38037 Bulletin Anglais.Pmd

Total Page:16

File Type:pdf, Size:1020Kb

38037 Bulletin Anglais.Pmd The IUCN Bulletin Number 1 2004 World Conservation REDISCOVERING Planet Ocean CMS turns 25 CONTENTS Rediscovering Planet Ocean How inappropriate to call this planet ‘Earth’, when it is clearly ‘Ocean’ – Arthur C. Clarke An embryonic marine programme first settled into IUCN’s headquarters in 1985. In the two decades since, it has worked closely with the marine groups of the IUCN World Commission on Protected Areas (WCPA) and Species Survival Commission (SSC). The programme today has a dozen staff, 15 commission groups and a large number of active partners. This issue of World Conservation presents some highlights of the work of the IUCN Marine Programme, carried out hand-in-hand with the Union’s Secretariat, members and Commissions; international partners, and the custodians of marine resources. JOSE ANTONIO MOYA CONTENTS 3 INTRODUCTION Improving ocean governance William Jackson World Conservation Troubled waters (formerly the IUCN Bulletin) 4 High seas: conservation beyond the fringe Kristina M. Gjerde and A publication of Graeme Kelleher IUCN – The World Conservation Union Rue Mauverney 28 6 Extinction in the deep sea Matthew Gianni CH-1196 Gland, Switzerland 8 Warming up to cold-water corals Kirsten Martin and Alex Rogers Tel: +41 (22) 999 0000 Fax: +41 (22) 999 0002 10 Tropical reefs: facing reality Kristin Sherwood Website: www.iucn.org 12 Large Marine Ecosystems – Managing Benguela: an African partnership Mick O’Toole and Claire Attwood Editor Nikki Meith 14 Small islands: a question of survival Pedro Rosabal Gonzales Contributing Editor Peter Hulm Charting a course Head, Marine Programme 16 Building a global MPA network, one park at a time Charles N. Ehler and Carl Gustaf Lundin Arthur Paterson Marine Programme Contributing Editor Kirsten Martin th Special insert: 25 Anniversary of CMS Marine Programme Photo Editor James Oliver 18 Marine extinctions: into the light Roger McManus and Amie Bräutigam Head of Global Communications 18 Groupers and wrasses spawn conservation action Yvonne Sadovy Corli Pretorius 19 Vanishing point for sharks? Rachel Cavanagh Head of Publications 20 A biological gold rush Imène Meliane Elaine Shaughnessy Publications Officer 21 Marine aquaria: from knowledge to respect François Simard Deborah Murith 22 Confronting invasives Imène Meliane and Chad Hewitt © 2004 International Union 24 Tanzania: three roads from poverty to prosperity Andrew K. Hurd and for Conservation of Nature Melita A. Samoilys and Natural Resources Volume 35, No. 1, 2004 The journey ahead ISSN: 1027-0965 26 International marine law: from hindsight to foresight Lee A. Kimball Cover concept: L’IV COM Sàrl Design/layout: Maximedia Ltd 28 Paying the price of climate change Herman Cesar Produced by: IUCN Publishing Division 29 Coral death in the Indian Ocean Olof Lindén Gland, Switzerland and 30 The IUCN Marine Programme: from need to action Carl Gustaf Lundin Cambridge, UK Printed by: Sadag Imprimerie 31 New group on ocean law David VanderZwaag Opinions expressed in this 32 In print publication do not necessarily reflect the official views Cover: this photo of garden eels Gorgasia of IUCN or its members. sillneri was taken by Laurent Ballesta Annual subscriptions (Andromede Environment Ltd) during a mission $45 (non-members) to study and enhance the natural values of including airmail postage Aqaba Marine Peace Park's coral reefs in For subscription information, Jordan. please contact: Andromede Environment Ltd offers a full [email protected] range of services for the study and promotion/ Please address all other queries communication of marine protected areas for regarding this publication to: management authorities. [email protected] Contact: [email protected] JOSE ANTONIO MOYA 2 World Conservation 1/2004 INTRODUCTION IUCN/CARL GUSTAF LUNDIN IUCN/CARL GUSTAF Kelp farmers in Fujian Province, China, have learned to sustainably manage their resource, but such wild harvest of natural ecosystems is gradually being replaced by aquaculture. THE IUCN MARINE PROGRAMME Improving ocean governance William Jackson The strength of the Union's marine work lies in its per- enforcement. There are no longer any blank areas on the sistent efforts to improve global ocean governance map where illegal activities are acceptable or will go through United Nations and other international proc- unnoticed. The fight against illegal, unreported and un- esses. It is reflected in the Programme's work to assist regulated fishing is of great importance. Our scientific nations in finding common interests and in developing understanding of some of these resources is increasing management regimes that are globally acceptable and exponentially, but we also need to apply the precaution- based on sound scientific understanding. It is embod- ary principle in many instances where our lack of knowl- ied in the development of best practice management edge limits our ability to predict the outcomes of our actions. tools and the field-testing of these tools, particularly for IUCN has seen a rapid increase in marine conserva- Marine Protected Areas (MPAs). One example is the new tion efforts since 2002 (perhaps not coincidentally, 30 publication How is your MPA doing? years since the UN Stockholm Conference on the Human IUCN has supported marine field work around the Environment) and we look forward to decades of im- world, with particular efforts in East Africa, Caribbean proved ocean governance. A renewed focus on marine and South Asia. In particular the programmes on devel- conservation can be seen in many nations and interna- opment of MPAs have been successful in West Africa, tional organizations and through international commit- Tanzania, Viet Nam and Samoa. Its major accomplish- ments such as the targets set by the World Summit on ments include assembling the knowledge and expertise Sustainable Development. that went into the production of the Coral Reefs of the This new commitment reflects a consensus that we World atlas in 1988 and 2002; work on A Global Repre- are experiencing a crisis in how marine resources have sentative System of MPAs in 1995; Guidelines for Marine been managed. But it also embodies an awareness that Protected Areas in 1999; MCPAs: A guide for planners and we have great opportunities to rectify some of these mis- managers (3rd edition) in 2000; and International Ocean takes. IUCN will try to facilitate this work and ensure Governance and Towards a Strategy for High Seas Marine that all stakeholders, including future generations, can Protected Areas in 2003. benefit from healthy marine ecosystems. Rapid changes in technology and its application in the marine field today permit us to manage areas that William Jackson is Director of were previously beyond the reach of day-to-day Global Programme, IUCN. World Conservation 1/2004 3 TROUBLED WATERS NATIONAL OCEANS OFFICE/VANCE WALLIN NATIONAL JEREMY STAFFORD-DEITSCH Due to declines from over-exploitation by fisheries, and the high value of its fins and other products, including liver oil, the basking shark is on the IUCN Red List of Threatened Species (globally Vulnerable, Endangered in the NE Atlantic and N Pacific), and is listed on CITES Appendix II. It is among the many sharks subject to incidental catch by high seas fishing boats (insert). HH igh seas: conservation beyond the fringe Kristina M. Gjerde and Graeme Kelleher Vast expanses of the ocean lie beyond the jurisdiction of findings, scientists estimate that over 99% of species coastal nations. These ‘high seas’ cover 64% of the inhabiting the high seas remain to be discovered. oceans’ surface, and include the deep seabed – the “com- It is hard to fathom that human activity is able to mon heritage of mankind” as defined in the United Na- threaten this vast domain and global reservoir of bio- tions Convention on the Law of the Sea (UNCLOS) – and logical diversity and productivity, but the evidence is al- the water column beyond national jurisdiction. With an ready conclusive. average depth of almost 4000m, the high seas are the No refuge largest habitat for life on Earth, comprising >80% of the global biosphere. Most pressing are the threats from fishing activities. In the past 30 years, scientists have discovered that Industrial-scale fishing has already reduced populations the deep seabed contains as many as 100 million spe- of swordfish, marlin, tuna, sharks and other large ma- cies, more corals than in tropical waters, and exotic eco- rine predators by more than 90%. Bycatch of albatross systems such as hydrothermal vents, cold seeps and and other marine animals threatens some species with methane hydrates divorced from the sun’s energy. extinction. High-tech fish-finding electronics and mod- However, we have just skimmed the surface in terms ernized bottom fishing gear have opened up new fish- of our understanding of the ocean and its inhabitants. ing grounds and former refuges, making species-rich According to a recent study in Science, a few gulps of seabed habitats such as seamounts and cold-water coral seawater in the Sargasso Sea – thought to be of reefs vulnerable to destruction (see page 8). comparably low species diversity – contain at least 1800 Other threats stem from human activities such as new species of marine microbes and more than a million land-based discharges of plastics and pollutants; ship- genes previously unknown to science. Based on these ping; waste dumping, power plant emissions, military 4 World Conservation 1/2004 TROUBLED WATERS activities; deep seabed mining and constructions; en- These efforts with a broad range of partners are start- ergy generation and mechanical CO2 sequestration and, ing to have a significant impact. IUCN looks forward to finally, bioprospecting and scientific research. Together future collaborative efforts with an ever-widening range these factors imperil the species, ecosystems, and proc- of partners to protect and wisely manage the 64% of the esses of the deep sea and open ocean. Meanwhile, the ocean surface that lie beyond national jurisdiction. impacts of climate change have also been observed.
Recommended publications
  • Order BERYCIFORMES ANOPLOGASTRIDAE Fangtooths (Ogrefish) by J.A
    click for previous page 1178 Bony Fishes Order BERYCIFORMES ANOPLOGASTRIDAE Fangtooths (ogrefish) by J.A. Moore, Florida Atlantic University, USA iagnostic characters: Small (to about 160 mm standard length) beryciform fishes.Body short, deep, and Dcompressed, tapering to narrow peduncle. Head large (1/3 standard length). Eye smaller than snout length in adults, but larger than snout length in juveniles. Mouth very large and oblique, jaws extend be- hind eye in adults; 1 supramaxilla. Bands of villiform teeth in juveniles are replaced with large fangs on dentary and premaxilla in adults; vomer and palatines toothless. Deep sensory canals separated by ser- rated ridges; very large parietal and preopercular spines in juveniles of one species, all disappearing with age. Gill rakers as clusters of teeth on gill arch in adults (lath-like in juveniles). No true fin spines; single, long-based dorsal fin with 16 to 20 rays; anal fin very short-based with 7 to 9 soft rays; caudal fin emarginate; pectoral fins with 13 to 16 soft rays; pelvic fins with 7 soft rays. Scales small, non-overlapping, spinose, goblet-shaped in adults; lateral line an open groove partially bridged by scales; no enlarged ventral keel scutes. Colour: entirely dark brown or black in adults. Habitat, biology, and fisheries: Meso- to bathypelagic, at depths of 75 to 5 000 m. Carnivores, with juveniles feeding on mainly crustaceans and adults mainly on fishes. May sometimes swim in small groups. Uncommon deep-sea fishes of no commercial importance. Remarks: The family was revised recently by Kotlyar (1986) and contains 1 genus with 2 species throughout the tropical and temperate latitudes.
    [Show full text]
  • Jolanta KEMPTER*, Maciej KIEŁPIŃSKI, Remigiusz PANICZ, and Sławomir KESZKA
    ACTA ICHTHYOLOGICA ET PISCATORIA (2016) 46 (4): 287–291 DOI: 10.3750/AIP2016.46.4.02 MICROSATELLITE DNA-BASED GENETIC TRACEABILITY OF TWO POPULATIONS OF SPLENDID ALFONSINO, BERYX SPLENDENS (ACTINOPTERYGII: BERYCIFORMES: BERYCIDAE)—PROJECT CELFISH—PART 2 Jolanta KEMPTER*, Maciej KIEŁPIŃSKI, Remigiusz PANICZ, and Sławomir KESZKA Division of Aquaculture, West Pomeranian University of Technology, Szczecin, Kazimierza Krolewicza 4, 71-550 Szczecin, Poland Kempter J., Kiełpinski M., Panicz R., Keszka S. 2016. Microsatellite DNA-based genetic traceability of two populations of splendid alfonsino, Beryx splendens (Actinopterygii: Beryciformes: Berycidae)— Project CELFISH—Part 2. Acta Ichthyol. Piscat. 46 (4): 287–291. Background. The study is a contribution to Project CELFISH which involves genetic identifi cation of populations of fi sh species presenting a particular economic importance or having a potential to be used in the so-called commercial substitutions. The EU fi sh trade has been showing a distinct trend of more and more fi sh species previously unknown to consumers being placed on the market. Molecular assays have become the only way with which to verify the reliability of exporters. This paper is aimed at pinpointing genetic markers with which to label and differentiate between two populations of splendid alfonsino, Beryx splendens Lowe, 1834, a species highly attractive to consumers in Asia and Oceania due to the meat taste and low fat content. Material and methods. DNA was isolated from fragments of fi ns collected at local markets in Japan (MJ) (n = 10) and New Zealand (MNZ) (n = 18). The rhodopsin gene (RH1) fragment and 16 microsatellite DNA fragments (SSR) were analysed in all the individuals.
    [Show full text]
  • Order BERYCIFORMES ANOPLOGASTRIDAE Anoplogaster
    click for previous page 2210 Bony Fishes Order BERYCIFORMES ANOPLOGASTRIDAE Fangtooths by J.R. Paxton iagnostic characters: Small (to 16 cm) Dberyciform fishes, body short, deep, and compressed. Head large, steep; deep mu- cous cavities on top of head separated by serrated crests; very large temporal and pre- opercular spines and smaller orbital (frontal) spine in juveniles of one species, all disap- pearing with age. Eyes smaller than snout length in adults (but larger than snout length in juveniles). Mouth very large, jaws extending far behind eye in adults; one supramaxilla. Teeth as large fangs in pre- maxilla and dentary; vomer and palatine toothless. Gill rakers as gill teeth in adults (elongate, lath-like in juveniles). No fin spines; dorsal fin long based, roughly in middle of body, with 16 to 20 rays; anal fin short-based, far posterior, with 7 to 9 rays; pelvic fin abdominal in juveniles, becoming subthoracic with age, with 7 rays; pectoral fin with 13 to 16 rays. Scales small, non-overlap- ping, spinose, cup-shaped in adults; lateral line an open groove partly covered by scales. No light organs. Total vertebrae 25 to 28. Colour: brown-black in adults. Habitat, biology, and fisheries: Meso- and bathypelagic. Distinctive caulolepis juvenile stage, with greatly enlarged head spines in one species. Feeding mode as carnivores on crustaceans as juveniles and on fishes as adults. Rare deepsea fishes of no commercial importance. Remarks: One genus with 2 species throughout the world ocean in tropical and temperate latitudes. The family was revised by Kotlyar (1986). Similar families occurring in the area Diretmidae: No fangs, jaw teeth small, in bands; anal fin with 18 to 24 rays.
    [Show full text]
  • How Much Longer Will It Take?
    How much longer will it take? A ten-year review of the implementation of United Nations General Assembly resolutions 61/105, 64/72 and 66/68 on the management of bottom fisheries in areas beyond national jurisdiction FULL REPORT – AUGUST 2016 DAVID SHALE/NATURE PICTURE LIBRARAY SHALE/NATURE DAVID Leiopathes sp., a deepwater black coral, has lifespans in excess of 4,200 years (Roark et al., 2009*), making it one of the oldest living organism on Earth. Specimen was located off the coast of Oahu, Hawaii, in ~400 m water depth. * Roark, E.B., Guilderson, T.P., Dunbar, R.B., Fallon, S.J., and Mucciarone, D.A., 2009. Extreme longevity in proteinaceous deep-sea corals. Proceedings of the National Academy of Sciences, 106: 520– 5208, doi: 10.1073/pnas.0810875106. © HAWAII UNDERSEA RESEARCH LABORATORY, TERRY KERBY AND MAXIMILIAN CREMER Contents Executive summary 03 1.0 Introduction 09 2.0 North Atlantic 10 2.1 Northeast Atlantic 10 2..2 Northwest Atlantic 21 3.0 South Atlantic 33 3.1 Southeast Atlantic 33 3.2 Southwest Atlantic and other non-RFMO areas 39 4.0 North Pacific 42 Citation: 5.0 South Pacific 49 Gianni, M., Fuller, S.D., Currie, D.E.J., Schleit, 6.0 Indian Ocean 60 K., Goldsworthy, L., Pike, B., Weeber, B., 7.0 Southern Ocean 66 Owen, S., Friedman, A. How much longer will it take? A ten-year 8.0. Mediterranean Sea 71 review of the implementation of United Annex 1. Acronyms 73 Nations General Assembly resolutions Annex 2. History of the UNGA negotiations 73 61/105, 64/72 and 66/68 on the management Annex 3.
    [Show full text]
  • Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
    European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences.
    [Show full text]
  • Modelling the Distribution of Alfonsino, Beryx Splendens, Over The
    Abstract.- Commercial and Modelling the distribution of scientificbottom longline catches of alfonsino, Beryx splendens, from alfonsino, Beryx splendens, over seamounts off New Caledonia were sampled to study length-frequency distributions. A total of 14,674 fish the seamounts of New Caledonia were measured. CPUE of Beryx splendens on two seamounts is mod- Patrick Lehodey elled in terms of length and depth. The data show that mean length in- Paul Marchal creases with depth; this is well de- scribed by a bivariate normal model Rene Grandperrin that estimates catch for a given sea- Centre ORSTOM, BP A5, Noumea, New Caledonia mount. In addition, the data show I that mean length also varies with the depth of the top of seamounts; this is described by a recursive model that is designed to predict ap- proximate catch for any seamount. A bottom longline fishery operated recursive model predicts catch on The limitations of both models are on the seamounts of the Exclusive any seamount. discussed, particularly with regard Economic Zone (EEZ) of New Cale- to temporal variation. donia from February 1988 to July 1991.l Three vessels were involved Material and methods but only one vessel was operated at any given time. The fishing effort, Data which totalled 4,691,635 hooks, fo- Alfonsino were captured with long- cused on five seamounts (B, C, D, line gear (Fig. 2). The main line, J, and K) whose summits are lo- averaging 4,000 m, was held on the cated at depths ranging from 500 1). bottom by means of terminal an- to 750 m (Fig.
    [Show full text]
  • Supporting Information
    Supporting Information Choy et al. 10.1073/pnas.0900711106 Table S1. Total mercury values (mean ؎ SD) of prey taxa from Hawaiian waters measured in this study Taxonomic group n Size, mm Depth category Ref(s). Day-time depth range, m THg, ␮g/kg Mixed Zooplankton 5 1–2 epi 1 0–200 2.26 Ϯ 3.23 Invertebrates Phylum Ctenophora Ctenophores (unidentified) 3 20–30 TL other 2 0–600 0.00 Ϯ 0.00 Phylum Chordata, Subphylum Tunicata Class Thaliacea Pyrosomes (unidentified) 2 (8) 14–36 TL upmeso.dvm 2, 3 400–600ϩ 3.49 Ϯ 4.94 Salps (unidentified) 3 (7) 200–400 TL upmeso.dvm 2, 4 400–600ϩ 0.00 Ϯ 0.00 Phylum Arthropoda Subphylum Crustacea Order Amphipoda Phronima sp. 2 (6) 17–23 TL lomeso.dvm 5, 6 400–975 0.00 Ϯ 0.00 Order Decapoda Crab Megalopae (unidentified) 3 (14) 3–14 CL epi 7, 8 0–200 0.94 Ϯ 1.63 Janicella spinacauda 7 (10) 7–16 CL upmeso.dvm 9 500–600 30.39 Ϯ 23.82 Lobster Phyllosoma (unidentified) 5 42–67 CL upmeso.dvm 10 80–400 18.54 Ϯ 13.61 Oplophorus gracilirostris 5 9–20 CL upmeso.dvm 9, 11 500–650 90.23 Ϯ 103.20 Sergestes sp. 5 8–25 CL upmeso.dvm 12, 13 200–600 45.61 Ϯ 51.29 Sergia sp. 5 6–10 CL upmeso.dvm 12, 13 300–600 0.45 Ϯ 1.01 Systellapsis sp. 5 5–44 CL lomeso.dvm 9, 12 600–1100 22.63 Ϯ 38.18 Order Euphausiacea Euphausiids (unidentified) 2 (7) 5–7 CL upmeso.dvm 14, 15 400–600 7.72 Ϯ 10.92 Order Isopoda Anuropus sp.
    [Show full text]
  • Beryx Splendens Lowe, 1834
    Beryx splendens Lowe, 1834 AphiaID: 126395 SPLENDID ALFONSINO Animalia (Reino) > Chordata (Filo) > Vertebrata (Subfilo) > Gnathostomata (Infrafilo) > Pisces (Superclasse) > Pisces (Superclasse-2) > Actinopterygii (Classe) > Beryciformes (Ordem) > Berycidae (Familia) Heessen, Henk Sinónimos Bryx splendens Lowe, 1834 Referências MARTINS, R.; CARNEIRO, M., 2018. Manual de identificação de peixes ósseos da costa continental portuguesa – Principais Características Diagnosticantes. IPMA, I.P., 204p Fernandes, P., Collette, B., Heessen, H., Smith-Vaniz, W.F. & Herrera, J. 2015. Beryx splendens. The IUCN Red List of Threatened Species 2015: e.T16425354A45791585. Downloaded on 05 August 2019. additional source Froese, R. & D. Pauly (Editors). (2018). FishBase. World Wide Web electronic publication. , available online at http://www.fishbase.org [details] basis of record van der Land, J.; Costello, M.J.; Zavodnik, D.; Santos, R.S.; Porteiro, F.M.; Bailly, N.; 1 Eschmeyer, W.N.; Froese, R. (2001). Pisces, in: Costello, M.J. et al. (Ed.) (2001). European register of marine species: a check-list of the marine species in Europe and a bibliography of guides to their identification. Collection Patrimoines Naturels, 50: pp. 357-374 [details] additional source Gulf of Maine Biogeographic Information System (GMBIS) Electronic Atlas. 2002. November, 2002. [details] additional source Hareide, N.R. and G. Garnes. 1998. The distribution and abundance of deep water fish along the Mid-Atlantic Ridge from 43°N to 61°N. Theme session on deep water fish and fisheries. ICES CM 1998/O:39. [details] additional source Welshman, D., S. Kohler, J. Black and L. Van Guelpen. 2003. An atlas of distributions of Canadian Atlantic fishes. , available online at http://epe.lac-bac.gc.ca/100/205/301/ic/cdc/FishAtlas/default.htm [details] additional source Streftaris, N.; Zenetos, A.; Papathanassiou, E.
    [Show full text]
  • Alfonsino Species Sheet
    ALFONSINO Beryx splendens Alfonsino have a firm white flesh with high oil content. Alfonsino is suitable for most cooking methods. Wild caught Alfonsino from New Zealand are caught all year round, at a depth of 200-800m. All Sealord Alfonsino are from sustainable and well managed fisheries. AVERAGE LENGTH WEIGHT AVAILABILITY CATCH METHOD 30-50 cm 1-1.5 kg All year round Trawl 11.8 – 19.7 inches 2.2 – 3.3 lbs SEALORD PROVIDE A RANGE OF PRODUCTS IN FROZEN FORMATS Format Description Size Grading Whole Whole fish Run of Catch 0.2-0.3kg / 0.3-0.5kg / 0.5-0.7kg / Dressed Headed, gutted, tail remains 0.7-1kg / over 1kg / Run of Catch SUSTAINABLE DEEPWATER SEAFOOD We care about the future of fishing, so our fish comes from well-managed fisheries, some of which have a Fisheries Improvement Plan in place. We continue to evolve our processes and undertake research to ensure we manage fisheries with the best practices and quality of scientific information available. The Quota Management System (QMS) has been operating in New Zealand for over thirty years, solidifying New Zealand’s reputation as a world leader in sustainable fisheries management. It ensures that our fisheries resources are not over-fished and that our seafood will be available for generations to come. It is one of the most extensive quota-based fisheries management systems in the world, with over 100 species or species complexes managed within this framework. CATCH AREA NUTRITION BYX 10 Energy 597kJ Protein 18.4g BYX 1 Fat Total 7.6g Saturated 2.0g Carbohydrate 0.2g Sugars 0.2g BYX 8 Sodium 35mg BYX 7 BYX 2 OUR ACCREDITATIONS BYX 3 INCLUDE: TIFIED ER BYX 3 C ACCP H Y T FO E OD SAF.
    [Show full text]
  • LESSON 2 DNA Barcoding and the Barcode of Life Database
    LESSON 2 DNA Barcoding 2 and the Barcode of Life Database (BOLD) Introduction In this lesson, students will receive an “unknown” DNA sequence and use the bioinformatics tool Basic Local Alignment Search Tool (BLAST) to identify the species from which the sequence came. Students then visit the Barcode of Life Database (BOLD) to obtain taxonomic information about their species and form taxonomic groups for scientific collaboration. The lesson ends with each student generating a hypothesis about the relatedness of the species within each group. In Lesson Two, students also learn how postdoctoral scientists in DNA and history might use bioinformatics tools in their career. Learning Objectives Class Time At the end of this lesson, students will know that: 1 class period of 50 minutes if Student • Bioinformatics tools are used by people in many different career fields, Reading is assigned as homework; including postdoctoral scientists in DNA and history. otherwise 2 class periods of 50 • Bioinformatics tools such as BLAST and databases like the National Center for minutes each. Biotechnology Information (NCBI) and the Barcode of Life Database (BOLD) can be used to identify unknown DNA sequences and obtain information Prior Knowledge Needed about the species from which the sequences came. • DNA contains the genetic information • Scientific names for species, including the genus and species names, can be that encodes traits. used to classify species based on evolutionary relatedness. • Basic knowledge of taxonomy (specifically the different categories • Scientists from around the world compile their data into databases such as used in taxonomy to classify those at the NCBI and BOLD to encourage scientific collaboration and increase organisms, and that the study scientific knowledge.
    [Show full text]
  • Historical Extent of Decline
    NMFS / Interagency Working Group Evaluation of CITES Criteria and Guidelines Pamela M. Mace (Chair) Andy W. Bruckner Nancy K. Daves John D. Field John R. Hunter Nancy E. Kohler Robert G. Kope Susan S. Lieberman Margaret W. Miller James W. Orr Robert S. Otto Tim D. Smith Nancy B. Thompson with contributions from Julie Lyke and Arthur G. Blundell U.S. Department of Commerce National Oceanic and Atmospheric Administration National Marine Fisheries Service NOAA Technical Memorandum NMFS-F/SPO-58 October 2002 -1- NMFS / Interagency Working Group Evaluation of CITES Criteria and Guidelines Pamela M. Mace (Chair) Andy W. Bruckner Nancy K. Daves John D. Field John R. Hunter Nancy E. Kohler Robert G. Kope Susan S. Lieberman Margaret W. Miller James W. Orr Robert S. Otto Tim D. Smith Nancy B. Thompson with contributions from Julie Lyke and Arthur G. Blundell NOAA Technical Memorandum NMFS-F/SPO-58 October 2002 U.S. Department of Commerce Donald L. Evans, Secretary National Oceanic and Atmospheric Administration Vice Admiral Conrad C. Lautenbacher, Jr., USN (Ret.) Under Secretary for Oceans and Atmosphere National Marine Fisheries Service William T. Hogarth, Assistant Administrator for Fisheries -2- This document is the result of several meetings and teleconferences of the NMFS / Interagency Working Group to evaluate CITES criteria and guidelines, held over a two-year period beginning in October 2000. The purposes were to evaluate existing CITES criteria and guidelines, to suggest improvements, and to evaluate the pro- posed improvements for a variety of marine and other taxa. Suggested citation: Mace, P.M., A.W. Bruckner, N.K.
    [Show full text]
  • Alfonsino (Byx)
    ALFONSINO (BYX) ALFONSINO (BYX) (Beryx splendens, B. decadactylus) BYS BYD 1. FISHERY SUMMARY Alfonsino was introduced into the Quota Management System (QMS) on 1 October 1986, with allowances, TACCs and TACs in Table 1. Table 1: Recreational and Customary non-commercial allowances, TACCs and TACs for alfonsino by Fishstock. Fishstock Recreational Allowance Customary non-commercial TACC TAC allowance BYX 1 2 2 300 304 BYX 2 - - 1 575 1 575 BYX 3 - - 1 010 1 010 BYX 7 - - 80.5 80.5 BYX 8 - - 20 20 BYX 10 - - 10 10 1.1 Commercial fisheries Alfonsino has supported a major mid-water target trawl fishery off the east coast of the North Island since 1983 and is a minor bycatch of other trawl fisheries around New Zealand. The original gazetted TACs were based on the 1983–84 landings except for BYX 10 which was administratively set. Recent reported domestic landings and actual TACCs are shown in Table 1, while Figure 1 shows the historical landings and TACC values for the main BYX stocks. Alfonsino landings in New Zealand consist almost entirely of one species, Beryx splendens: the other species, B. decadactylus, is thought to make up less than 1% of landings. Before 1983 alfonsino were virtually unfished, but two main fisheries now exist in New Zealand. The first to develop was the lower east coast North Island fishery (BYX 2), which developed in the mid-1980s. The other is the eastern Chatham Rise fishery (BYX 3), which developed in the mid-1990s. Alfonsino are caught throughout the New Zealand EEZ but only in small quantities outside of the east coast North Island and eastern Chatham Rise fisheries.
    [Show full text]