Jul/Aug 2014
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
CERN Courier–Digital Edition
CERNMarch/April 2021 cerncourier.com COURIERReporting on international high-energy physics WELCOME CERN Courier – digital edition Welcome to the digital edition of the March/April 2021 issue of CERN Courier. Hadron colliders have contributed to a golden era of discovery in high-energy physics, hosting experiments that have enabled physicists to unearth the cornerstones of the Standard Model. This success story began 50 years ago with CERN’s Intersecting Storage Rings (featured on the cover of this issue) and culminated in the Large Hadron Collider (p38) – which has spawned thousands of papers in its first 10 years of operations alone (p47). It also bodes well for a potential future circular collider at CERN operating at a centre-of-mass energy of at least 100 TeV, a feasibility study for which is now in full swing. Even hadron colliders have their limits, however. To explore possible new physics at the highest energy scales, physicists are mounting a series of experiments to search for very weakly interacting “slim” particles that arise from extensions in the Standard Model (p25). Also celebrating a golden anniversary this year is the Institute for Nuclear Research in Moscow (p33), while, elsewhere in this issue: quantum sensors HADRON COLLIDERS target gravitational waves (p10); X-rays go behind the scenes of supernova 50 years of discovery 1987A (p12); a high-performance computing collaboration forms to handle the big-physics data onslaught (p22); Steven Weinberg talks about his latest work (p51); and much more. To sign up to the new-issue alert, please visit: http://comms.iop.org/k/iop/cerncourier To subscribe to the magazine, please visit: https://cerncourier.com/p/about-cern-courier EDITOR: MATTHEW CHALMERS, CERN DIGITAL EDITION CREATED BY IOP PUBLISHING ATLAS spots rare Higgs decay Weinberg on effective field theory Hunting for WISPs CCMarApr21_Cover_v1.indd 1 12/02/2021 09:24 CERNCOURIER www. -
CERN Courier – Digital Edition Welcome to the Digital Edition of the January/February 2013 Issue of CERN Courier – the First Digital Edition of This Magazine
I NTERNATIONAL J OURNAL OF H IGH -E NERGY P HYSICS CERNCOURIER WELCOME V OLUME 5 3 N UMBER 1 J ANUARY /F EBRUARY 2 0 1 3 CERN Courier – digital edition Welcome to the digital edition of the January/February 2013 issue of CERN Courier – the first digital edition of this magazine. CERN Courier dates back to August 1959, when the first issue appeared, consisting of eight black-and-white pages. Since then it has seen many changes in design and layout, leading to the current full-colour editions of more than 50 pages on average. It went on the web for the High luminosity: first time in October 1998, when IOP Publishing took over the production work. Now, we have taken another step forward with this digital edition, which provides yet another means to access the content beyond the web the heat is on and print editions, which continue as before. Back in 1959, the first issue reported on progress towards the start of CERN’s first proton synchrotron. This current issue includes a report from the physics frontier as seen by the ATLAS experiment at the laboratory’s current flagship, the LHC, as well as a look at work that is under way to get the most from this remarkable machine in future. Particle physics has changed a great deal since 1959 and this is reflected in the article on the emergence of QCD, the theory of the strong interaction, in the early 1970s. To sign up to the new issue alert, please visit: http://cerncourier.com/cws/sign-up To subscribe to the print edition, please visit: http://cerncourier.com/cws/how-to-subscribe LHC PHYSICS FERMILAB FRONTIER Using monojets Oddone to retire to point the way after eight PHYSICS EDITOR: CHRISTINE SUTTON, CERN to new physics fruitful years Opening up DIGITAL EDITION CREATED BY JESSE KARJALAINEN/IOP PUBLISHING, UK p7 p35 interdisciplinarity p33 CERNCOURIER www. -
Switching Neutrinos
Research in Progress Physics Fl avor- -Switching Neutrinos rof. Ewa Rondio from the National P Center for Nuclear Research (NCBJ) explains the nature of neutrinos, the measurements taken by the Super-Kamiokande detector, and the involvement of Polish scientists in the project. MIJAKOWSKI PIOTR ACADEMIA: What are neutrinos? What is the difference between the neutrinos that PROF. EWA RONDIO: Literally translated, the word come from space and the neutrinos created on Earth? “neutrino” means “little neutral one.” The name was Neutrinos arriving from space are almost as abundant first suggested when the existence of neutrinos was as photons in the cosmic background radiation, but proposed to patch up the law of conservation of en- their energies are so small that we’re unable to detect ergy. It had turned out that without postulating their them. We can’t see them, even though there are so existence we could not explain why the spectrum of many of them. We can only observe higher-energy energy in beta decay is continuous, whereas two-body neutrinos, for example those arriving from the Sun. decay should give a single constant value. Back then, At first glance, they do not differ in any way from that postulate was considered very risky, because it those made on Earth. However, they have somewhat was believed that such particles would be impossible different energies. Also, those arriving from space are to observe. Experimental physicists have nowadays predominantly neutrinos, whereas those we produce managed that, although it took them quite a long time. on Earth produce are chiefly antineutrinos. -
REPORTS on RESEARCH PL9800669 6.1 the NA48
114 Annual Report 1996 I REPORTS ON RESEARCH PL9800669 6.1 The NA48 experiment on direct CP violation by A.Chlopik, Z.Guzik, J.Nassalski, E.Rondio, M.Szleper and W.WisIicki The NA48 experiment [1] was built and tested on the kaon beam at CERN. It aims to measure the effect of direct violation of the combined CP transformation in two-pion decays of neutral kaons with precision of 0.1 permille. To perform such a measurement beams of the long-lived and short-lived Ks are produced which decay in the common region of phase space. Decays of both kaons into charged and neutral pions are measured simultaneously. The Warsaw group contributed to the electronics of the data acquisition system, to the offline software and took part in the data taking during test runs in June and September 1996. The hardware contribution of the group consisted of design, prototype manufacturing, testing and production supervision of the data acquisition blocks: RIO Fiber Optics Links, Cluster Interconnectors and Clock Fanouts. These elements are described in a separate note of this report. We worked on the following software related issues: (i) reconstruction of data and Monte Carlo in the magnetic spectrometer consisting of four drift chambers, the bending magnet and the trigger hodoscope. Energy and momentum resolution and background sources were carefully studied, (ii) decoding and undecoding of the liquid kryptonium calorimeter data. This part of the equipment is crucial for the measurement of neutral decays, (iii) correlated Monte Carlo to use the same events to simulate KL and K^ decays and thus speed up simulation considerably. -
Jul/Aug 2013
I NTERNATIONAL J OURNAL OF H IGH -E NERGY P HYSICS CERNCOURIER WELCOME V OLUME 5 3 N UMBER 6 J ULY /A UGUST 2 0 1 3 CERN Courier – digital edition Welcome to the digital edition of the July/August 2013 issue of CERN Courier. This “double issue” provides plenty to read during what is for many people the holiday season. The feature articles illustrate well the breadth of modern IceCube brings particle physics – from the Standard Model, which is still being tested in the analysis of data from Fermilab’s Tevatron, to the tantalizing hints of news from the deep extraterrestrial neutrinos from the IceCube Observatory at the South Pole. A connection of a different kind between space and particle physics emerges in the interview with the astronaut who started his postgraduate life at CERN, while connections between particle physics and everyday life come into focus in the application of particle detectors to the diagnosis of breast cancer. And if this is not enough, take a look at Summer Bookshelf, with its selection of suggestions for more relaxed reading. To sign up to the new issue alert, please visit: http://cerncourier.com/cws/sign-up. To subscribe to the magazine, the e-mail new-issue alert, please visit: http://cerncourier.com/cws/how-to-subscribe. ISOLDE OUTREACH TEVATRON From new magic LHC tourist trail to the rarest of gets off to a LEGACY EDITOR: CHRISTINE SUTTON, CERN elements great start Results continue DIGITAL EDITION CREATED BY JESSE KARJALAINEN/IOP PUBLISHING, UK p6 p43 to excite p17 CERNCOURIER www. -
The Standard Model
The Standard Model by Christine Sutton In May 1983, the central detector of the UA1 experiment at CERN's proton-antiproton collider showed the tell-tale signature of the long-awaited Z particle as it decays into an electron-positron pair (arrowed). As the electrically neutral carrier of the weak force, the Z° plays a vital role in the Standard Model. The initial evidence from Fermilab (see previous article) for the long awaited sixth ('top') quark puts another rivet in the already firm structure of today's Standard Model of physics. Analysis of the Fermilab CDF data gives a top mass of 174 GeV with an error of ten per cent either way. This falls within the mass band predicted by the sum total of world Standard Model data and underlines our understanding of physics in terms of six quarks and six leptons. Model encompasses all the elemen their interactions emerge. Instead it is In this specially commissioned tary particles we now know and three an amalgam of the best theories we overview, physics writer Christine of the fundamental forces. The basic have, which we can bolt together Sutton explains the Standard building blocks are two sets or because they have enough in com Model. "families" or "matter particles" - the mon to suggest an underlying unity, quarks and the leptons (see page 5). although due to our ignorance the These particles interact with each joins still clearly show. t is nearly 100 years since the other through the exchange of force The structure as a whole rests on a I discovery of the first subatomic carriers or "messengers". -
Richard Lieu
Richard Lieu E-mail address: [email protected] Academic Qualifications: Oct., 1975 - June, 1978: BSc (1st class honors), Imperial College London, Major in Physics. Oct., 1978 - June, 1981: DIC, PhD, Imperial College London. Thesis title: Radiation Transport within the source of Hard Cosmic X-ray Photons. Career Record 21 June, 2008 - present: 10th Distinguished Professor and Chair of the Department of Physics, University of Alabama in Huntsville. 14 Sept., 2013 - 21 Jan., 2015, Chair of the Department of Physics, Univer- sity of Alabama in Huntsville. 20 Aug., 2004 - 20 June, 2008: Professor at the Department of Physics, University of Alabama, Huntsville. 16 Aug., 1999 - present: Associate Professor at the Department of Physics, University of Alabama, Huntsville. 16 Aug., 1995 - 15 Aug., 1999: Assistant Professor at the Department of Physics, University of Alabama, Huntsville. 1 1 Nov., 1991 - 15 Aug., 1995: Assistant Research Astronomer at the Center for EUV Astrophysics, University of California, Berkeley. 1 Aug., 1985 - 31 Oct., 1991: Research Assistant at the Astrophysics Group, Blackett Laboratory, Imperial College, London, England. 1 Aug., 1981 - 30 June, 1985: Postdoctoral Research Fellow and Sessional Instructor at the Dept. of Physics and Astronomy, and at the Dept. of Electrical Engineering, University of Calgary, Alberta, Canada. Awards and Prizes UAH Foundation Researcher of the year award, April 2007. Sigma Xi Huntsville chapter `researcher of the year' award, with Lloyd W. Hillman, April 2005. Three times `Discovery of the year award', 1995, 1994, and 1993, Center for EUV Astrophysics, UC Berkeley. `Outstanding software development of the year award 1993', with James W. Lewis, Center for EUV Astrophysics, UC Berkeley. -
Prizes, Fellowships and Scholarships
ESEARCH OPPORTUNITIES ALERT Issue 26: Volume 2 R SCHOLARSHIPS, PRIZES AND FELLOWSHIPS (Quarter: July - September, 2016) A Compilation by the Scholarships & Prizes RESEARCH SERVICES UNIT Early/ Mid Career Fellowships OFFICE OF RESEARCH, INNOVATION AND DEVELOPMENT (ORID), UNIVERSITY OF GHANA Pre/ Post-Doctoral Fellowships Thesis/ Dissertation Funding JUNE 2016 Issue 26: Volume 2: Scholarships, Prizes and Fellowships (July – September, 2016) TABLE OF CONTENT OPPORTUNITIES FOR JULY 2016 DAVID ADLER LECTURESHIP AWARD ............................................................................................................ 15 HAYMAN PRIZE FOR PUBLISHED WORK PERTAINING TO TRAUMATISED CHILDREN AND ADULTS ..................................................................................................................................................................... 15 HANS A BETHE PRIZE ........................................................................................................................................... 16 TOM W BONNER PRIZE IN NUCLEAR PHYSICS ............................................................................................ 17 HERBERT P BROIDA PRIZE .................................................................................................................................. 18 OLIVER E BUCKLEY PRIZE IN CONDENSED MATTER PHYSICS ............................................................... 18 DANNIE HEINEMAN PRIZE FOR MATHEMATICAL PHYSICS.................................................................. -
2018 APS Prize and Award Recipients
APS Announces 2018 Prize and Award Recipients The APS would like to congratulate the recipients of these APS prizes and awards. They will be presented during APS award ceremonies throughout the year. Both March and April meeting award ceremonies are open to all APS members and their guests. At the March Meeting, the APS Prizes and Awards Ceremony will be held Monday, March 5, 5:45 - 6:45 p.m. at the Los Angeles Convention Center (LACC) in Los Angeles, CA. At the April Meeting, the APS Prizes and Awards Ceremony will be held Sunday, April 15, 5:30 - 6:30 p.m. at the Greater Columbus Convention Center in Columbus, OH. In addition to the award ceremonies, most prize and award recipients will give invited talks during the meeting. Some recipients of prizes, awards are recognized at APS unit meetings. For the schedule of APS meetings, please visit http://www.aps.org/meetings/calendar.cfm. Nominations are open for most 2019 prizes and awards. We encourage members to nominate their highly-qualified peers, and to consider broadening the diversity and depth of the nomination pool from which honorees are selected. For nomination submission instructions, please visit the APS web site (http://www.aps.org/programs/honors/index.cfm). Prizes 2018 APS MEDAL FOR EXCELLENCE IN PHYSICS 2018 PRIZE FOR A FACULTY MEMBER FOR RESEARCH IN AN UNDERGRADUATE INSTITUTION Eugene N. Parker University of Chicago Warren F. Rogers In recognition of many fundamental contributions to space physics, Indiana Wesleyan University plasma physics, solar physics and astrophysics for over 60 years. -
Gpus for the Realtime Low-Level Trigger of the NA62 Experiment at CERN
GPUs for the realtime low-level trigger of the NA62 experiment at CERN R. Ammendola4, M. Bauce3,7, A. Biagioni3, S. Chiozzi1,5, A. Cotta Ramusino1,5, R. Fantechi2, 1,5, 1,5 2,6 2,8 3 3,7 M. Fiorini ∗, A. Gianoli , E. Graverini , G. Lamanna , A. Lonardo , A. Messina , I. Neri1,5, F. Pantaleo2,6, P. S. Paolucci3, R. Piandani2,6, L. Pontisso2, F. Simula3, M. Sozzi2,6, P. Vicini3 1INFN Sezione di Ferrara, Via Saragat 1, 44122 Ferrara, Italy 2INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa, Italy 3INFN Sezione di Roma“La Sapienza”, P.le A. Moro 2, 00185 Roma, Italy 4INFN Sezione di Roma “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Roma, Italy 5University of Ferrara, Via Saragat 1, 44122 Ferrara, Italy 6University of Pisa, Largo B. Pontecorvo 3, 56127 Pisa, Italy 7University of Rome “La Sapienza”, P.le A.Moro 2, 00185 Roma, Italy 8INFN Sezione di Frascati, Via E.Fermi 40, 00044 Frascati (Roma), Italy ∗ Corresponding author. E-mail: fi[email protected] DOI: http://dx.doi.org/10.3204/DESY-PROC-2014-05/15 A pilot project for the use of GPUs (Graphics processing units) in online triggering ap- plications for high energy physics experiments (HEP) is presented. GPUs offer a highly parallel architecture and the fact that most of the chip resources are devoted to computa- tion. Moreover, they allow to achieve a large computing power using a limited amount of space and power. The application of online parallel computing on GPUs is shown for the synchronous low level trigger of NA62 experiment at CERN. -
Annual Report 2004
ANNUAL REPORT 2004 HELSINKI UNIVERSITY OF TECHNOLOGY Low Temperature Laboratory Brain Research Unit and Low Temperature Physics Research http://boojum.hut.fi - 2 - PREFACE...............................................................................................................5 SCIENTIFIC ADVISORY BOARD .......................................................................7 PERSONNEL .........................................................................................................7 SENIOR RESEARCHERS..................................................................................7 ADMINISTRATION AND TECHNICAL PERSONNEL...................................8 GRADUATE STUDENTS (SUPERVISOR).......................................................8 UNDERGRADUATE STUDENTS.....................................................................9 VISITORS FOR EU PROJECTS ......................................................................10 OTHER VISITORS ..........................................................................................11 GROUP VISITS................................................................................................13 OLLI V. LOUNASMAA MEMORIAL PRIZE 2004 ............................................15 INTERNATIONAL COLLABORATIONS ..........................................................16 CERN COLLABORATION (COMPASS) ........................................................16 COSLAB (COSMOLOGY IN THE LABORATORY)......................................16 ULTI III - ULTRA LOW TEMPERATURE INSTALLATION -
6.2 Transition Radiation
Contents I General introduction 9 1Preamble 11 2 Relevant publications 15 3 A first look at the formation length 21 4 Formation length 23 4.1Classicalformationlength..................... 24 4.1.1 A reduced wavelength distance from the electron to the photon ........................... 25 4.1.2 Ignorance of the exact location of emission . ....... 25 4.1.3 ‘Semi-bare’ electron . ................... 26 4.1.4 Field line picture of radiation . ............... 26 4.2Quantumformationlength..................... 28 II Interactions in amorphous targets 31 5 Bremsstrahlung 33 5.1Incoherentbremsstrahlung..................... 33 5.2Genericexperimentalsetup..................... 35 5.2.1 Detectors employed . ................... 35 5.3Expandedexperimentalsetup.................... 39 6 Landau-Pomeranchuk-Migdal (LPM) effect 47 6.1 Formation length and LPM effect.................. 48 6.2 Transition radiation . ....................... 52 6.3 Dielectric suppression - the Ter-Mikaelian effect.......... 54 6.4CERNLPMExperiment...................... 55 6.5Resultsanddiscussion....................... 55 3 4 CONTENTS 6.5.1 Determination of ELPM ................... 56 6.5.2 Suppression and possible compensation . ........ 59 7 Very thin targets 61 7.1Theory................................ 62 7.1.1 Multiple scattering dominated transition radiation . .... 62 7.2MSDTRExperiment........................ 63 7.3Results................................ 64 8 Ternovskii-Shul’ga-Fomin (TSF) effect 67 8.1Theory................................ 67 8.1.1 Logarithmic thickness dependence