Description of Micromus Subanticus (Neuroptera: Hemerobiidae)

Total Page:16

File Type:pdf, Size:1020Kb

Description of Micromus Subanticus (Neuroptera: Hemerobiidae) Larvae of Micromus: Generic Characteristics and a Description of Micromus subanticus (Neuroptera: Hemerobiidae) ALAN H. KRAKAUER AND CATHERINE A. TAUBER Department of Entomology, Comstock Hall, Cornell University, Ithaca NY 14853-0901 Ann. Entomol. Soc. Am. 89(2): 203-211 (1996) ABSTRACT Micromus and Hernerobius are the most common and agriculturally important genera of hemerobiids in North America. Twelve morphological traits (8 cephalic, 4 thoracic) differentiate the larvae of these genera. Additional structural, chaetotaxic, and color traits distinguish M. subanticus (Walker) and M. posticus (Walker) larvae. The larval stages of M. subanticus are described. KEY WORDS Hemerobiidae, Micromus subanticus, larvae THE BROWN LACEWING family Hemerobiidae is a Our article focuses on the comparative mor- cosmopolitan neuropteran group of ~575species; phology of North American hemerobiid larvae, worldwide, it currently contains 10 subfamilies and with emphasis on the genus Micromus. It has the 27 genera (Monserrat 1993; Oswald 1993a, b, following 3 goals: (1)identification of generic-level 1994). In North America the hemerobiid fauna larval characters, (2) delineation of species-specific consists of 6 genera and ~60species (Kevan and characters for Micromus larvae, and (3) description Klimaszewski 1987, Klimaszewski and Kevan 1988, of the instars of M. subanticus. Oswald 1993a). Most s~eciesof hemerobiids are Ideally, for a phylogenetically based analysis, we predaceous ii both iAaginal and preimaginal would have contrasted Micromus larvae with those stages, and many are of considerable value as bi- of its sister-group (Megalomina, according to Os- ological control agents (Dunn 1954, New 1975a, wald 1993a); unfortunately larvae of this and other Miller and Cave 1987). genera in the subfamily Microminae are unknown. Systematic studies of the family have focused on Therefore, we emphasized Hemerobius in the the adults; there has been very little consideration comparison for several reasons. First, along with of hemerobiid larvae. Oswald's (1993a) treatment Micromus, Hemerobius is a large and common ge- of the higher phylogeny and worldwide taxonomy nus for which we had larval specimens. Second, larvae of the 2 genera share similar body plans, life of the family considered only adult characters. styles, and habitats. Third, the 2 genera frequently Keys to the adults of North American genera and occur syrnpatrically in agricultural situations, and species can be found in Carpenter (1940), Kevan biological control practitioners as well as other pest and Klimaszewski (1987), Klimaszewski and Kevan management personnel would benefit from relia- (1987a, b; 1988; 1992), and Oswald (1993a). Lar- ble means for identifying the larvae. vae of some North American species are described Worldwide, descriptions of various quality exist (for example, Smith 1923; Withycombe 1924; Kil- for the immatures of 7 species of Micromus, 3 of lington 1936, 1937; MacLeod 1960; Miller and which inhabit North America: M, angulatus (Ste- Cave 1987: Miller and Lambdin 1984). and a brief phens), M, posticus, and M. vaviegatus (F.).In ad- key exists for the larvae of some genera in Europe dition, preimaginal stages of 12 species of Heme- (Veenstra et al. 1990). These studies, together with robius have been described, including the several systematic work on the larvae of other Neuropter- species that occur in North America: H. humulinus an groups (e.g., Tauber 1969, Stange and Miller L., H. pacijicus Banks, H. simulans Walker, and H. 1990, Hoffman and Brushwein 1992), indicate that stigma Stephens. larval morphology may be very useful in the sys- tematic analysis of the family (Tauber and Adams 1990). Moreover, improvements to the systematics Materials and Methods of hemerobiid larvae would be very useful for in- Material Examined. We examined larvae of Mi- creasing the effiecient use of hemerobiids in bio- cromus subanticus, M. posticus, Hemerobius hu- logical control programs, especially during moni- mulinus, and H. conjunctus (Fitch). All specimens toring and evaluation. were F1 offspring of adults collected in Ithaca, 46/96/0203-0211$02.00/0 O 1996 Entomological Society of America 204 ANNALSOF THE ENTOMOLO(XCAL SOCIETYOF AMERICA Vol. 89, no. 2 Tompkins County, New York. We also examined palpi; the distal segment is the longest. Three-seg- larvae of M. subanticus that had been reared from mented antennae arise above and behind the man- adults collected in Chandler. Mari~osaL Countv. i, Ar- dibles. The scapes are small, approximately as long izona. Representative specimens are in the Cornell as wide, and the pedicelli and flagella are thin, an- University Insect Collection (Lot #1205). In com- nulated, and long (combined, usually longer than piling generic and species-specific traits, we con- the jaws). The eyes consist of 3 transparent, ovoid sidered previous descriptions of hemerobiid larvae stemmata raised over a variable number of pig- wherever possible. mented areas (New and Boros [I9831 report 4 Rearing. Field-collected adults were kept in stemmata in M, tasmaniae). glass vials under a photoperiod of 16:8 (L:D) h at The thorax and abdomen are of approximately 21 f- 1°C. They were provided green peach aphids, equal length. The prothorax consists of 2 subseg- Myzus persicae (Sultzer), as prey; cotton plugs in ments; the anterior one, the cervix, is unscleroti- the vials served as the substrate for oviposition. zed, whereas the posterior subsegment bears a pair Larvae were individually reared on a diet of green of I~rominent dorsal sclerites. The meso- and meta- peach aphids and, occasionally pea aphids, Acyr- thoraces each have very short anterior subseg- thosiphon pisum (Harris); they were examined dai- ments and a pair of small dorsal sclerites. A pair ly for molting and cocoon spinning. To increase the of large spiracles occurs laterally on the mesotho- humidity for the prepupae and pupae, we held the rax. (There is a singular reference to metathoracic cocoons in a plastic bag containing a moist paper spiracles in LM. tasrnuniae [New and Boros 19831.) towel. The cursorial larvae have well-developed, 3-seg- Specimen Preparation. Larvae were killed in a mented legs (with pulvilli arising apically on the solution of kerosene, ethanol, glacial acetic acid, tarsi of 1st instars). The abdomen consists of 10 and dioxane (KAAD solution; Stehr 1987), and segments; the 1st segment is the widest and short- stored in 95% ethanol. Samples of each instar were est; subsequent segments taper. Spiracles occur cleared in ~10%KOH solution for 2 d. Larger laterally on the 1st 8 abdominal segments, a dorsal instars were sectioned transversely through the sclerite on the 9th, and dorsal, ventral, and lateral thorax or abdomen to facilitate the removal of the sclerites on the 10th. Overall, the body is sparsely internal viscera. Subsequently, some larvae were covered with simple setae; and there are no pro- placed in clearing fluid (a mixture of lactic acid, tuberances, tubercules, or modified setae (with the liquid phenol, and glacial acetic acid) with 1 drop possible exception of spatulate abdominal setae on of Double stain for 3-6 h, then transferred to un- M. tasrnuniae [see New and Boros 19831). stained clearing solution for an additional 3 d. All larvae were taken through a series of alcohol so- Comparison of Micromus and Hemerobius lutions (70% [l min], 80% [2 min], and 95% EtOH [3 rnin]). Finally, specimens were transferred to a Hemerobius and ~Micromuslarvae share several mixture of glycerin and 95% EtOH, and, after sev- traits that distinguish them from the 6 other gen- eral minutes, mounted in glycerin on glass slides. era for which larvae have been described. Unlike Measurements. We measured the following the larvae of Psectra, Megalomus (including Bor- structures: total length of body (tip of mandibles iomyia), and Sympherobius, whose antennae are to tip of abdomen), width of head (at the level of relatively short, the antennae of Hemerobius and the eyes, including the eyes), length of head cap- Micromus project beyond the jaws and are longer sule (at the midline), length of mandibles (straight- than the width of the head capsule (Killington line distance from tip to medial margin of the 1936, 1937, 1946; MacLeod 1960; Veenstra et al. base), length of flagellum and pedicel, length of 1990). Also, unlike Megalomus, Psectra, Drepana- scape (medial), length of labial palp (base of men- cra, or Sympherobius, the head capsule is not re- tum to tip of terminal segment), length of distal cessed into the cervix (references above and New segment of labial palp (base to tip), width and [1975b]). Finally, with the possible exception of length of cervix, prothorax and mesothorax (me- Micromus tasmaniae (New and Boros 1983), the dial), length of prothoracic tibia (at the midline), terminal segment of the palps is elongate and fu- and length of prothoracic tarsus (excluding pulvil- siform in Microm~zusand Hemm~vbius,not swollen . \ as in Megalomus, Psectra, Drepanacra, and Sym- pherobius. \Vesmaelius larvae have jaws that are -1.5 times as long as the width of the head cap- General Morphological Characteristics of sule; in Micromus and Hemerobius the jaw length Hemerobiid Larvae is approximately equal to the head width (Killing- Hemerobiid larvae are fusiform and flattened ton 1936, 1937; Veenstra et al. 1990; however, see dorsoventrally (Smith 1923, Withycombe 1924, plate XI, figure 5, Killington 1936). Drepanepteryx Killington 1936, Tauber 1991). The head is prog- larvae are
Recommended publications
  • ACTA BIANCO 1 2014.Qxp
    ACTA ENTOMO LOGICA SL OVENICA LJUBLJANA, JUNIJ 2019 Vol. 27, øt. 1: 17 –29 Fauna oF the brown lacewings oF serbia (insecta: neuroptera: hemerobiidae) Jan Podlesnik 1, Predrag Jakšić 2, ana nahirnić 3, Franc Janžekovič 1, Tina klenovšek 1, vesna klokočovnik 1, dušan deveTak 1 1department of Biology, Faculty of natural sciences and Mathematics, University of Maribor, koroška cesta 160, 2000 Maribor, slovenia; e-mail: [email protected] 2čingrijina 14/25, Zvezdara, 11000 Beograd, serbia 3national Museum of natural history, Bulgarian academy of sciences, Tsar osvoboditel Blvd 1, 1000 sofia, Bulgaria abstract - The hemerobiid fauna of serbia was studied during two collecting trips in the years 2015 and 2016. Prior to the present study the hemerobiids in this Balkan country were insufficiently explored. according to literature data and collected ma - terial, twenty-three species are listed for the country, of which six are recorded for the first time for serbia. key words : hemerobiid fauna, lacewings, Balkan Peninsula izvleček - Favna rJavih MrežekrilCev rePUBlike srBiJe (inseCTa: neUroPTera: heMeroBiidae) Tekom dveh terenskih odprav v srbijo smo v letih 2015 in 2016 raziskovali favno rjavih mrežekrilcev. Pred aktualno raziskavo so bili hemerobiidi tega območja zelo slabo poznani. Po analizi literaturnih podatkov in nabranega materiala predstavljamo seznam 23 vrst za republiko srbijo, od katerih je šest novih najdb za to balkansko državo. klJUčne Besede : favna hemerobiidov, mrežekrilci, balkanski polotok introduction hemerobiidae is one of the largest families of the order neuroptera. it contains more than 550 known species of small to medium sized insects, distributed all around 17 Acta entomologica slovenica, 27 (1), 2019 the world (Monserrat 1990, oswald 1993, aspöck et al.
    [Show full text]
  • Journal of Agricultural Sciences Tarim Bilimleri Dergisi
    Ankara University Faculty of Agriculture JOURNAL OF AGRICULTURAL SCIENCES TARIM BILIMLERI DERGISI e-ISSN: 2148-9297 Ankara - TURKEY Year 2021 Volume 27 Issue 1 Journal cover design: Ismet KARAARSLAN Journal cover artwork: Dr. Sertan AVCI Product Information Publisher Ankara University, Faculty of Agriculture Owner (On Behalf of Faculty) Prof. Dr. Hasan Huseyin ATAR Editor-in-Chief Prof. Dr. Halit APAYDIN In Charge of Publication Unit Agricultural Engineer Asim GOKKAYA Journal Administrator Salih OZAYDIN Library Coordinator Dr. Can BESIMOGLU IT Coordinator Lecturer Murat KOSECAVUS Graphic Design Ismet KARAASLAN Date of Online Publication 18.01.2021 Frequency Published four times a year Type of Publication Double-blind peer-reviewed, widely distributed periodical Aims and Scope JAS publishes high quality original research articles that contain innovation or emerging technology in all fields of agricultural sciences for the development of agriculture. Indexed and Abstracted in Clarivate Science Citation Index Expanded (SCI-E) ELSEVIER-Scopus TUBITAK-ULAKBIM CAB International Management Address Journal of Agricultural Sciences Tarım Bilimleri Dergisi Ankara University Faculty of Agriculture Publication Department 06110 Diskapi/Ankara-TURKEY Telephone : +90 312 596 14 24 Fax : +90 312 317 67 24 E-mail: [email protected] http://jas.ankara.edu.tr/ Editor-in-Chief Halit APAYDIN Ankara University, Ankara, TURKEY Managing Editor Muhittin Onur AKCA Ankara University, Ankara, TURKEY Editorial Board Abdullah BEYAZ, Ankara University Ahmet ULUDAG,
    [Show full text]
  • A New Brachypterous Nusalala Species from Costa Rica, with Comments on the Evolution of Flightlessness in Brown Lacewings (Neuroptera: Hemerobiidae)
    Systematic Entomology (1996) 21, 343-352 A new brachypterous Nusalala species from Costa Rica, with comments on the evolution of flightlessness in brown lacewings (Neuroptera: Hemerobiidae) J 0 H N D . 0 S WA L D Department of Entomology, Texas A&M University, College Station, Texas, U.S.A. Abstract. A new flightless hemerobiid species, Nusalala brachyptera, collected at high elevation in Costa Rica, is described and illustrated, and a variety of data relevant to the evolution of flightlessness in the family Hemerobiidae are reviewed. Flightlessness due to brachyptery has evolved independently in at least five monophyletic [= holophyletic] lineages of the family Hemerobiidae (brown lacewings). Volant hemerobiids are primarily foliage foraging arboreal predators [presumed ancestral condition], while flightless species are predominantly associated with terricolous-type microhabitats (e.g. ground-litter, epiphytic mosses) [presumed derived condition]. These differences suggest a significant habitat shift for flightless hemerobiid species, and that the parallel evolution of flightlessness and brachyptery in hemerobiids are shared responses to the conditions of a terricolous existence. The restriction of most flightless hemerobiid species to insular andlor montanelalpine land areas may be related to the typically depauperate nature of the faunas of such areas. This faunal characteristic may facilitate ttansitions from arboreality to terricolousness by presenting ancestrally arboreal predators such as hemerobiids with novel ecological opportunities
    [Show full text]
  • First Record of Thaumastocoris Peregrinus in Portugal and of the Neotropical Predator Hemerobius Bolivari in Europe
    Bulletin of Insectology 66 (2): 251-256, 2013 ISSN 1721-8861 First record of Thaumastocoris peregrinus in Portugal and of the neotropical predator Hemerobius bolivari in Europe 1 2 3 4 1 André GARCIA , Elisabete FIGUEIREDO , Carlos VALENTE , Victor J. MONSERRAT , Manuela BRANCO 1Centro de Estudos Florestais (CEF), Instituto Superior de Agronomia, Universidade de Lisboa, Portugal 2Centro de Engenharia de Biossistemas (CEER), Instituto Superior de Agronomia, Universidade de Lisboa, Portugal 3RAIZ – Instituto de Investigação da Floresta e Papel, Aveiro, Portugal 4Departamento de Zoología y Antropología Física, Universidad Complutense de Madrid, Spain Abstract The Eucalyptus pest Thaumastocoris peregrinus Carpintero et Dellape, (Hemiptera Thaumastocoridae) was found in a Eucalyptus arboretum in Lisbon, Portugal, in April 2012. This is the first report for this species in Western Europe. Separate surveys were conducted to assess the geographical distribution, host plant susceptibility and natural enemies of T. peregrinus. To ascertain the geographical distribution of T. peregrinus surveys were conducted between May and June 2012 at 53 sites in central and southern Portugal. T. peregrinus was present in only three sites, which were all located in Lisbon and surrounding areas suggesting an in- troduction pathway through the harbors or the airport in this coastal city. Of the 30 Eucalyptus species present in Lisbon’s Euca- lyptus arboretum, 14 were confirmed as infested by T. peregrinus during the first survey in April 2012. In August 2012 the host range had increased to 19 Eucalyptus species, revealing an expansion phase. We report the first record of Hemerobius bolivari Banks (Neuroptera Hemerobiidae), a native of South America, preying on T.
    [Show full text]
  • Comparative Biology of Some Australian Hemerobiidae
    Progress in World's Neuropterologv. Gepp J, H. Aspiick & H. H6hel ed., 265pp., DM, Gnu Comparative Biology of some Australian Hemerobiidae JSy T. R NEW (%toria) Abstract Aspects of the field ecology of the two common Hemerobiidae in southern Australia (Micromus tas- maniae WALKER,Drepanacra binocula (NEWMAN)) are compared from data from three years samp- ling near Melbourne. M. tmmaniae occurs in a range of habitats, is polyphagous and is found throughout much of the year. D.binocula is more closely associated with acacias, feeds particularly on Acacia Psylli- dae and is strictly seasonal. The developmental biology and aspects of feeding activity of these 'relative generalist' and 'relative specialist' species are compared in the laboratory at a range of temperatures and on two prey species with the aim of assessing their potential for biocontrol of Psyllidae. Introduction About 20 species of brown lacewings, Hemerobiidae, are known from Australia. Most of these are uncommon and represented by few individuals in collections, and only two can be considered common in south eastern Australia. One of these, Micromus tasmaniae WAL- KER, represents a widely distributed genus and is abundant on a range of vegetation types. The other, Drepanacra binocula (NEWMAN), represents a monotypic genus from Australia and New Zealand and is more particularly associated with native shrubs and trees - in Austra- lia, perhaps especially with acacias, These species are the only Hemerobiidae found on Acacia during a three year survey of arboreal insect predators on several Acacia species around Mel- bourne, Victoria, and some aspects of their life-histories and feeding biology are compared in this paper.
    [Show full text]
  • The Biology of the Predator Complex of the Filbert Aphid, Myzocallis Coryli
    AN ABSTRACT OF THE THESIS OF Russell H. Messing for the degree of Master of Science in Entomology presented in July 1982 Title: The Biology of the Predator Complex of the Filbert Aphid, Myzocallis coryli (Goetze) in Western Oregon. Abstract approved: Redacted for Privacy M. T. AliNiiee Commercial filbert orchards throughout the Willamette Valley were surveyed for natural enemies of the filbert aphid, Myzocallis coryli (Goetze). A large number of predaceous insects were found to prey upon M. coryli, particularly members of the families Coccinellidae, Miridae, Chrysopidae, Hemerobiidae, and Syrphidae. Also, a parasitic Hymenopteran (Mesidiopsis sp.) and a fungal pathogen (Triplosporium fresenii) were found to attack this aphid species. Populations of major predators were monitored closely during 1981 to determine phenology and synchrony with aphid populations and to determine their relative importance. Adalia bipunctata, Deraeocoris brevis, Chrysopa sp. and Hemerobius sp. were found to be extremely well synchronized with aphid population development cycles. Laboratory feeding trials demonstrated that all 4 predaceous insects tested (Deraeocoris brevis, Heterotoma meriopterum, Compsidolon salicellum and Adalia bipunctata) had a severe impact upon filbert aphid population growth. A. bipunctata was more voracious than the other 3 species, but could not live as long in the absence of aphid prey. Several insecticides were tested both in the laboratory and field to determine their relative toxicity to filbert aphids and the major natural enemies. Field tests showed Metasystox-R to be the most effective against filbert aphids, while Diazinon, Systox, Zolone, and Thiodan were moderately effective. Sevin was relatively ineffective. All insecticides tested in the field severely disrupted the predator complex.
    [Show full text]
  • ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
    NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000).
    [Show full text]
  • Insects and Related Arthropods Associated with of Agriculture
    USDA United States Department Insects and Related Arthropods Associated with of Agriculture Forest Service Greenleaf Manzanita in Montane Chaparral Pacific Southwest Communities of Northeastern California Research Station General Technical Report Michael A. Valenti George T. Ferrell Alan A. Berryman PSW-GTR- 167 Publisher: Pacific Southwest Research Station Albany, California Forest Service Mailing address: U.S. Department of Agriculture PO Box 245, Berkeley CA 9470 1 -0245 Abstract Valenti, Michael A.; Ferrell, George T.; Berryman, Alan A. 1997. Insects and related arthropods associated with greenleaf manzanita in montane chaparral communities of northeastern California. Gen. Tech. Rep. PSW-GTR-167. Albany, CA: Pacific Southwest Research Station, Forest Service, U.S. Dept. Agriculture; 26 p. September 1997 Specimens representing 19 orders and 169 arthropod families (mostly insects) were collected from greenleaf manzanita brushfields in northeastern California and identified to species whenever possible. More than500 taxa below the family level wereinventoried, and each listing includes relative frequency of encounter, life stages collected, and dominant role in the greenleaf manzanita community. Specific host relationships are included for some predators and parasitoids. Herbivores, predators, and parasitoids comprised the majority (80 percent) of identified insects and related taxa. Retrieval Terms: Arctostaphylos patula, arthropods, California, insects, manzanita The Authors Michael A. Valenti is Forest Health Specialist, Delaware Department of Agriculture, 2320 S. DuPont Hwy, Dover, DE 19901-5515. George T. Ferrell is a retired Research Entomologist, Pacific Southwest Research Station, 2400 Washington Ave., Redding, CA 96001. Alan A. Berryman is Professor of Entomology, Washington State University, Pullman, WA 99164-6382. All photographs were taken by Michael A. Valenti, except for Figure 2, which was taken by Amy H.
    [Show full text]
  • Patterns of Adult Emergence and Mating in Micromus Tasmaniae (Walker) (Neuroptera: Hemerobiidae)
    Biocontrol and Beneficial Insects 179 PATTERNS OF ADULT EMERGENCE AND MATING IN MICROMUS TASMANIAE (WALKER) (NEUROPTERA: HEMEROBIIDAE) A. YADAV, X.Z. HE and Q. WANG Institute of Natural Resources, Massey University, Palmerston North, Private Bag 11222, New Zealand Corresponding author: [email protected] ABSTRACT The Tasmanian lacewing, Micromus tasmaniae Walker, is an important predator of a number of economically important pests such as aphids. This study was to investigate the patterns of adult emergence, sexual maturation and mating of M. tasmaniae in the laboratory at 21±1°C, 60% RH and 16:8 h (light:dark). Results indicate that adult emergence peaked 3 h before the scotophase began. There was no significant difference in emergence patterns between males and females (P>0.05). The sexual maturation period of males and females was 47.8±2.5 h and 65.1±3.1 h after emergence, respectively, and this difference was significant (P<0.0001). Mating success significantly increased from the first to the eleventh hour after the photophase began. The importance of these results in understanding the lacewing’s reproductive biology and the application of such information to improve biological control is discussed. Keywords: Micromus tasmaniae, emergence, sexual maturation, mating. INTRODUCTION The Tasmanian lacewing, Micromus tasmaniae Walker (Neuroptera: Hemerobiidae), is an important aphidophage widely distributed in Australia and New Zealand (Wise 1963). In New Zealand, its biology and ecology have been studied in the field (Hilson 1964; Leathwick & Winterbourn 1984). Studies were also made on its predation and development under constant and fluctuating temperatures (Islam & Chapman 2001) and photoperiods (Yadav et al.
    [Show full text]
  • INSECTS of MICRONESIA Neuroptera: Hemerobiidae*
    INSECTS OF MICRONESIA Neuroptera: Hemerobiidae* By F. M. CARPENTER HARVARD UNIVERSITY INTRODUCTION This account is based mainly on about 150 specimens of Hemerobiidae from Micronesia. All of this material was placed at my disposal through the courtesy of Dr. J. L. Gressitt, to whom I am indebted for the opportunity of making this study. The United States Office of Naval Research, the Pacific Science Board (National Research Council), the National Science Foundation, and Bernice P. Bishop Museum have made this survey and publication of the results pos­ sible. Field research was aided by a contract between the Office of Naval Re­ search, Department of the Navy, and the National Academy of Sciences, NR 160-175. In the course of this study I have made much use of specimens in the Mu­ seum of Comparative Zoology and I have been helped to an inestimable extent by my examination of a type of Micromus navigatorum Brauer, sent to me by Dr. Beier of the Naturhistorisches Museum in Vienna. Specimens are deposited at the following institutions: Bernice P. Bishop Museum (BISHOP), United States National Museum (US), and Museum of Comparative Zoology, Harvard University (MCZ). Only three species are represented in this Micronesian collection, two in Annandalia and the third in Micromus. The third species, M. navigatorum, has now acquired a very wide distribution, in part, at least, through the agency of man. The two species of Annandalia are, so far as now known, endemic to Micronesia. Annandalia and Micromus are only distantly' related within the family Hemerobiidae and they can readily be distinguished: Annandalia has a broad costal area basally, with a well developed recurrent vein; Micromus has a narrow costal area basally and lacks entirely the recurrent vein.
    [Show full text]
  • Of the World
    OCCASIONAL PAPERS OF THE CALIFORNIA ACADEMY OF SCIENCES No. 147, 94 pages. December 2, 1991 GENUS-GROUP NAMES OF THE NEUROPTERA, MEGALOPTERA AND RAPHIDIOPTERA OF THE WORLD By John D. Oswald Department of Entomology, Cornell University, Ithaca, New York 14853-0999 and Norman D. Penny Department of Entomology, California Academy of Sciences, San Francisco, California 94118-4599 Abstract: Alphabetical listings of the genus-group names of extant Megaluptcra, Raphidioptera, and = Neuroptera (s. str. Planipennia) are presented. Taxonomic and nomenclatural data for each name are given. Summaries of new genus-group synonyms, unreplaced junior homonyms, names without valid type species fixations, and names based on misidentified type species are given. Complete bibliographic references are given for all names and nomenclatural acts. Contents Introduction Inlroduciion (1) The last worldwide species-level catalog of Scope (2) the order str. = Nomenclature (2) Neuroptera (s. Planipennia), and Format Arrangement of Entries (2) Hermann Hagen's 1866 Hemerobidarum Syn- General Arrangement (2) opsis Synonymica, has long been obsolete, as Subgenera (2) are the most recent revisions Synonymy (2) comprehensive Character Formals (3) of the orders Megaloptera (i.e.. Van dcr Publication Dates (3) Weele 1910) and Raphidioptera (i.e., Navas Type Species (3) [1919e] 1918). In the 120+ years since 1866, Unavailable Names (3) the number of available Homonymy (4) nomenclaturally Family-Group Taxa (4) genus-group names in the order Neuroptera Selected Taxonomic References
    [Show full text]
  • Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring Within the Kahului Airport Environs, Maui, Hawai‘I: Synthesis Report
    Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring within the Kahului Airport Environs, Maui, Hawai‘i: Synthesis Report Prepared by Francis G. Howarth, David J. Preston, and Richard Pyle Honolulu, Hawaii January 2012 Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring within the Kahului Airport Environs, Maui, Hawai‘i: Synthesis Report Francis G. Howarth, David J. Preston, and Richard Pyle Hawaii Biological Survey Bishop Museum Honolulu, Hawai‘i 96817 USA Prepared for EKNA Services Inc. 615 Pi‘ikoi Street, Suite 300 Honolulu, Hawai‘i 96814 and State of Hawaii, Department of Transportation, Airports Division Bishop Museum Technical Report 58 Honolulu, Hawaii January 2012 Bishop Museum Press 1525 Bernice Street Honolulu, Hawai‘i Copyright 2012 Bishop Museum All Rights Reserved Printed in the United States of America ISSN 1085-455X Contribution No. 2012 001 to the Hawaii Biological Survey COVER Adult male Hawaiian long-horned wood-borer, Plagithmysus kahului, on its host plant Chenopodium oahuense. This species is endemic to lowland Maui and was discovered during the arthropod surveys. Photograph by Forest and Kim Starr, Makawao, Maui. Used with permission. Hawaii Biological Report on Monitoring Arthropods within Kahului Airport Environs, Synthesis TABLE OF CONTENTS Table of Contents …………….......................................................……………...........……………..…..….i. Executive Summary …….....................................................…………………...........……………..…..….1 Introduction ..................................................................………………………...........……………..…..….4
    [Show full text]