sequences, we show that Darwinian selection operates on these nucleotide sequences to maintain functionally important secondary structure. Insect phylog- enies based on nucleotide positions involved in pairing and the production of sec- ondary structure are incongruent with those constructed on the basis of positions that are not. Furthermore, phylogeny reconstruction using these nonpairing bases is concordant with other, morphological data. Introduction The neutral hypothesis, as stated by Kimura (1968, 1969, 1983), suggests that most changes in nucleotide sequence occur in the absence of positive selection whereas those that are deleterious are removed by negative or “purifying” selection. The im- plications of such a theory are broad not only with respect to the interpretation of molecular evolutionary processes but also in the reconstruction of evolutionary patterns as reflected in phylogenetic trees. RNA molecules provide a unique opportunity to examine the patterns of nu- cleotide sequence change. A large body of nucleotide sequences representing diverse organisms has been compiled (Erdmann et al. 1985) and small ribosomal RNA (rRNA) molecules have been used extensively in phylogenetic studies (Fox et al. 1980; Ohama et al. 1984; De Wachter et al. 1985). In addition, the structure of these molecules is such that one may address both the neutrality of nucleotide changes in RNAs and the effects that secondary structure might have on the derivation of phylogenies by means of sequence data.
    [Show full text]
  • Ambulacraria - Andrew B
    PHYLOGENETIC TREE OF LIFE – Ambulacraria - Andrew B. Smith AMBULACRARIA Andrew B. Smith Department of Palaeontology, The Natural History Museum, London SW7 5BD, UK Keywords: Echinoderms, crinoids, ophiuroids, asteroids, echinoids, holothurians, hemichordates, enteropneustes, pterobranchs, Xenoturbella, phylogeny, evolution, mode of life, developmental biology, fossil record, biodiversity Contents 1. General Introduction 2. The Echinodermata 2.1. General features 2.2. Crinoidea (sea lillies and feather stars) 2.3. Asteroidea (starfishes and cushion stars) 2.4. Ophiuroidea (brittlestars and basket stars) 2.5. Holothuroidea (sea cucumbers) 2.6. Echinoidea (sea urchins) 2.7. Stem group echinoderms 3. The Hemichordata 3.1. General features 3.2. Pterobranchs 3.3. Enteropneusts. 4. Plactosphaeroidea (Xenoturbella) Bibliography Bibliographical sketch Summary The Ambulacraria is a major clade of invertebrates that are the immediate sister group to the chordates. It comprises the phyla Echinodermata and Hemichordata and the puzzling genus Xenoturbella, the latter being included on the basis of its molecular similarity. The morphological characters uniting Echinodermata and Hemichordata are listed, as are those that characterize each phylum separately. The five classes of echinoderm and two classes of hemichordate are brief described, and information is provided about their mode of life, development, geological history and current views on their phylogenetic relationships. 1. General Introduction Ambulacraria is the formal name applied to a group of invertebrate animals that includes the echinoderms and hemichordates. They are exclusively marine and their origins extend back some 525 Ma to the Cambrian radiation when the earliest examples appear in the fossil record, although their actual origins probably lie slightly earlier, based on molecular clock studies.
    [Show full text]
  • Unexpected Molecular and Morphological Diversity of Hemichordate Larvae from the Neotropics
    Received: 18 June 2019 | Accepted: 22 September 2019 DOI: 10.1111/ivb.12273 ORIGINAL ARTICLE Unexpected molecular and morphological diversity of hemichordate larvae from the Neotropics Rachel Collin1 | Dagoberto E. Venera-Pontón1 | Amy C. Driskell2 | Kenneth S. Macdonald III2 | Michael J. Boyle3 1Smithsonian Tropical Research Institute, Balboa, Ancon, Panama Abstract 2Laboratories of Analytical Biology, National The diversity of tropical marine invertebrates is poorly documented, especially Museum of Natural History, Smithsonian those groups for which collecting adults is difficult. We collected the planktonic Institution, Washington, DC, USA 3Smithsonian Marine Station, Fort Pierce, tornaria larvae of hemichordates (acorn worms) to assess their hidden diversity in FL, USA the Neotropics. Larvae were retrieved in plankton tows from waters of the Pacific Correspondence and Caribbean coasts of Panama, followed by DNA barcoding of mitochondrial cy- Rachel Collin, STRI, Unit 9100, Box 0948, tochrome c oxidase subunit I (COI) and 16S ribosomal DNA to estimate their diversity DPO AA 34002, USA. Email: [email protected] in the region. With moderate sampling efforts, we discovered six operational taxo- nomic units (OTUs) in the Bay of Panama on the Pacific coast, in contrast to the single species previously recorded for the entire Tropical Eastern Pacific. We found eight OTUs in Bocas del Toro province on the Caribbean coast, compared to seven spe- cies documented from adults in the entire Caribbean. All OTUs differed from each other and from named acorn worm sequences in GenBank by >10% pairwise distance in COI and >2% in 16S. Two of our OTUs matched 16S hemichordate sequences in GenBank: one was an unidentified or unnamed Balanoglossus from the Caribbean of Panama, and the other was an unidentified ptychoderid larva from the Bahamas.
    [Show full text]
  • Collation and Validation of Museum Collection Databases Related to the Distribution of Marine Sponges in Northern Australia
    1 COLLATION AND VALIDATION OF MUSEUM COLLECTION DATABASES RELATED TO THE DISTRIBUTION OF MARINE SPONGES IN NORTHERN AUSTRALIA. JOHN N.A. HOOPER & MERRICK EKINS 2 3 Collation and validation of museum collection databases related to the distribution of marine sponges in Northern Australia (Contract National Oceans Office C2004/020) John N.A. Hooper & Merrick Ekins Queensland Museum, PO Box 3300, South Brisbane, Queensland, 4101, Australia ([email protected], [email protected]) CONTENTS SUMMARY ......................................................................................................................... 6 1. INTRODUCTION ......................................................................................................... 10 1.1. General Introduction ..................................................................................... 10 1.2. Definitions of Australia’s marine bioregions ............................................... 12 2. MATERIALS & METHODS ....................................................................................... 16 2.1. Specimen point-data conversion ................................................................... 16 2.2. Geographic coverage and scales of analysis................................................. 18 2.3. Species distributions....................................................................................... 19 2.4. Modelled distribution datasets and historical sponge data ........................ 20 2.5. Identification of useful datasets and gaps in data, prioritised
    [Show full text]