Acari: Prostigmata: Cunaxidae

Total Page:16

File Type:pdf, Size:1020Kb

Acari: Prostigmata: Cunaxidae 360 North-Western Journal of Zoology 13(2) / 2017 Kaczmarek, Ł., Diduszko, D., Michalczyk, Ł. (2011): New records of small arthropods (Skvarla et al. 2014). Addition- Mexican Tardigrada. Revista Mexicana de Biodiversidad 82: ally, some species can also feed on honeydew pro- 1324-1327. Kaczmarek, Ł., Jakubowska, N., Michalczyk, L. (2012): Current duced by their host plant (Walter & Proctor 1999). knowledge on Turkish Tardigrades with a description of The genus Cunaxa was defined by Von Hey- Milnesium beasleyi sp. nov. (Eutardigrada: Apochela: den in 1826 with type species Scirus setirostris Milnesiidae, the granulatum group). Zootaxa 3589: 49-64. Kaczmarek, Ł., Michalczyk, Ł., McInnes, S.J. (2014): Annotated Hermann 1804 (Von Heyden 1826). It is the largest zoogeography of non-marine Tardigrada. Part I: Central in sub-family Cunaxinae Oudemans with ap- America. Zootaxa 3763(1): 1-107. proximately 50 valid species (Sergeyenko 2009, Maucci, W. (1978): Tardigradi muscicoli della Turchia (terzo contributo). Bollettino Museo civico Storia naturale 5: 111-140. Skvarla et al. 2014). And can be separated from McInnes, S. (1994): Zoogeographic distribution of other Cunaxinae genera by the following charac- terrestrial/freshwater tardigrades from current literature. ters: dorsal shields not reticulated, prodorsal Journal of Natural History 28: 257-352. Michalczyk, Ł., Kaczmarek, Ł. (2003): A description of the new shield smooth or striated, five segmented pedi- tardigrade Macrobiotus reinhardti (Eutardigrada, Macrobiotidae, palps, elongate apophyses or spine-like setae on harmsworthi group) with some remarks on the oral cavity inner margin of telofemur, genu, tibiotarsus, setal armature within the genus Macrobiotus Schultze. Zootaxa 331: 1- 24. formula of coxae II-IV 1-3-2 and long, slender, at- Michalczyk, L., Kaczmarek, L., Weglarska, B. (2006): Macrobiotus tenuate tarsi I-IV (Den Heyer 1979a, 1979b, Smiley sklodowskae sp. nov. (Tardigrada: Eutardigrada:Macrobiotidae, 1992, Den Heyer & Sergeyenko 2009, Den Heyer et richtersi group) from Cyprus. Zootaxa 1371: 45-56. Pilato, G., D’Urso, V.. (1976). Contributo alla conoscenza dei al. 2011, Skvarla et al.2014). Tardigradid’Australia. Animalia, Catania 3: 135-145. Knowledge about Cunaxidae fauna of Turkey is Miller, W.R., McInnes, S.J., Bergstrom, D.M. (2005): Tardigrades of limited by only two species; Cunaxa setirostris the Australian Antarctic: Hypsibius heardensis (Eutardigrada: Hypsibiidae: dujardini group) a new species from sub-Antarctic (Herman 1804) and C. potchensis Den Heyer, 1979b Heard Island. Zootaxa 1022: 57-64. both been reported in citrus agro-ecosystem in Pilato, G., Bertolani, R. (2004): Macrobiotus dariae sp. n., a new Aegean and Eastern Mediterranean Regions of the species of eutardigrade (Eutardigrada, Macrobiotidae) from Cyprus. Zootaxa 638: 1-7. country, respectively (Madanlar 1991, Telli & Yiğit Ramazzotti, G., Maucci, W. (1983): II Phylum Tardigrada. Memorie 2012). dell’Istituto Italiano di Idrobiologia 41: 1-1012. In this study, C. capreolus (Berlese) is reported for Key words: Tardigrada, Eutardigrada, fauna, Cyprus. the first time for Turkish fauna. Some morphologi- cal characters, collection details (host plant, date and location etc.), as well as world distribution of Article No.: e177301 this predatory mite are presented in this paper. Received: 09. May 2016 / Accepted: 14. January 2017 Available online: 08. February 2017 / Printed: December 2017 Malva sylvestris (Malvaceae) plants infested with various instars of two spotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae) were collected from a home Çağrı TEKATLI1,* and Ahmet ALTINDAĞ2 garden in Seyhan, Adana. Mites were extracted using Ber- lese funnels and stored in 70% ethanol. Permanent slide 1. Department of Biology, Institute of Natural and Applied Sciences, Ankara University, Ankara, Turkey. mounts were made using Hoyer’s medium as proposed 2. Department of Biology, Faculty of Science, Ankara University, by Düzgüneş (1980). The microscope slides were kept on Ankara, Turkey. a hotplate at 50 °C for a week. The mites were examined * Corresponding author, Ç. Tekatlı, E-mail: [email protected] using an Olympus CX-41 microscope. Slide mounted specimens were preserved in the mite collection of the Acarology Laboratory, Department of Plant Protection, Çukurova University, Adana, Turkey. Cunaxa capreolus (Berlese, 1889), (Acari: Prostigmata: Cunaxidae): A new Family CUNAXIDAE Thor 1902 Subfamily CUNAXINAE Oudemans 1902 record for predatory mite fauna of Genus Cunaxa Von Heyden 1826 Turkey Species Cunaxa capreolus (Berlese) Scirus capreolus Berlese 1889: 63; Scirus laricis Ew- More than 330 species belonging 27 genera are ing 1913: 113. Cunaxa laricis (Ewing); Cunaxa currently known in the family Cunaxidae (Acari: capreola (Berlese) Smiley 1992: 162; Den Heyer Prostigmata) (Den Heyer 2011). All members of 2009: 22; Den Heyer et al. 2011: 1673. this family are considered to be free living preda- Distribution. China, Egypt, Greece, Iran, Italy, tors feeding on a variety of prey including spider Japan, Mexico, Pakistan, Philippines, Poland, Rus- mites, nematodes, scale insects as well as other sia, South Africa, U.S.A., Ukraine (Muma 1960, Correspondence –Notes 361 1965, Bu & Li 1987, Zaher et al. 1975, Chaudhri 1979, Kuznetzov & Livshitz 1979, Sionti & Papa- doulis 2003, Den Heyer et al. 2011) and Turkey (This study). Material examined (Female (n=3)). Three fe- males, Seyhan/Adana (36°55′58″N, 35°21′09″E, 21 m above sea level), on Malva sylvestris L. (Malva- ceae), under citrus tree, Citrus lemon L. (Rutaceae)., 23 August 2013. Idiosoma. Length 360 (350–370), width 250 (245–260); hypognathum length 153 (147–160); width 85 (75–94); length of palp 168 (160–175); length of chelicera 156 (150–160). Gnathosoma. Palps are five segmented. Chaeto- Figure 1. Uncinated apophysis on palpal telofemur of Cu- taxy of the palps: trochanter with no setae; basife- naxa capreolus (Berlese) (Female). mur with one dorso medial simple seta; telofemur inner anterior surface with one uncinated apophy- Moraes 2010, Skvarla et al. 2014). These species are ses and outer surface with dorsolateral simple as follows; Coleoscirus simplex (Ewing 1917), Cu- seta; genu inner surface with spine like seta; dor- naxa setirostris (Oudemans 1902), Cunaxatricha tar- solaterally with slender simple seta; tibiotarsus in- sospinosa Castro & Den Heyer 2008, Cunaxoides ner surface with one long simple seta, medially oliveri (Schruft 1971), Cunaxoides parvus (Ewing with one stout spinelike seta, adjacently with two 1917), Neocunaxoides andrei (Baker & Hoffmann, simple setae; outer surface terminating with one 1948), Pseudobonzia reticulata (Heryford 1965) and dorsolateral simple seta and small claw. Cunaxa capreolus (Berlese 1889) (Ewing & Webster Legs length of legs: I 306 (300–312); II 285 (275– 1912; Baker & Wharton 1952; Heryford 1965; Soli- 295); III 316 (312–320); IV 330 (325–335). Chaeto- man et al. 1975; Kuznetsov & Livshitz 1979, taxy of the legs: coxae I–IV; 3–1–3–1, trochanters Sepasgosarian 1984, Taha et al. 1988, Walter & I–IV; 1–1–2–1; basifemora I–IV; 4–4–3–1, te- Kaplan 1991, Sathiamma 1995, Arbabi & Singh lofemora I–IV; 4–4–4–4. 2000, Castro & Moraes 2010). Cunaxa capreolus was Remarks. Cunaxa capreolus is a new record for found to be an active predator of oriental red mite Turkish fauna. This species can be easily separated Eutetranychus orientalis (Klein), (Acari: Tetranychi- from most of the known species in the genus Cu- dae) by Zaher et al. (1975). Additionally, Soliman naxa by having an uncinated or ploughshare like et al. 1975 studied some biological parameters of apophysis on palpal telofemur (Fig. 1). Addition- the same species when feeding on book lice (Pse- ally, six species which are described from Paki- coptera). Knowledge of this predator is thus lim- stan, also have uncinated apophysis: C. bashari ited only to these two studies and no data of its Bashir & Afzal, C. clusus Bashir & Afzal, C. food habits and biology exists. nankanaensis Bashir & Afzal, C. pakpatanensis In this study, it was found in association with Bashir & Afzal, C. leuros Bashir, Afzal, Asfaq, Ak- T. urticae in a citrus ecosystem in the most impor- bar, & Ali and C. rafiqi Bashir, Afzal, Asfaq, Akbar, tant citrus production area (Çukurova region) of & Ali. Unfortunately, it was not possible to exam- Turkey. Further studies should be conducted ine type materials of these species. However, the whether or not C. capreolus can be used as a bio- specimens examined in this study well fit with logical control agent against the key citrus pests, original description and re-descriptions of C. namely Aceria sheldoni (Ewing), E. orientalis, capreolus. Furthermore, this species has priority Panonychus citri (McGregor), and Phyllocoptruta over all species that have uncinated apophysis in oleivora (Ashmead) (Acari: Tetranychidae, Erio- the genus Cunaxa. Therefore, specimens collected phyidae) in Çukurova region. in this study are considered as C. capreolus. Acknowledgement. This study was funded by Scientific Although, all known species of Cunaxidae are Research Foundation of Çukurova University, Project thought to be predators of some small arthropods, Number: ZF2013BAP6. only eight species are studied in detail with regard to their predation habits and life cycles (Castro & 362 North-Western Journal of Zoology 13(2) / 2017 References Sathiamma, B. (1995): Biological supression of the white spider mite Arbabi, M., Singh, J. (2000): Studies on biological
Recommended publications
  • Comparative Functional Morphology of Attachment Devices in Arachnida
    Comparative functional morphology of attachment devices in Arachnida Vergleichende Funktionsmorphologie der Haftstrukturen bei Spinnentieren (Arthropoda: Arachnida) DISSERTATION zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) an der Mathematisch-Naturwissenschaftlichen Fakultät der Christian-Albrechts-Universität zu Kiel vorgelegt von Jonas Otto Wolff geboren am 20. September 1986 in Bergen auf Rügen Kiel, den 2. Juni 2015 Erster Gutachter: Prof. Stanislav N. Gorb _ Zweiter Gutachter: Dr. Dirk Brandis _ Tag der mündlichen Prüfung: 17. Juli 2015 _ Zum Druck genehmigt: 17. Juli 2015 _ gez. Prof. Dr. Wolfgang J. Duschl, Dekan Acknowledgements I owe Prof. Stanislav Gorb a great debt of gratitude. He taught me all skills to get a researcher and gave me all freedom to follow my ideas. I am very thankful for the opportunity to work in an active, fruitful and friendly research environment, with an interdisciplinary team and excellent laboratory equipment. I like to express my gratitude to Esther Appel, Joachim Oesert and Dr. Jan Michels for their kind and enthusiastic support on microscopy techniques. I thank Dr. Thomas Kleinteich and Dr. Jana Willkommen for their guidance on the µCt. For the fruitful discussions and numerous information on physical questions I like to thank Dr. Lars Heepe. I thank Dr. Clemens Schaber for his collaboration and great ideas on how to measure the adhesive forces of the tiny glue droplets of harvestmen. I thank Angela Veenendaal and Bettina Sattler for their kind help on administration issues. Especially I thank my students Ingo Grawe, Fabienne Frost, Marina Wirth and André Karstedt for their commitment and input of ideas.
    [Show full text]
  • Number of Living Species in Australia and the World
    Numbers of Living Species in Australia and the World 2nd edition Arthur D. Chapman Australian Biodiversity Information Services australia’s nature Toowoomba, Australia there is more still to be discovered… Report for the Australian Biological Resources Study Canberra, Australia September 2009 CONTENTS Foreword 1 Insecta (insects) 23 Plants 43 Viruses 59 Arachnida Magnoliophyta (flowering plants) 43 Protoctista (mainly Introduction 2 (spiders, scorpions, etc) 26 Gymnosperms (Coniferophyta, Protozoa—others included Executive Summary 6 Pycnogonida (sea spiders) 28 Cycadophyta, Gnetophyta under fungi, algae, Myriapoda and Ginkgophyta) 45 Chromista, etc) 60 Detailed discussion by Group 12 (millipedes, centipedes) 29 Ferns and Allies 46 Chordates 13 Acknowledgements 63 Crustacea (crabs, lobsters, etc) 31 Bryophyta Mammalia (mammals) 13 Onychophora (velvet worms) 32 (mosses, liverworts, hornworts) 47 References 66 Aves (birds) 14 Hexapoda (proturans, springtails) 33 Plant Algae (including green Reptilia (reptiles) 15 Mollusca (molluscs, shellfish) 34 algae, red algae, glaucophytes) 49 Amphibia (frogs, etc) 16 Annelida (segmented worms) 35 Fungi 51 Pisces (fishes including Nematoda Fungi (excluding taxa Chondrichthyes and (nematodes, roundworms) 36 treated under Chromista Osteichthyes) 17 and Protoctista) 51 Acanthocephala Agnatha (hagfish, (thorny-headed worms) 37 Lichen-forming fungi 53 lampreys, slime eels) 18 Platyhelminthes (flat worms) 38 Others 54 Cephalochordata (lancelets) 19 Cnidaria (jellyfish, Prokaryota (Bacteria Tunicata or Urochordata sea anenomes, corals) 39 [Monera] of previous report) 54 (sea squirts, doliolids, salps) 20 Porifera (sponges) 40 Cyanophyta (Cyanobacteria) 55 Invertebrates 21 Other Invertebrates 41 Chromista (including some Hemichordata (hemichordates) 21 species previously included Echinodermata (starfish, under either algae or fungi) 56 sea cucumbers, etc) 22 FOREWORD In Australia and around the world, biodiversity is under huge Harnessing core science and knowledge bases, like and growing pressure.
    [Show full text]
  • Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016
    Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016 April 1981 Revised, May 1982 2nd revision, April 1983 3rd revision, December 1999 4th revision, May 2011 Prepared for U.S. Department of Commerce Ohio Department of Natural Resources National Oceanic and Atmospheric Administration Division of Wildlife Office of Ocean and Coastal Resource Management 2045 Morse Road, Bldg. G Estuarine Reserves Division Columbus, Ohio 1305 East West Highway 43229-6693 Silver Spring, MD 20910 This management plan has been developed in accordance with NOAA regulations, including all provisions for public involvement. It is consistent with the congressional intent of Section 315 of the Coastal Zone Management Act of 1972, as amended, and the provisions of the Ohio Coastal Management Program. OWC NERR Management Plan, 2011 - 2016 Acknowledgements This management plan was prepared by the staff and Advisory Council of the Old Woman Creek National Estuarine Research Reserve (OWC NERR), in collaboration with the Ohio Department of Natural Resources-Division of Wildlife. Participants in the planning process included: Manager, Frank Lopez; Research Coordinator, Dr. David Klarer; Coastal Training Program Coordinator, Heather Elmer; Education Coordinator, Ann Keefe; Education Specialist Phoebe Van Zoest; and Office Assistant, Gloria Pasterak. Other Reserve staff including Dick Boyer and Marje Bernhardt contributed their expertise to numerous planning meetings. The Reserve is grateful for the input and recommendations provided by members of the Old Woman Creek NERR Advisory Council. The Reserve is appreciative of the review, guidance, and council of Division of Wildlife Executive Administrator Dave Scott and the mapping expertise of Keith Lott and the late Steve Barry.
    [Show full text]
  • More Than 40 Years of Excellence: the Outstanding Contribution of the South African Edward A
    Systematic & Applied Acarology 23(7): 1480–1493 (2018) ISSN 1362-1971 (print) http://doi.org/10.11158/saa.23.7.15 ISSN 2056-6069 (online) Biography More than 40 years of excellence: the outstanding contribution of the South African Edward A. Ueckermann to acarology P.D. THERON1 & G.J. DE MORAES2 1Research Unit for Environmental Sciences and Development; North-West University, Potchefstroom, South Africa 2Depto. Entomologia e Acarologia; Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo; Piraci- caba, SP, Brazil Acarology has been a very active area of research in South Africa for many years, especially with reference to taxonomy. For this reason, mites of agricultural importance are well known in that country compared to many other countries. Edward A. Ueckermann is a South African acarologist who has contributed enormously to knowledge about the mites of his country, as well as from many other countries around the world. Eddie, as he is called by his friends, is an admirable man, both for his enviable professional qualities and for his tremendous personality. The authors of this brief biography are glad to have had the opportunity to collaborate with Eddie as authors of several publications51, 52, 58, 70, 75, 80, 87, 92, 95, 101,103, 104, 107, 112, 114, 117, 121, 143, 151, 160, 189, 203, 207, 211, and to interact with him in many other ways. Eddie was born in Postmasburg, Northern Cape Province, South Africa, on 19 January 1951. He completed secondary school in his hometown and after a year of compulsory military training, Eddie enrolled at North- West University, Potchefstroom, in 1971 to study a B.Sc.
    [Show full text]
  • Proceedings of a Workshop on Biodiversity Dynamics on La Réunion Island
    PROCEEDINGS OF A WORKSHOP ON BIODIVERSITY DYNAMICS ON LA RÉUNION ISLAND ATELIER SUR LA DYNAMIQUE DE LA BIODIVERSITE A LA REUNION SAINT PIERRE – SAINT DENIS 29 NOVEMBER – 5 DECEMBER 2004 29 NOVEMBRE – 5 DECEMBRE 2004 T. Le Bourgeois Editors Stéphane Baret, CIRAD UMR C53 PVBMT, Réunion, France Mathieu Rouget, National Biodiversity Institute, South Africa Ingrid Nänni, National Biodiversity Institute, South Africa Thomas Le Bourgeois, CIRAD UMR C53 PVBMT, Réunion, France Workshop on Biodiversity dynamics on La Reunion Island - 29th Nov. to 5th Dec. 2004 WORKSHOP ON BIODIVERSITY DYNAMICS major issues: Genetics of cultivated plant ON LA RÉUNION ISLAND species, phytopathology, entomology and ecology. The research officer, Monique Rivier, at Potential for research and facilities are quite French Embassy in Pretoria, after visiting large. Training in biology attracts many La Réunion proposed to fund and support a students (50-100) in BSc at the University workshop on Biodiversity issues to develop (Sciences Faculty: 100 lecturers, 20 collaborations between La Réunion and Professors, 2,000 students). Funding for South African researchers. To initiate the graduate grants are available at a regional process, we decided to organise a first or national level. meeting in La Réunion, regrouping researchers from each country. The meeting Recent cooperation agreements (for was coordinated by Prof D. Strasberg and economy, research) have been signed Dr S. Baret (UMR CIRAD/La Réunion directly between La Réunion and South- University, France) and by Prof D. Africa, and former agreements exist with Richardson (from the Institute of Plant the surrounding Indian Ocean countries Conservation, Cape Town University, (Madagascar, Mauritius, Comoros, and South Africa) and Dr M.
    [Show full text]
  • Estudos Taxonômicos E Biológicos De Cunaxidae (Acari: Prostigmata) Do Brasil
    UNIVERSIDADE ESTADUAL PAULISTA “JÚLIO DE MESQUITA FILHO” FACULDADE DE CIÊNCIAS AGRÁRIAS E VETERINÁRIAS CÂMPUS DE JABOTICABAL ESTUDOS TAXONÔMICOS E BIOLÓGICOS DE CUNAXIDAE (ACARI: PROSTIGMATA) DO BRASIL TATIANE MARIE MARTINS GOMES DE CASTRO Engenheira Agrônoma JABOTICABAL-SÃO PAULO-BRASIL 2008 UNIVERSIDADE ESTADUAL PAULISTA “JÚLIO DE MESQUITA FILHO” FACULDADE DE CIÊNCIAS AGRÁRIAS E VETERINÁRIAS CÂMPUS DE JABOTICABAL ESTUDOS TAXONÔMICOS E BIOLÓGICOS DE CUNAXIDAE (ACARI: PROSTIGMATA) DO BRASIL TATIANE MARIE MARTINS GOMES DE CASTRO Orientador: Prof. Dr. Gilberto José de Moraes Co- orientador: Prof. Dr. Jacob Den Heyer Tese apresentada à Faculdade de Ciências Agrárias e Veterinárias- UNESP, Campus de Jaboticabal, como parte das exigências para a obtenção do título de Doutor em Agronomia (Entomologia Agrícola). JABOTICABAL- SÃO PAULO- BRASIL Outubro- 2008 DADOS CURRICULARES DO AUTOR TATIANE MARIE MARTINS GOMES DE CASTRO- nascida em 5 de julho de 1976, em São Paulo, Estado de São Paulo. Graduou-se em Engenharia Agrônoma pela Universidade Estadual Paulista “Júlio de Mesquita Filho”, Faculdade de Engenharia e Agronomia de Ilha Solteira, em janeiro de 2001. Durante o período de março de 1997 a dezembro de 2000 realizou estágio em Acarologia sob a orientação da Profa. Marineide Rosa Vieira. Nesse período realizou seu trabalho de graduação “Biologia comparada de Tetranychus desertorum Banks (Acari: Tetranychidae) em dois cultivares de mamoeiro (Carica papaya L.)“ e participou de outros 2 projetos, “Avaliação da ocorrência de ácaros fitófagos e de mosca branca (Hemiptera: Aleyrodidae) em dois cultivares de mamoeiro (Carica papaya L.) sob cultivo em ambiente protegido” e “Avaliação da ocorrência de ácaros fitófagos em oito clones de seringueira (Hevea brasiliensis Muell.
    [Show full text]
  • Acari: Cunaxidae: Coleoscirinae) from the Ozark Highlands (USA), with a Note on Biogeography M.J
    A new species of Neoscirula (Acari: Cunaxidae: Coleoscirinae) from the Ozark Highlands (USA), with a note on biogeography M.J. Skvarla, J.R. Fisher, A.P.G. Dowling To cite this version: M.J. Skvarla, J.R. Fisher, A.P.G. Dowling. A new species of Neoscirula (Acari: Cunaxidae: Coleosciri- nae) from the Ozark Highlands (USA), with a note on biogeography. Acarologia, Acarologia, 2011, 51 (3), pp.283-293. 10.1051/acarologia/20112013. hal-01600031 HAL Id: hal-01600031 https://hal.archives-ouvertes.fr/hal-01600031 Submitted on 2 Oct 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0 International License ACAROLOGIA A quarterly journal of acarology, since 1959 Publishing on all aspects of the Acari All information: http://www1.montpellier.inra.fr/CBGP/acarologia/ [email protected] Acarologia is proudly non-profit, with no page charges and free open access Please help us maintain this system by encouraging your institutes to subscribe to the print version of the
    [Show full text]
  • Scanning Electron Microscopy Vouchers and Genomic Data from an Individual Specimen: Maximizing the Utility of Delicate and Rare Specimens
    Acarologia 50(4): 479–485 (2010) DOI: 10.1051/acarologia/20101983 SCANNING ELECTRON MICROSCOPY VOUCHERS AND GENOMIC DATA FROM AN INDIVIDUAL SPECIMEN: MAXIMIZING THE UTILITY OF DELICATE AND RARE SPECIMENS Ashley P. G. DOWLING1, Gary R. BAUCHAN2, Ron OCHOA3 and Jenny J. BEARD4 (Received 17 August 2010; accepted 12 October 2010; published online 22 December 2010) 1 Assistant Professor, Department of Entomology, University of Arkansas, 319 Agriculture Bldg, Fayetteville, Arkansas, 72701, USA. [email protected] 2 Research Geneticist, USDA-ARS, Electron & Confocal Microscopy Unit, Beltsville, Maryland, 20705, USA. [email protected] 3 Ron Ochoa, Research Entomologist, USDA-ARS Systematic Entomology, 10300 Baltimore Avenue, Bldg 005 BARC-West, Beltsville, Maryland, 20705, USA. [email protected] 4 Postdoctoral Researcher, Department of Entomology, 4112A Plant Sciences Building, University of Maryland, College Park, Maryland, 20742, USA; and Queensland Museum, P.O. Box 3300, South Brisbane, Queensland, 4101, Australia. [email protected] ABSTRACT — Specimen vouchering is a critical aspect of systematics, especially in genetic studies where the identity of a DNA sample needs to be assured. It can be difficult to obtain a high quality voucher after DNA extraction when dealing with tiny and delicate invertebrates that often do not survive the extraction procedure intact. Likewise, once a whole specimen has been extracted from, it is no longer useful for scanning electron microscopic examination. This paper discusses the use of a single specimen for both low temperature scanning electron microscopy and DNA extraction. This process allows full documentation of all external characteristics of an organism and ample whole genomic DNA extraction for DNA sequencing.
    [Show full text]
  • Red Palm Mite)
    Crop Protection Compendium Datasheet report for Raoiella indica (red palm mite) Top of page Pictures Picture Title Caption Copyright Adult The red palm mite (Raoiella indica), an invasive species in the Caribbean, may threaten USDA- mite several important palms found in the southern USA. (Original magnified approx. 300x.) ARS Photo by Eric Erbe; Digital colourization by Chris Pooley. Colony Colony of red palm mites (Raoiella indica) on coconut leaflet, from India. Bryony of Taylor mites Colony Close-up of a colony of red palm mites (Raoiella indica) on coconut leaflet, from India. Bryony of Taylor mites Top of page Identity Preferred Scientific Name Raoiella indica Hirst (1924) Preferred Common Name red palm mite International Common Names English: coconut red mite; frond crimson mite; leaflet false spider mite; red date palm mite; scarlet mite EPPO code RAOIIN (Raoiella indica) Top of page Taxonomic Tree Domain: Eukaryota Kingdom: Metazoa Phylum: Arthropoda Subphylum: Chelicerata Class: Arachnida Subclass: Acari Superorder: Acariformes Suborder: Prostigmata Family: Tenuipalpidae Genus: Raoiella Species: Raoiella indica / Top of page Notes on Taxonomy and Nomenclature R. indica was first described in the district of Coimbatore (India) by Hirst in 1924 on coconut leaflets [Cocos nucifera]. A comprehensive taxonomic review of the genus and species was carried out by Mesa et al. (2009), which lists all suspected junior synonyms of R. indica, including Raoiella camur (Chaudhri and Akbar), Raoiella empedos (Chaudhri and Akbar), Raoiella obelias (Hasan and Akbar), Raoiella pandanae (Mohanasundaram), Raoiella phoenica (Meyer) and Raoiella rahii (Akbar and Chaudhri). The review also highlighted synonymy with Rarosiella cocosae found on coconut in the Philippines.
    [Show full text]
  • Transposable Elements in Sexual and Asexual Animals
    Transposable elements in sexual and asexual animals Dissertation zur Erlangung des mathematisch-naturwissenschaftlichen Doktorgrades „Doctor rerum naturalium“ der Georg-August-Universität Göttingen im Promotionsprogramm Biologie der Georg-August University School of Science (GAUSS) vorgelegt von Diplom-Biologe J e n s B a s t aus Bad Bergzabern Göttingen, 2014 Betreuungsausschuss Prof. Dr. Stefan Scheu, Tierökologie, J.F. Blumenbach Institut PD Dr. Mark Maraun, Tierökologie, J.F. Blumenbach Institut Dr. Marina Schäfer, Tierökologie, J.F. Blumenbach Institut Mitglieder der Prüfungskommision Referent: Prof. Dr. Stefan Scheu, Tierökologie, J.F. Blumenbach Institut Korreferent: PD Dr. Mark Maraun, Tierökologie, J.F. Blumenbach Institut Weitere Mitglieder der Prüfungskommision: Prof. Dr. Elvira Hörandl, Systematische Botanik, Albrecht von Haller Institut Prof. Dr. Ernst Wimmer, Entwicklungsbiologie, J.F. Blumenbach Institut Prof. Dr. Ulrich Brose, Systemische Naturschutzbiologie, J.F. Blumenbach Institut PD Dr. Marko Rohlfs, Tierökologie, J.F. Blumenbach Institut Tag der mündlichen Prüfung: 30.01.2015 2 Wahrlich es ist nicht das Wissen, sondern das Lernen, nicht das Besitzen, sondern das Erwerben, nicht das Da-Seyn, sondern das Hinkommen, was den grössten Genuss gewährt. – Schreiben Gauss an Wolfgang Bolyai, 1808 3 Curriculum Vitae PERSONAL DETAILS NAME Jens Bast BIRTH January, 31 1983 in Bad Bergzabern NATIONALITY German EDUCATION 2011-2015 PhD thesis (biology) Georg-August University Goettingen Title: 'Transposable elements in sexual and
    [Show full text]
  • A Data Set on the Distribution of Rotifera in Antarctica
    Biogeographia – The Journal of Integrative Biogeography 35 (2020): 17-25 https://doi.org/10.21426/B635044786 A data set on the distribution of Rotifera in Antarctica GIUSEPPE GARLASCHÈ1, KARIMULLAH KARIMULLAH1,2, NATALIIA IAKOVENKO3,4,5, ALEJANDRO VELASCO-CASTRILLÓN6, KAREL JANKO4,5, ROBERTO GUIDETTI7, LORENA REBECCHI7, MATTEO CECCHETTO8,9, STEFANO SCHIAPARELLI8,9, CHRISTIAN D. JERSABEK10, WILLEM H. DE SMET11, DIEGO FONTANETO1,* 1 National Research Council of Italy, Water Research Institute (CNR-IRSA), Verbania Pallanza (Italy) 2 University of Leipzig, Faculty of Life Science, Institute of Biology, Behavioral Ecology Research Group, Leipzig (Germany) 3 University of Life Sciences in Prague, Praha-Suchdol (Czech Republic) 4 Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava (Czech Republic) 5 Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics AS CR, Liběchov (Czech Republic) 6 South Australian Museum, Adelaide, (Australia) 7 Department of Life Science, University of Modena and Reggio Emilia, Modena (Italy) 8 Department of Earth, Environmental and Life Science (DISTAV), University of Genoa, Genoa (Italy) 9 Italian National Antarctic Museum (MNA, Section of Genoa), University of Genoa, Genoa (Italy) 10 Division of Animal Structure and Function, University of Salzburg, Salzburg (Austria) 11 Department of Biology, ECOBE, University of Antwerp Campus Drie Eiken, Wilrijk (Belgium) * email corresponding author: [email protected] Keywords: ANTABIF, Antarctica, Bdelloidea, biodiversity, biogeography, GBIF, Monogononta, rotifers. SUMMARY We present a data set on Antarctic biodiversity for the phylum Rotifera, making it publicly available through the Antarctic Biodiversity Information facility. We provide taxonomic information, geographic distribution, location, and habitat for each record. The data set gathers all the published literature about rotifers found and identified across the Continental, Maritime, and Subantarctic biogeographic regions of Antarctica.
    [Show full text]
  • Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring Within the Kahului Airport Environs, Maui, Hawai‘I: Synthesis Report
    Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring within the Kahului Airport Environs, Maui, Hawai‘i: Synthesis Report Prepared by Francis G. Howarth, David J. Preston, and Richard Pyle Honolulu, Hawaii January 2012 Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring within the Kahului Airport Environs, Maui, Hawai‘i: Synthesis Report Francis G. Howarth, David J. Preston, and Richard Pyle Hawaii Biological Survey Bishop Museum Honolulu, Hawai‘i 96817 USA Prepared for EKNA Services Inc. 615 Pi‘ikoi Street, Suite 300 Honolulu, Hawai‘i 96814 and State of Hawaii, Department of Transportation, Airports Division Bishop Museum Technical Report 58 Honolulu, Hawaii January 2012 Bishop Museum Press 1525 Bernice Street Honolulu, Hawai‘i Copyright 2012 Bishop Museum All Rights Reserved Printed in the United States of America ISSN 1085-455X Contribution No. 2012 001 to the Hawaii Biological Survey COVER Adult male Hawaiian long-horned wood-borer, Plagithmysus kahului, on its host plant Chenopodium oahuense. This species is endemic to lowland Maui and was discovered during the arthropod surveys. Photograph by Forest and Kim Starr, Makawao, Maui. Used with permission. Hawaii Biological Report on Monitoring Arthropods within Kahului Airport Environs, Synthesis TABLE OF CONTENTS Table of Contents …………….......................................................……………...........……………..…..….i. Executive Summary …….....................................................…………………...........……………..…..….1 Introduction ..................................................................………………………...........……………..…..….4
    [Show full text]