NASA SP-2007-4232 Facing the Heat Barrier: a History of Hypersonics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Gustave Eiffel, a Pioneer of Aerodynamics
Int. J. Engineering Systems Modelling and Simulation, Vol. 5, Nos. 1/2/3, 2013 3 Gustave Eiffel, a pioneer of aerodynamics Bruno Chanetz* Onera, 8 rue des Vertugadins, F-92 190 Meudon, France Fax: +33-1-46-23-51-58 and University Paris-Ouest, LTIE-GTE, EA 4415, 50 rue de Sèvres, F-92410 Ville d’Avray, France Fax: +33-1-40-97-48-73 E-mail: [email protected] E-mail: [email protected] *Corresponding author Martin Peter Laboratoire Aérodynamique Eiffel, 68 rue Boileau, F-75016 Paris E-mail: [email protected] Abstract: At the beginning of the 20th century, Gustave Eiffel contributes with Ludwig Prandtl to establish a new science: aerodynamics. He was going to study the forces to which he was confronted as engineer during his life: gravity and wind. Keywords: Eiffel wind tunnel; diffuser; laminar regime; turbulent regime; transition; drag of the sphere; Eiffel chamber. Reference to this paper should be made as follows: Chanetz, B. and Peter, M. (2013) ‘Gustave Eiffel, a pioneer of aerodynamics’, Int. J. Engineering Systems Modelling and Simulation, Vol. 5, Nos. 1/2/3, pp.3–7. Biographical notes: Bruno Chanetz joins Onera in 1983 as a Research Engineer. He was the Head of Hypersonic Group in 1990, Head of Hypersonic Hyperenthalpic Project in 1997 and Head of Experimental Simulation and Physics of Fluid Unit in 1998, then Deputy Director of the Fundamental and Experimental Aerodynamics Department in 2003. He was a Lecturer in Charge of the course ‘Boundary Layer’ at the Ecole Centrale de Paris from 1996 to 2003, then Associate Professor at the University of Versailles from 2003 to 2009. -
Brief History of the Early Development of Theoretical and Experimental Fluid Dynamics
Brief History of the Early Development of Theoretical and Experimental Fluid Dynamics John D. Anderson Jr. Aeronautics Division, National Air and Space Museum, Smithsonian Institution, Washington, DC, USA 1 INTRODUCTION 1 Introduction 1 2 Early Greek Science: Aristotle and Archimedes 2 As you read these words, there are millions of modern engi- neering devices in operation that depend in part, or in total, 3 DA Vinci’s Fluid Dynamics 2 on the understanding of fluid dynamics – airplanes in flight, 4 The Velocity-Squared Law 3 ships at sea, automobiles on the road, mechanical biomedi- 5 Newton and the Sine-Squared Law 5 cal devices, and so on. In the modern world, we sometimes take these devices for granted. However, it is important to 6 Daniel Bernoulli and the Pressure-Velocity pause for a moment and realize that each of these machines Concept 7 is a miracle in modern engineering fluid dynamics wherein 7 Henri Pitot and the Invention of the Pitot Tube 9 many diverse fundamental laws of nature are harnessed and 8 The High Noon of Eighteenth Century Fluid combined in a useful fashion so as to produce a safe, efficient, Dynamics – Leonhard Euler and the Governing and effective machine. Indeed, the sight of an airplane flying Equations of Inviscid Fluid Motion 10 overhead typifies the laws of aerodynamics in action, and it 9 Inclusion of Friction in Theoretical Fluid is easy to forget that just two centuries ago, these laws were Dynamics: the Works of Navier and Stokes 11 so mysterious, unknown or misunderstood as to preclude a flying machine from even lifting off the ground; let alone 10 Osborne Reynolds: Understanding Turbulent successfully flying through the air. -
Facing the Heat Barrier: a History of Hypersonics First Thoughts of Hypersonic Propulsion
Facing the Heat Barrier: A History of Hypersonics First Thoughts of Hypersonic Propulsion Republic’s Aerospaceplane concept showed extensive engine-airframe integration. (Republic Aviation) For takeoff, Lockheed expected to use Turbo-LACE. This was a LACE variant that sought again to reduce the inherently hydrogen-rich operation of the basic system. Rather than cool the air until it was liquid, Turbo-Lace chilled it deeply but allowed it to remain gaseous. Being very dense, it could pass through a turbocom- pressor and reach pressures in the hundreds of psi. This saved hydrogen because less was needed to accomplish this cooling. The Turbo-LACE engines were to operate at chamber pressures of 200 to 250 psi, well below the internal pressure of standard rockets but high enough to produce 300,000 pounds of thrust by using turbocom- pressed oxygen.67 Republic Aviation continued to emphasize the scramjet. A new configuration broke with the practice of mounting these engines within pods, as if they were turbojets. Instead, this design introduced the important topic of engine-airframe integration by setting forth a concept that amounted to a single enormous scramjet fitted with wings and a tail. A conical forward fuselage served as an inlet spike. The inlets themselves formed a ring encircling much of the vehicle. Fuel tankage filled most of its capacious internal volume. This design study took two views regarding the potential performance of its engines. One concept avoided the use of LACE or ACES, assuming again that this craft could scram all the way to orbit. Still, it needed engines for takeoff so turbo- ramjets were installed, with both Pratt & Whitney and General Electric providing Lockheed’s Aerospaceplane concept. -
A Method That Lends Wings
FLASHBACK_Aerodynamics A method that lends wings Mathematician Irmgard Flügge-Lotz was one of the first female researchers in the field of aerodynamics and automatic control. While working at the Kaiser Wilhelm Institute for Flow Research, she succeeded in simplifying the calculations required for aircraft construction. Flügge-Lotz was later appointed the first female Professor of Engineering at Stanford University. In the U.S., her work is still held in high esteem. In Germany, however, she has been all but forgotten. TEXT KATJA ENGEL Goettingen, 1931. Leading flow researcher could only be tested by means of complex Ludwig Prandtl was astonished. His colleague, wind tunnel measurements. Ludwig Prandtl, at 28 just half his age, had just handed him who is generally thought to be the founder of the solution to a mathematical puzzle that no- aircraft aerodynamics, and his team in Goet- body had been able to crack for more than ten tingen carried out pioneering work on the years. This conundrum was on his “menu”, as theoretical description of lift. However, math- he called his list of uncompleted research ematical calculations of his wing theory tasks. The result went down in the history of turned out to be difficult. In 1919, Albert Betz, aerodynamic research together with the a doctoral student in Goettingen who was young researcher's name. The "Lotz method" later to become Prandtl’s successor at the In- makes it possible to calculate the lift on an air- stitute, finally succeeded in the describing lift plane wing with comparative ease. by means of differential equations. However, Prandtl soon made the woman who had so his formulae were too complex for practical impressed him an (unofficial) Head of Depart- use when constructing new profiles. -
(RBCC)Propulsion Technology Workshop Tutorial Session
https://ntrs.nasa.gov/search.jsp?R=19920012274 2020-03-17T13:10:59+00:00Z NASA Conference Publication 10090 Rocket-Based Combined-Cycle (RBCC)Propulsion Technology Workshop Tutorial Session Proceedings of the tutorial session of a workshop held at the University of Alabama Huntsville, Alabama March 23-27, 1992 N'_2-L). _ 1 7 -- ]H f-,l!-- i,,i_?2- 2 I ._:::,_ Uric I _ s OO 7_ Jr,,, I NASA I I I NASA Conference Publication 10090 Rocket-Based Combined-Cycle (RBCC)Propuls'ion TechnologyWorkshop Tutorial Session Proceedings of the tutorial session of a workshop sponsored by NASA Headquarters, Washington, D.C. and held at the University of Alabama Huntsville, Alabama March 23-27, 1992 [UP_A National Aeronautics and Space Administration Office of Management Scientific and Technical Information Program 1992 PRESENTATION SYNOPSES AND SHORT-PAPER VERSIONS OF THE WORKSHOP'S EXPERT PRESENTER "MINI-TUTORIALS" A Message from theGeneral Chairman Tuesday, March 24th, the first Workshop full-day set of sessions is andcpated to be the key to success of the Workshop's productive deliberations and presented findings, activities which will round out the nearly full-week event. A genuinely unique set of presentations will be made at that time, bearing on the Workshop's subject: rocket-based combined-cycle propulsion technology and systems, applicable to future space missions. On this day some two-dozen or so short "mini-tutorial" briefings will be provided by our Expert Presenters to the Workshop participants, covering four general topics: Selections from -
Ludwig Prandtl and Boundary Layers in Fluid Flow How a Small Viscosity Can Cause Large Effects
GENERAL I ARTICLE Ludwig Prandtl and Boundary Layers in Fluid Flow How a Small Viscosity can Cause large Effects Jaywant H Arakeri and P N Shankar In 1904, Prandtl proposed the concept of bound ary layers that revolutionised the study of fluid mechanics. In this article we present the basic ideas of boundary layers and boundary-layer sep aration, a phenomenon that distinguishes stream lined from bluff bodies. Jaywant Arakeri is in the Mechanical Engineering A Long-Standing Paradox Department and in the Centre for Product It is a matter of common experience that when we stand Development and in a breeze or wade in water we feel a force which is Manufacture at the Indian called the drag force. We now know that the drag is Institute of Science, caused by fluid friction or viscosity. However, for long it Bangalore. His research is was believed that the viscosity shouldn't enter the pic mainly in instability and turbulence in fluid motion. ture at all since it was so small in value for both water He is also interested in and air. Assuming no viscosity, the finest mathematical issues related to environ physicists of the 19th century constructed a large body ment and development. of elegant results which predicted that the drag on a body in steady flow would be zero. This discrepancy between ideal fluid theory or hydrodynamics and com mon experience was known as 'd' Alembert's paradox' The paradox was only resolved in a revolutionary 1904 paper by L Prandtl who showed that viscous effects, no matter how'small the viscosity, can never be neglected. -
Aerospace Propulsion from Insects to Spaceflight
AEROSPACE PROPULSION FROM INSECTS TO SPACEFLIGHT Ulf Olsson Volvo Aero Corporation Vice president Technology (ret) - 2 - Olsson,Ulf Aerospace Propulsion from Insects to Spaceflight Copyright © 2006 by Volvo Aero Corporation. 1st Edition 2006 published Heat and Power Technology, KTH, Stockholm, Sweden. 2nd Edition April 2012 PREFACE This book is an introduction to the theory and history of aerospace propulsion. It describes how this specific technology has reached its present form and how it may develop in the future. To understand the technical parts, the reader is assumed to know about thermodynamics and aerodynamics at university level but no prior knowledge of aerospace propulsion technologies is required. For those wishing to go directly to the mathematics, a number of calculation schemes are given in the text as Appendices to various Chapters. They make it possible to write computer programs for performance estimates of the various types of engines. A number of exercises are included at the end of the different chapters. Solutions to the examples are provided in a separate Chapter at the end of the book together with the relevant equations being used. This can be used as a short handbook to the most important equations. For the reader specifically interested in the history of propulsion, a separate guide to the main topics and the most famous names is given under Contents below. Historical notes are also underlined in the text to be easily located. Ulf Olsson April 2012 ii iii CONTENTS Preface 0. Introduction Page 1 1. The balloons lighter than air 5 2. Newton and the reaction force 11 3. -
Chapter on Prandtl
2 Prandtl and the Gottingen¨ school Eberhard Bodenschatz and Michael Eckert 2.1 Introduction In the early decades of the 20th century Gottingen¨ was the center for mathemat- ics. The foundations were laid by Carl Friedrich Gauss (1777–1855) who from 1808 was head of the observatory and professor for astronomy at the Georg August University (founded in 1737). At the turn of the 20th century, the well- known mathematician Felix Klein (1849–1925), who joined the University in 1886, established a research center and brought leading scientists to Gottingen.¨ In 1895 David Hilbert (1862–1943) became Chair of Mathematics and in 1902 Hermann Minkowski (1864–1909) joined the mathematics department. At that time, pure and applied mathematics pursued diverging paths, and mathemati- cians at Technical Universities were met with distrust from their engineering colleagues with regard to their ability to satisfy their practical needs (Hensel, 1989). Klein was particularly eager to demonstrate the power of mathematics in applied fields (Prandtl, 1926b; Manegold, 1970). In 1905 he established an Institute for Applied Mathematics and Mechanics in Gottingen¨ by bringing the young Ludwig Prandtl (1875–1953) and the more senior Carl Runge (1856– 1927), both from the nearby Hanover. A picture of Prandtl at his water tunnel around 1935 is shown in Figure 2.1. Prandtl had studied mechanical engineering at the Technische Hochschule (TH, Technical University) in Munich in the late 1890s. In his studies he was deeply influenced by August Foppl¨ (1854–1924), whose textbooks on tech- nical mechanics became legendary. After finishing his studies as mechanical engineer in 1898, Prandtl became Foppl’s¨ assistant and remained closely re- lated to him throughout his life, intellectually by his devotion to technical mechanics and privately as Foppl’s¨ son-in-law (Vogel-Prandtl, 1993). -
Download Chapter 167KB
Memorial Tributes: Volume 3 ADOLF BUSEMANN 62 Copyright National Academy of Sciences. All rights reserved. Memorial Tributes: Volume 3 ADOLF BUSEMANN 63 Adolf Busemann 1901–1986 By Robert T. Jones Adolf Busemann, an eminent scientist and world leader in supersonic aerodynamics who was elected to the National Academy of Engineering in 1970, died in Boulder, Colorado, on November 3, 1986, at the age of eighty-five. At the time of his death, Dr. Busemann was a retired professor of aeronautics and space science at the University of Colorado in Boulder. Busemann belonged to the famous German school of aerodynamicists led by Ludwig Prandtl, a group that included Theodore von Karman, Max M. Munk, and Jakob Ackeret. Busemann was the first, however, to propose the use of swept wings to overcome the problems of transonic and supersonic flight and the first to propose a drag-free system of wings subsequently known as the Busemann Biplane. His ''Schock Polar,'' a construction he described as a "baby hedgehog," has simplified the calculations of aerodynamicists for decades. Adolf Busemann was born in Luebeck, Germany, on April 20, 1901. He attended the Carolo Wilhelmina Technical University in Braunschweig and received his Ph.D. in engineering there in 1924. In 1930 he was accorded the status of professor (Venia Legendi) at Georgia Augusta University in Goettingen. In 1925 the Max-Planck Institute appointed him to the position of aeronautical research scientist. He subsequently Copyright National Academy of Sciences. All rights reserved. Memorial Tributes: Volume 3 ADOLF BUSEMANN 64 held several positions in the German scientific community, and during the war years, directed research at the Braunschweig Laboratory. -
Download the Issue As A
SPRING 2008 - Volume 55, Number 1 WWW.AFHISTORICALFOUNDATION.ORG Features The Things We Are: Air Force Heritage and History in Artifacts Jeff Duford 4 A Visionary Ahead of his Time: Howard Hughes and the U.S. Air Force —Part II: The Hughes D–2 and the XF–11 Thomas Wildenberg 16 X–15B: Pursuit of Early Orbital Human Spaceflight L. Parker Temple, III 28 Chasing the XB–70A Valkyrie George J. Marrett 42 Book Reviews Aviator of Fortune: Lowell Yerex and the Anglo-American Commercial Rivalry, 1931-1946 By Erik Benson Reviewed by John Barnhill 48 No End in Sight: The Continuing Menace of Nuclear Proliferation By Nathan E. Busch Reviewed by David J. Schepp 48 Spy Satellites and Other Technologies that Changed History By Thomas A. Graham & Keith A. Hansen Reviewed by Rick W. Sturdevant 49 The AEF Way of War: The American Army and Combat in World War I By Mark Ethan Grotelueschen Reviewed by Jeffrey P. Joyce 49 Shadow and Stinger: Developing the AC-119G/K Gunships in the Vietnam War By William P. Head Reviewed by Steven A. Pomeroy 50 Farmans and SIAs: U.S. Army Aviation Training and Combat in Italy with Fiorello La Guardia By Jack B. Hilliard Reviewed by Thomas Wildenberg 50 Unconquerable Nation: Knowing Our Enemy, Strengthening Ourselves By Brian Michael Jenkins Reviewed by Curtis Hooper O’Sullivan 51 Chronological Encyclopedia of Soviet Single-Engined Fighters 1939-1951 By Herbert Léonard Reviewed by Carl J. Bobrow 51 On “Other War”: Lessons from Five Decades of RAND Counterinsurgency Research By Austin Long Reviewed by John L. -
1903 Wright Flyer I National Air & Space Museum
NASANASA VisionVision && MissionMission NASA vision is: • Innovation • Inspiration • Discovery The NASA mission is: • Technology innovation • Inspiration for the next generation • And discovery in our universe as only NASA can TheThe WrightWright BrothersBrothers andand thethe FutureFuture ofof Bio-InspiredBio-Inspired FlightFlight 1899 through to the Future… Al Bowers NASA Dryden Flight Research Center North Carolina State University Raleigh, NC 28 November 2007 Background:Background: TheThe TimesTimes TranscontinentalTranscontinental RailroadRailroad…… - the great engineering achievement of the time - understanding of “two-track” vehicle systems (buggys, carts, & trains) - completed on 10 May 1869 (Wilbur was two years old) Background:Background: ProgenitorsProgenitors • Otto Lilienthal - experiments from 1891 to 1896 • Samuel P Langley - experiments from 1891-1903 • Octave Chanute - experiments from 1896-1903 OttoOtto LilienthalLilienthal • Glider experiments 1891 - 1896 DrDr SamuelSamuel PierpontPierpont LangleyLangley • Aerodrome experiments 1887-1903 OctaveOctave ChanuteChanute • Gliding experiments 1896 to 1903 WilburWilbur andand OrvilleOrville 16 Apr 1867 – 30 May 1912 19 Aug 1871 – 30 Jan 1948 WrightWright BrothersBrothers TimelineTimeline • 1878 The Wrights receive a gift of a toy helicopter • 1895 The Wrights begin to manufacture their own bicycles • 1896 The Wrights take an interest in the "flying problem" • 1899 Wilbur devises a revolutionary control system, builds a kite to test it; also writes the Smithsonian. • 1900 The -
For Black Airmen, Disparities Persist in USAF Life, Culture, and Promotions | 28
Faster Pilot The Goldfein Years 37 | Long-range Strike 46 | Spaceplanes, Then and Now 55 Training 16 BLACK AND AIR FORCE BLUE For Black Airmen, disparities persist In USAF life, culture, and promotions | 28 July/August 2020 $8 Published by the Air Force Association STAFF Publisher July/August 2020. Vol. 103, No. 7 & 8 Bruce A. Wright Editor in Chief Tobias Naegele Managing Editor Juliette Kelsey Chagnon Editorial Director John A. Tirpak News Editor Amy McCullough Assistant Managing Editor Chequita Wood Senior Designer Dashton Parham Pentagon Editor Brian W. Everstine Tech. Sgt. Jake Barreiro Sgt. Jake Tech. Digital Platforms DEPARTMENTS FEATURES Senior Airman Editor 2 Editorial: Power 8 Q&A: The Future of the Expeditionary Force Cody Mehren Jennifer-Leigh Plays and signals to a B-2 Oprihory Competition Lt. Gen. Mark D. Kelly, incoming head of Air Combat Spirit bomber during a refuel- Senior Editor By Tobias Naegele Command, speaks with John A. Tirpak about the Rachel S. Cohen changes coming to USAF. ing stop at An- 3 Letters dersen Air Force Production Base, Guam. Manager 4 Index to 28 Leveling the Field Eric Chang Lee Advertisers By Rachel S. Cohen Photo Editor 7 Verbatim The Air Force has room for improvement in Mike Tsukamoto 10 Strategy & Policy: addressing racial bias in the promotion process. The Big Fighter 33 Black Airmen Speak Out Contributors Gamble John T. Correll, By Rachel S. Cohen Robert S. Dudney, 12 Airframes Mark Gunzinger, In a force where color shouldn’t matter, inequalities 16 World: Rebuilding Jennifer Hlad, persist. Alyk Russell Kenlan, the forge; Meet the LaDonna Orleans new CMSAF; Space 37 The Goldfein Years Force organization; Russian Intercepts; By John A.