S12864 017 3994 X.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Synanthropy of Wild Mammals As a Determinant of Emerging Infectious Diseases in the Asian–Australasian Region
EcoHealth 9, 24–35, 2012 DOI: 10.1007/s10393-012-0763-9 Ó 2012 International Association for Ecology and Health Original Contribution Synanthropy of Wild Mammals as a Determinant of Emerging Infectious Diseases in the Asian–Australasian Region Ro McFarlane,1 Adrian Sleigh,1 and Tony McMichael1 National Centre for Epidemiology and Population Health, ANU College of Medicine, Biology and Environment, Australian National University, Canberra, Australia; [email protected]; [email protected] Abstract: Humans create ecologically simplified landscapes that favour some wildlife species, but not others. Here, we explore the possibility that those species that tolerate or do well in human-modified environments, or ‘synanthropic’ species, are predominantly the hosts of zoonotic emerging and re-emerging infectious diseases (EIDs). We do this using global wildlife conservation data and wildlife host information extracted from systematically reviewed emerging infectious disease literature. The evidence for this relationship is examined with special emphasis on the Australasian, South East Asian and East Asian regions. We find that synanthropic wildlife hosts are approximately 15 times more likely than other wildlife in this region to be the source of emerging infectious diseases, and this association is essentially independent of the taxonomy of the species. A significant positive association with EIDs is also evident for those wildlife species of low conservation risk. Since the increase and spread of native and introduced species able to adapt to human-induced landscape change is at the expense of those species most vulnerable to habitat loss, our findings suggest a mechanism linking land conversion, global decline in biodiversity and a rise in EIDs of wildlife origin. -
Escherichia Coli Saccharomyces Cerevisiae Bacillus Subtilis はB
研究開発等に係る遺伝子組換え生物等の第二種使用等に当たって執るべき拡散防止措 置等を定める省令の規定に基づき認定宿主ベクター系等を定める件 (平成十六年一月二十九日文部科学省告示第七号) 最終改正:令和三年二月十五日文部科学省告示第十三号 (認定宿主ベクター系) 第一条 研究開発等に係る遺伝子組換え生物等の第二種使用等に当たって執るべき拡散防止 措置等を定める省令(以下「省令」という。)第二条第十三号の文部科学大臣が定める認 定宿主ベクター系は、別表第一に掲げるとおりとする。 (実験分類の区分ごとの微生物等) 第二条 省令第三条の表第一号から第四号までの文部科学大臣が定める微生物等は、別表第 二の上欄に掲げる区分について、それぞれ同表の下欄に掲げるとおりとする。 (特定認定宿主ベクター系) 第三条 省令第五条第一号ロの文部科学大臣が定める特定認定宿主ベクター系は、別表第一 の2の項に掲げる認定宿主ベクター系とする。 (自立的な増殖力及び感染力を保持したウイルス及びウイロイド) 第四条 省令別表第一第一号ヘの文部科学大臣が定めるウイルス及びウイロイドは、別表第 三に掲げるとおりとする。 別表第1(第1条関係) 区 分 名 称 宿主及びベクターの組合せ 1 B1 (1) EK1 Escherichia coli K12株、B株、C株及びW株又は これら各株の誘導体を宿主とし、プラスミド又は バクテリオファージの核酸であって、接合等によ り宿主以外の細菌に伝達されないものをベクター とするもの(次項(1)のEK2に該当するものを除 く。) (2) SC1 Saccharomyces cerevisiae又はこれと交雑可能な 分類学上の種に属する酵母を宿主とし、これらの 宿主のプラスミド、ミニクロモソーム又はこれら の誘導体をベクターとするもの(次項(2)のSC2 に該当するものを除く。) (3) BS1 Bacillus subtilis Marburg168株、この誘導体又 はB. licheniformis全株のうち、アミノ酸若しく は核酸塩基に対する複数の栄養要求性突然変異を 有する株又は胞子を形成しない株を宿主とし、こ れらの宿主のプラスミド(接合による伝達性のな いものに限る。)又はバクテリオファージの核酸 をベクターとするもの(次項(3)のBS2に該当す るものを除く。) (4) Thermus属細菌 Thermus属細菌(T. thermophilus、T. aquaticus、 T. flavus、T. caldophilus及びT. ruberに限る。) を宿主とし、これらの宿主のプラスミド又はこの 誘導体をベクターとするもの (5) Rhizobium属細菌 Rhizobium属細菌(R. radiobacter(別名Agroba- cterium tumefaciens)及びR. rhizogenes(別名 Agrobacterium rhizogenes)に限る。)を宿主と し、これらの宿主のプラスミド又はRK2系のプラ スミドをベクターとするもの (6) Pseudomonas putida Pseudomonas putida KT2440株又はこの誘導体を 宿主とし、これら宿主への依存性が高く、宿主以 外の細胞に伝達されないものをベクターとするも の (7) Streptomyces属細菌 Streptomyces属細菌(S. avermitilis、S. coel- icolor [S. violaceoruberとして分類されるS. coelicolor A3(2)株を含む]、S. lividans、S. p- arvulus、S. griseus及びS. -
Combating the Coronavirus Pandemic Early Detection, Medical Treatment
AAAS Research Volume 2020, Article ID 6925296, 35 pages https://doi.org/10.34133/2020/6925296 Review Article Combating the Coronavirus Pandemic: Early Detection, Medical Treatment, and a Concerted Effort by the Global Community Zichao Luo,1 Melgious Jin Yan Ang,1,2 Siew Yin Chan,3 Zhigao Yi,1 Yi Yiing Goh,1,2 Shuangqian Yan,1 Jun Tao,4 Kai Liu,5 Xiaosong Li,6 Hongjie Zhang ,5,7 Wei Huang ,3,8 and Xiaogang Liu 1,9,10 1Department of Chemistry, National University of Singapore, Singapore 117543, Singapore 2NUS Graduate School for Integrative Sciences and Engineering, Singapore 117456, Singapore 3Frontiers Science Center for Flexible Electronics & Shaanxi Institute of Flexible Electronics, Northwestern Polytechnical University, Xi’an 710072, China 4Sports Medical Centre, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, China 5State Key Laboratory of Rare Earth Resource Utilization, Chang Chun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China 6Department of Oncology, The Fourth Medical Center of Chinese People’s Liberation Army General Hospital, Beijing 100048, China 7Department of Chemistry, Tsinghua University, Beijing 100084, China 8Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, Nanjing 211816, China 9The N.1 Institute for Health, National University of Singapore, Singapore 10Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350807, China Correspondence should be addressed to Hongjie Zhang; [email protected], Wei Huang; [email protected], and Xiaogang Liu; [email protected] Received 19 April 2020; Accepted 20 April 2020; Published 16 June 2020 Copyright © 2020 Zichao Luo et al. -
Zoonotic Viruses Discovered and Isolated in Malaysia: Do They Pose Potential Risks of Zoonosis? Kenny Gah Leong Voon
Running title: BIODIVERSITY OF ZOONOTIC VIRUSES IN MALAYSIA IeJSME 2021 15 (2): 1-4 Editorial Zoonotic viruses discovered and isolated in Malaysia: Do they pose potential risks of zoonosis? Kenny Gah Leong Voon Keywords: zoonosis, viral infection, Malaysia, viral which are believed to be the reservoir of most viral zoonotic infection diseases, resulting in high spill over events to the human population. In order to focus and prioritise its efforts under its This paper aims to recapitulate the list of viruses that R&D Blueprint, the World Health Organization in were discovered and isolated in Malaysia and outline the 2018 has developed a list of diseases and pathogens potential threat of zoonosis among these viruses. These that have been prioritised for R&D in public health viruses are divided into two categories: 1) arboviruses, emergency contexts. Disease X was included in this list and 2) non-arboviruses to iterate the transmission route to represent a hypothetical, unknown disease that could of these viruses. cause a future epidemic.1 Besides the pathogen that causes Disease X, several viruses such as Ebola virus, Arboviruses Nipah virus, Influenza virus, Severe Acute Respiratory Many arboviruses are zoonotic, infecting a wide Syndrome coronavirus (SARS-CoV), Middle East variety of arthropods, other animals including birds in Respiratory Syndrome coronavirus (MERS- CoV) and their sylvatic habitats and humans as incidental hosts. others are being listed as potential candidates that may Over many years, arboviruses have evolved balanced be associated with pandemic outbreaks in the future. relationships with these sylvatic hosts. Thus, morbidity Therefore, viral zoonosis that may be caused by one of and mortality are rarely seen in these sylvatic animals these pathogens including Pathogen X in the future, 2 when they are infected by arboviruses. -
Diversity and Evolution of Viral Pathogen Community in Cave Nectar Bats (Eonycteris Spelaea)
viruses Article Diversity and Evolution of Viral Pathogen Community in Cave Nectar Bats (Eonycteris spelaea) Ian H Mendenhall 1,* , Dolyce Low Hong Wen 1,2, Jayanthi Jayakumar 1, Vithiagaran Gunalan 3, Linfa Wang 1 , Sebastian Mauer-Stroh 3,4 , Yvonne C.F. Su 1 and Gavin J.D. Smith 1,5,6 1 Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; [email protected] (D.L.H.W.); [email protected] (J.J.); [email protected] (L.W.); [email protected] (Y.C.F.S.) [email protected] (G.J.D.S.) 2 NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 119077, Singapore 3 Bioinformatics Institute, Agency for Science, Technology and Research, Singapore 138671, Singapore; [email protected] (V.G.); [email protected] (S.M.-S.) 4 Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore 5 SingHealth Duke-NUS Global Health Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore 168753, Singapore 6 Duke Global Health Institute, Duke University, Durham, NC 27710, USA * Correspondence: [email protected] Received: 30 January 2019; Accepted: 7 March 2019; Published: 12 March 2019 Abstract: Bats are unique mammals, exhibit distinctive life history traits and have unique immunological approaches to suppression of viral diseases upon infection. High-throughput next-generation sequencing has been used in characterizing the virome of different bat species. The cave nectar bat, Eonycteris spelaea, has a broad geographical range across Southeast Asia, India and southern China, however, little is known about their involvement in virus transmission. -
Optimizing Noninvasive Sampling of a Zoonotic Bat Virus
Received: 2 November 2020 | Revised: 14 May 2021 | Accepted: 17 May 2021 DOI: 10.1002/ece3.7830 ORIGINAL RESEARCH Optimizing noninvasive sampling of a zoonotic bat virus John R. Giles1,2 | Alison J. Peel2 | Konstans Wells3 | Raina K. Plowright4 | Hamish McCallum2 | Olivier Restif5 1Department of Epidemiology, Johns Hopkins University Bloomberg School of Abstract Public Health, Baltimore, MD, USA Outbreaks of infectious viruses resulting from spillover events from bats have 2 Environmental Futures Research Institute, brought much attention to bat- borne zoonoses, which has motivated increased Griffith University, Brisbane, Qld, Australia 3Department of Biosciences, Swansea ecological and epidemiological studies on bat populations. Field sampling methods University, Swansea, UK often collect pooled samples of bat excreta from plastic sheets placed under- roosts. 4 Department of Microbiology and However, positive bias is introduced because multiple individuals may contribute to Immunology, Montana State University, Bozeman, MT, USA pooled samples, making studies of viral dynamics difficult. Here, we explore the gen- 5Disease Dynamics Unit, Department eral issue of bias in spatial sample pooling using Hendra virus in Australian bats as of Veterinary Medicine, University of a case study. We assessed the accuracy of different under- roost sampling designs Cambridge, Cambridge, UK using generalized additive models and field data from individually captured bats and Correspondence pooled urine samples. We then used theoretical simulation models of bat density John R. Giles, Department of Epidemiology, Johns Hopkins University Bloomberg School and under- roost sampling to understand the mechanistic drivers of bias. The most of Public Health, Baltimore, MD 21205, commonly used sampling design estimated viral prevalence 3.2 times higher than USA. -
Écologie Et Évolution De Coronavirus Dans Des Populations De Chauves-Souris Des Îles De L’Ouest De L’Océan Indien
Université de La Réunion THÈSE Pour l’obtention du grade de DOCTEUR D’UNIVERSITÉ Doctorat Sciences du vivant Spécialité : Écologie, santé, environnement École doctorale (542) : Sciences Technologiques Santé Écologie et évolution de coronavirus dans des populations de chauves-souris des îles de l’ouest de l’Océan Indien Présentée et soutenue publiquement par Léa Joffrin Le 28 novembre 2019, devant le jury composé de : Dr. Alexandre CARON Chercheur,CIRAD, Montpellier Rapporteur Dr. Nathalie CHARBONNEL Directrice de recherche, INRA, Montpellier Rapporteur Dr. Pascale BESSE Professeur, Université de La Réunion Examinateur Dr. Catherine CETRE-SOSSAH Chercheuse, CIRAD, La Réunion Examinateur Directeur de la conservation, Mauritian Examinateur Dr. Vikash TATAYAH Wildlife Foundation, Ile Maurice Dr. Patrick MAVINGUI Directeur de recherche, CNRS, La Réunion Directeur de thèse Dr. Camille LEBARBENCHON Maitre de conférences, Université de La Co-directeur de thèse Réunion Laboratoire de recherche : UMR PIMIT Unité Mixte de Recherche, Processus Infectieux en Milieu Insulaire Tropical INSERM U1187, CNRS 9192, IRD 249, Université de La Réunion Cette thèse a reçu le soutien financier de la Région Réunion et de l’Union Européenne -Fonds Européen de Développement Régional (FEDER) dans le cadre du Programme Opérationnel de Coopération Territoriale 2014-2020. Remerciements Je souhaite remercier les membres du jury pour avoir accepté d'évaluer mon travail. Merci au Dr. Nathalie Charbonnel et au Dr. Alexandre Caron d'avoir accepté d'être rapporteurs de ma thèse malgré leurs emplois du temps chargés. Merci au Dr. Pascale Besse d'avoir accepté d'être examinatrice et présidente de ce jury. Je remercie également le Dr. Catherine Cetre-Sossah et le Dr. -
Investigating the Role of Bats in Emerging Zoonoses
12 ISSN 1810-1119 FAO ANIMAL PRODUCTION AND HEALTH manual INVESTIGATING THE ROLE OF BATS IN EMERGING ZOONOSES Balancing ecology, conservation and public health interest Cover photographs: Left: © Jon Epstein. EcoHealth Alliance Center: © Jon Epstein. EcoHealth Alliance Right: © Samuel Castro. Bureau of Animal Industry Philippines 12 FAO ANIMAL PRODUCTION AND HEALTH manual INVESTIGATING THE ROLE OF BATS IN EMERGING ZOONOSES Balancing ecology, conservation and public health interest Edited by Scott H. Newman, Hume Field, Jon Epstein and Carol de Jong FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2011 Recommended Citation Food and Agriculture Organisation of the United Nations. 2011. Investigating the role of bats in emerging zoonoses: Balancing ecology, conservation and public health interests. Edited by S.H. Newman, H.E. Field, C.E. de Jong and J.H. Epstein. FAO Animal Production and Health Manual No. 12. Rome. The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views of FAO. -
Impact of Emerging Infectious Diseases on Global Health and Economies
International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438 The Future of Humanity and Microbes: Impact of Emerging Infectious Diseases on Global Health and Economies Tabish SA1, Nabil Syed2 1Professor, FRCP, FACP, FAMS, FRCPE, MHA (AIIMS), Postdoctoral Fellowship, University of Bristol (England), Doctorate in Educational Leadership (USA); Sher-i-Kashmir Institute of Medical Sciences, Srinagar 2MA, Kings College, London Abstract: Infectious diseases have affected humans since the first recorded history of man. Infectious diseases cause increased morbidity and a loss of work productivity as a result of compromised health and disability, accounting for approximately 30% of all disability-adjusted life years globally. The world has experienced an increased incidence and transboundary spread of emerging infectious diseases due to population growth, urbanization and globalization over the past four decades. Most of these newly emerging and re-emerging pathogens are viruses, although fewer than 200 of the approximately 1400 pathogen species recognized to infect humans are viruses. On average, however, more than two new species of viruses infecting humans are reported worldwide every year most of which are likely to be RNA viruses. Establishing laboratory and epidemiological capacity at the country and regional levels is critical to minimize the impact of future emerging infectious disease epidemics. Improved surveillance and monitoring of the influenza outbreak will significantly enhance the options of how best we can manage outreach to both treat as well as prevent spread of the virus. To develop and establish an effective national public health capacity to support infectious disease surveillance, outbreak investigation and early response, a good understanding of the concepts of emerging infectious diseases and an integrated public health surveillance system in accordance with the nature and type of emerging pathogens, especially novel ones is essential. -
The Prevalence of Nelson Bay Virus in Humans and Bats and Its Significance Within the Rf Amework of Conservation Medicine
Georgia State University ScholarWorks @ Georgia State University Public Health Theses School of Public Health 7-23-2007 The Prevalence of Nelson Bay Virus in Humans and Bats and its Significance within the rF amework of Conservation Medicine Jennifer Betts Oliver Follow this and additional works at: https://scholarworks.gsu.edu/iph_theses Part of the Public Health Commons Recommended Citation Oliver, Jennifer Betts, "The Prevalence of Nelson Bay Virus in Humans and Bats and its Significance within the Framework of Conservation Medicine." Thesis, Georgia State University, 2007. https://scholarworks.gsu.edu/iph_theses/7 This Thesis is brought to you for free and open access by the School of Public Health at ScholarWorks @ Georgia State University. It has been accepted for inclusion in Public Health Theses by an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact [email protected]. ABSTRACT JENNIFER B. OLIVER The Prevalence of Nelson Bay Virus in Humans and Bats and Its Significance within the Framework of Conservation Medicine (Under the direction of KAREN GIESEKER, FACULTY MEMBER) Public health professionals strive to understand how viruses are distributed in the environment, the factors that facilitate viral transmission, and the diversity of viral agents capable of infecting humans to characterize disease burdens and design effective disease intervention strategies. The public health discipline of conservation medicine supports this endeavor by encouraging researchers to identify previously unknown etiologic agents in wildlife and analyze the ecologic of basis of disease. Within this framework, this research reports the first examination of the prevalence in Southeast Asia of the orthoreovirus Nelson Bay virus in humans and in the Pteropus bat reservoir of the virus. -
INFECTIOUS DISEASES of ETHIOPIA Infectious Diseases of Ethiopia - 2011 Edition
INFECTIOUS DISEASES OF ETHIOPIA Infectious Diseases of Ethiopia - 2011 edition Infectious Diseases of Ethiopia - 2011 edition Stephen Berger, MD Copyright © 2011 by GIDEON Informatics, Inc. All rights reserved. Published by GIDEON Informatics, Inc, Los Angeles, California, USA. www.gideononline.com Cover design by GIDEON Informatics, Inc No part of this book may be reproduced or transmitted in any form or by any means without written permission from the publisher. Contact GIDEON Informatics at [email protected]. ISBN-13: 978-1-61755-068-3 ISBN-10: 1-61755-068-X Visit http://www.gideononline.com/ebooks/ for the up to date list of GIDEON ebooks. DISCLAIMER: Publisher assumes no liability to patients with respect to the actions of physicians, health care facilities and other users, and is not responsible for any injury, death or damage resulting from the use, misuse or interpretation of information obtained through this book. Therapeutic options listed are limited to published studies and reviews. Therapy should not be undertaken without a thorough assessment of the indications, contraindications and side effects of any prospective drug or intervention. Furthermore, the data for the book are largely derived from incidence and prevalence statistics whose accuracy will vary widely for individual diseases and countries. Changes in endemicity, incidence, and drugs of choice may occur. The list of drugs, infectious diseases and even country names will vary with time. Scope of Content: Disease designations may reflect a specific pathogen (ie, Adenovirus infection), generic pathology (Pneumonia – bacterial) or etiologic grouping(Coltiviruses – Old world). Such classification reflects the clinical approach to disease allocation in the Infectious Diseases Module of the GIDEON web application. -
Isolation of a Novel Fusogenic Orthoreovirus from Eucampsipoda Africana Bat Flies in South Africa
viruses Article Isolation of a Novel Fusogenic Orthoreovirus from Eucampsipoda africana Bat Flies in South Africa Petrus Jansen van Vuren 1,2, Michael Wiley 3, Gustavo Palacios 3, Nadia Storm 1,2, Stewart McCulloch 2, Wanda Markotter 2, Monica Birkhead 1, Alan Kemp 1 and Janusz T. Paweska 1,2,4,* 1 Centre for Emerging and Zoonotic Diseases, National Institute for Communicable Diseases, National Health Laboratory Service, Sandringham 2131, South Africa; [email protected] (P.J.v.V.); [email protected] (N.S.); [email protected] (M.B.); [email protected] (A.K.) 2 Department of Microbiology and Plant Pathology, Faculty of Natural and Agricultural Science, University of Pretoria, Pretoria 0028, South Africa; [email protected] (S.M.); [email protected] (W.K.) 3 Center for Genomic Science, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; [email protected] (M.W.); [email protected] (G.P.) 4 Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa * Correspondence: [email protected]; Tel.: +27-11-3866382 Academic Editor: Andrew Mehle Received: 27 November 2015; Accepted: 23 February 2016; Published: 29 February 2016 Abstract: We report on the isolation of a novel fusogenic orthoreovirus from bat flies (Eucampsipoda africana) associated with Egyptian fruit bats (Rousettus aegyptiacus) collected in South Africa. Complete sequences of the ten dsRNA genome segments of the virus, tentatively named Mahlapitsi virus (MAHLV), were determined. Phylogenetic analysis places this virus into a distinct clade with Baboon orthoreovirus, Bush viper reovirus and the bat-associated Broome virus.