Color Notes (2 Pages) Color - the Visual Quality of Objects Caused by the Amount of Light They Reflect

Total Page:16

File Type:pdf, Size:1020Kb

Color Notes (2 Pages) Color - the Visual Quality of Objects Caused by the Amount of Light They Reflect Color Notes (2 pages) Color - The visual quality of objects caused by the amount of light they reflect. Color is ​ an element of art. Hue - A particular color and indicates the position on the color wheel. ​ ex. Blue-green, blue, blue-violet. Color Wheel - A circular organization of colors illustrating the relationship between ​ primary, secondary and tertiary colors. Primary Colors - The Primary colors are the basic hues in any color system that are used to ​ make all other colors. The 3 primary colors are red, blue, and yellow. ​ Secondary Colors - The secondary colors are produced by mixing two primary colors. ​ The 3 secondary colors are violet, green, and orange. ​ Tertiary Colors/Intermediate - The tertiary colors are produced by mixing one primary with ​ an adjacent secondary. The 6 tertiary colors are blue-violet, blue-green, yellow-green, yellow-orange, ​ red-orange, and red-violet. Neutral - Neutral colors are brown, black and gray. ​ ​ Color Value and Tones Tint - A light value or variation of a color achieved by mixing white with the color. ​ Shade - A dark value of a color achieved by mixing black with the color. ​ ​ ​ Color Schemes Monochromatic - Mono (one) Chroma (color) – refers to a painting done in one color ​ with tints, shades of that color. Complementary - Colors which are opposite each other on the color wheel. When ​ placed side by side these colors intensify each other. When they are mixed together these colors create neutral colors. The complementary colors are red/green, yellow/violet, and orange/blue. ​ Analogous - Colors that are next to each other on the color wheel. ​ ex. Red, red-violet, violet. Warm Colors - Warm colors are associated with fire and sun. ​ Red, orange, and yellow hues. Cool Colors - Cool colors are associated with water, grass and ice. ​ Blue, violet, and green hues Color Wheel Directions: Draw a circle and divide it into 12 sections. Label it as shown below. ​ Then, use ONLY a red, blue, and yellow colored pencil to create the colors. You will have to layer and blend the primary colors (red, blue, yellow). ​ ​ .
Recommended publications
  • Color Theory for Painting Video: Color Perception
    Color Theory For Painting Video: Color Perception • http://www.ted.com/talks/lang/eng/beau_lotto_optical_illusions_show_how_we_see.html • Experiment • http://www.youtube.com/watch?v=y8U0YPHxiFQ Intro to color theory • http://www.youtube.com/watch?v=059-0wrJpAU&feature=relmfu Color Theory Principles • The Color Wheel • Color context • Color Schemes • Color Applications and Effects The Color Wheel The Color Wheel • A circular diagram displaying the spectrum of visible colors. The Color Wheel: Primary Colors • Primary Colors: Red, yellow and blue • In traditional color theory, primary colors can not be mixed or formed by any combination of other colors. • All other colors are derived from these 3 hues. The Color Wheel: Secondary Colors • Secondary Colors: Green, orange and purple • These are the colors formed by mixing the primary colors. The Color Wheel: Tertiary Colors • Tertiary Colors: Yellow- orange, red-orange, red-purple, blue-purple, blue-green & yellow-green • • These are the colors formed by mixing a primary and a secondary color. • Often have a two-word name, such as blue-green, red-violet, and yellow-orange. Color Context • How color behaves in relation to other colors and shapes is a complex area of color theory. Compare the contrast effects of different color backgrounds for the same red square. Color Context • Does your impression od the center square change based on the surround? Color Context Additive colors • Additive: Mixing colored Light Subtractive Colors • Subtractive Colors: Mixing colored pigments Color Schemes Color Schemes • Formulas for creating visual unity [often called color harmony] using colors on the color wheel Basic Schemes • Analogous • Complementary • Triadic • Split complement Analogous Color formula used to create color harmony through the selection of three related colors which are next to one another on the color wheel.
    [Show full text]
  • Color Chart ® ® ® ® Closest Pantone® Equivalent Shown
    ™ ™ II ® Color Chart ® ® ® ® Closest Pantone® equivalent shown. Due to printing limitations, colors shown 5807 Reflective ® ® ™ ® ® and Pantone numbers ® ™ suggested may vary from ac- ECONOPRINT GORILLA GRIP Fashion-REFLECT Reflective Thermo-FILM Thermo-FLOCK Thermo-GRIP ® ® ® ® ® ® ® tual colors. For the truest color ® representation, request Scotchlite our material swatches. ™ CAD-CUT 3M CAD-CUT CAD-CUT CAD-CUT CAD-CUT CAD-CUT CAD-CUT Felt Perma-TWILL Poly-TWILL Thermo-FILM Thermo-FLOCK Thermo-GRIP Vinyl Pressure Sensitive Poly-TWILL Sensitive Pressure CAD-CUT White White White White White White White White White* White White White White White Black Black Black Black Black Black Black Black Black* Black Black Black Black Black Gold 1235C 136C 137C 137C 123U 715C 1375C* 715C 137C 137C 116U Red 200C 200C 703C 186C 186C 201C 201C 201C* 201C 186C 186C 186C 200C Royal 295M 294M 7686C 2747C 7686C 280C 294C 294C* 294C 7686C 2758C 7686C 654C Navy 296C 2965C 7546C 5395M 5255C 5395M 276C 532C 532C* 532C 5395M 5255C 5395M 5395C Cool Gray Warm Gray Gray 7U 7539C 7539C 415U 7538C 7538C* 7538C 7539C 7539C 2C Kelly 3415C 341C 340C 349C 7733C 7733C 7733C* 7733C 349C 3415C Orange 179C 1595U 172C 172C 7597C 7597C 7597C* 7597C 172C 172C 173C Maroon 7645C 7645C 7645C Black 5C 7645C 7645C* 7645C 7645C 7645C 7449C Purple 2766C 7671C 7671C 669C 7680C 7680C* 7680C 7671C 7671C 2758U Dark Green 553C 553C 553C 447C 567C 567C* 567C 553C 553C 553C Cardinal 201C 188C 195C 195C* 195C 201C Emerald 348 7727C Vegas Gold 616C 7502U 872C 4515C 4515C 4515C 7553U Columbia 7682C 7682C 7459U 7462U 7462U* 7462U 7682C Brown Black 4C 4675C 412C 412C Black 4C 412U Pink 203C 5025C 5025C 5025C 203C Mid Blue 2747U 2945U Old Gold 1395C 7511C 7557C 7557C 1395C 126C Bright Yellow P 4-8C Maize 109C 130C 115U 7408C 7406C* 7406C 115U 137C Canyon Gold 7569C Tan 465U Texas Orange 7586C 7586C 7586C Tenn.
    [Show full text]
  • Color Combinations and Contrasts
    COLOR COMBINATIONS AND CONTRASTS Full Value Color Combinations Above are 18 color combinations tested for visibility, using primary and secondary colors, of full hue and value. Visibility is ranked in the sequence shown, with 1 being the most visible and 18 being the least visible. Readability It is essential that outdoor designs are easy to read. Choose colors with high contrast in both hue and value. Contrasting colors are viewed well from great distances, while colors with low contrast will blend together and obscure a message. In fact, research demonstrates that high color contrast can improve outdoor advertising recall by 38 percent. A standard color wheel clearly illustrates the importance of contrast, hue and value. Opposite colors on the wheel are complementary. An example is red and green (as shown above). They respresent a good contrast in hue, but their values are similar. It is difficult for the human eye to process the wavelength variations associated with complementary colors. Therefore, a quivering or optical distortion is sometimes detected when two complemen- tary colors are used in tandem. Adjacent colors, such as blue and green, make especially poor combinations since their contrast is similar in both hue and value. As a result, adjacent colors create contrast that is hard to discern. Alternating colors, such as blue and yellow, produce the best combinations since they have good contrast in both hue and value. Black contrasts well with any color of light value and white is a good contrast with colors of dark value. For example, yellow and black are dissimilar in the contrast of both hue and value.
    [Show full text]
  • Rainbow Phytochemicals
    Yellow and Orange Yellow and orange produce contains carotenoids and bioflavonoids, antioxidants that protect against heart disease and cancer, promote healthy vision and a strong immune system. Acorn Squash Cantaloupe Carrots Apricots Golden Raisins Butternut Squash Grapefruit Lemon Mangoes Nectarines Oranges Papayas Peaches Persimmons Pineapples Tangerines Pumpkin Rutabagas Spaghetti Summer Sweet Yams Yellow beets Yellow Tomatoes Squash Squash Potatoes Delicata Kabocha Yukon Gold Yellow Bell Squash Squash Potatoes Peppers Green Green produce contains varying amounts of phytochemicals such as flavonoids, carotenoids, lutein, zeaxanthin, and indoles, all of which are associated with vision health, promoting strong bones and teeth, and a lower risk of developing certain cancers. Arugula Artichokes Asparagus Broccoli Basil Beet Greens Brussels Bok Choy Green Beans Collard Greens Celery Chinese Cabbage Sprouts Green Dandelion Endive Green Onion Green Grapes Cucumbers Cabbage Greens Green Bell Green Peas Green Apples Kiwi Honeydew Melon Peppers Kale Leeks Limes Leafy Greens Oka Lettuce Mustard Snow and Parsley Romaine Lettuce Swiss Chard Watercress Greens Snap Peas Spinach Zucchini Purple/Blue These fruits and vegetables contain varying amounts of health promoting phytochemicals such as anthocyanins, resveratrol, flavonols, ellagic acid, and phenolics, which are associated with improved blood vessel health, reduced risk of some cancers, urinary tract health, memory function and healthy aging. Beets Blackberries Black Grapes Blueberries Blackcurrants Concord Grapes Dried Concord Grape Dried Plums Elderberries Purple Figs Purple Grapes Blueberries juice Purple Purple Purple Belgian Plums Purple Carrots Eggplant Cabbage Cauliflower Endive Purple- Purple Bell fleshed Raisins Peppers potatoes Red Red fruits and vegetables contain phytochemicals such as iycopene, anthocyanins, resveratrol and flavonols, which are associated with heart health, memory function, urinary tract health, and a lower risk of some cancers, including prostate cancer.
    [Show full text]
  • WHITE LIGHT and COLORED LIGHT Grades K–5
    WHITE LIGHT AND COLORED LIGHT grades K–5 Objective This activity offers two simple ways to demonstrate that white light is made of different colors of light mixed together. The first uses special glasses to reveal the colors that make up white light. The second involves spinning a colorful top to blend different colors into white. Together, these activities can be thought of as taking white light apart and putting it back together again. Introduction The Sun, the stars, and a light bulb are all sources of “white” light. But what is white light? What we see as white light is actually a combination of all visible colors of light mixed together. Astronomers spread starlight into a rainbow or spectrum to study the specific colors of light it contains. The colors hidden in white starlight can reveal what the star is made of and how hot it is. The tool astronomers use to spread light into a spectrum is called a spectroscope. But many things, such as glass prisms and water droplets, can also separate white light into a rainbow of colors. After it rains, there are often lots of water droplets in the air. White sunlight passing through these droplets is spread apart into its component colors, creating a rainbow. In this activity, you will view the rainbow of colors contained in white light by using a pair of “Rainbow Glasses” that separate white light into a spectrum. ! SAFETY NOTE These glasses do NOT protect your eyes from the Sun. NEVER LOOK AT THE SUN! Background Reading for Educators Light: Its Secrets Revealed, available at http://www.amnh.org/education/resources/rfl/pdf/du_x01_light.pdf Developed with the generous support of The Charles Hayden Foundation WHITE LIGHT AND COLORED LIGHT Materials Rainbow Glasses Possible white light sources: (paper glasses containing a Incandescent light bulb diffraction grating).
    [Show full text]
  • Color Mixing Ratios
    Colour Mixing: Ratios Color Theory with Tracy Moreau Learn more at DecoArt’s Art For Everyone Learning Center www.tracymoreau.net Primary Colours In painting, the three primary colours are yellow, red, and blue. These colors cannot be created by mixing other colours. They are called primary because all other colours are derived from them. Mixing Primary Colours Creates Secondary Colours If you combine two primary colours you get a secondary colour. For example, red and blue make violet, yellow and red make orange, and blue and yellow make green. If you mix all of the primary colours together you get black. The Mixing Ratio for Primary Colours To get orange, you mix the primary colours red and yellow. The mixing ratio of these two colours determines which shade of orange you will get after mixing. For example, if you use more red than yellow you will get a reddish-orange. If you add more yellow than red you will get a yellowish-orange. Experiment with the shades you have to see what you can create. Try out different combinations and mixing ratios and keep a written record of your results so that you can mix the colours again for future paintings. www.tracymoreau.net Tertiary Colours By mixing a primary and a secondary colour or two secondary colours you get a tertiary colour. Tertiary colours such as blue-lilac, yellow-green, green-blue, orange-yellow, red-orange, and violet-red are all created by combining a primary and a secondary colour. The Mixing Ratios of Light and Dark Colours If you want to darken a colour, you only need to add a small amount of black or another dark colour.
    [Show full text]
  • Absorption of Light Energy Light, Energy, and Electron Structure SCIENTIFIC
    Absorption of Light Energy Light, Energy, and Electron Structure SCIENTIFIC Introduction Why does the color of a copper chloride solution appear blue? As the white light hits the paint, which colors does the solution absorb and which colors does it transmit? In this activity students will observe the basic principles of absorption spectroscopy based on absorbance and transmittance of visible light. Concepts • Spectroscopy • Visible light spectrum • Absorbance and transmittance • Quantized electron energy levels Background The visible light spectrum (380−750 nm) is the light we are able to see. This spectrum is often referred to as “ROY G BIV” as a mnemonic device for the order of colors it produces. Violet has the shortest wavelength (about 400 nm) and red has the longest wavelength (about 650–700 nm). Many common chemical solutions can be used as filters to demonstrate the principles of absorption and transmittance of visible light in the electromagnetic spectrum. For example, copper(II) chloride (blue), ammonium dichromate (orange), iron(III) chloride (yellow), and potassium permanganate (red) are all different colors because they absorb different wave- lengths of visible light. In this demonstration, students will observe the principles of absorption spectroscopy using a variety of different colored solutions. Food coloring will be substituted for the orange and yellow chemical solutions mentioned above. Rare earth metal solutions, erbium and praseodymium chloride, will be used to illustrate line absorption spectra. Materials Copper(II) chloride solution, 1 M, 85 mL Diffraction grating, holographic, 14 cm × 14 cm Erbium chloride solution, 0.1 M, 50 mL Microchemistry solution bottle, 50 mL, 6 Potassium permanganate solution (KMnO4), 0.001 M, 275 mL Overhead projector and screen Praseodymium chloride solution, 0.1 M, 50 mL Red food dye Water, deionized Stir rod, glass Beaker, 250-mL Tape Black construction paper, 12 × 18, 2 sheets Yellow food dye Colored pencils Safety Precautions Copper(II) chloride solution is toxic by ingestion and inhalation.
    [Show full text]
  • A Visual Guide to Identifying Cats
    A Visual Guide to Identifying Cats When cats have similar colors and patterns, like two gray tabbies, it can seem impossible to tell them apart! That is, until you take note of even the smallest details in their appearance. Knowledge is power, whether you’re an animal control officer or animal Coat Length shelter employee who needs to identify cats regularly, or you want to identify your own cat. This guide covers cats’ traits from their overall looks, like coat pattern, to their tiniest features, like whisker color. Let’s use our office cats as examples: • Oliver (left): neutered male, shorthair, solid black, pale green eyes, black Hairless whiskers, a black nose, and black Hairless cats have no fur. paw pads. • Charles (right): neutered male, shorthair, brown mackerel tabby with spots toward his rear, yellow-green eyes, white whiskers with some black at the roots, a pink-brown nose, and black paw pads. Shorthair Shorthair cats have short fur across As you go through this guide, remember that certain patterns and markings the entire body. originated with specific breeds. However, these traits now appear in many cats because of random mating. This guide covers the following features: Coat Length ...............................................................................................3 Medium hair Coat Color ...................................................................................................4 Medium hair cats have longer fur around the mane, tail, and/or rear. Coat Patterns ..............................................................................................6
    [Show full text]
  • Color Wheel Page 1 Crayons Or Markers Color
    Crayons or markers Color Wheel Cut-out (at the end of this description) String, about 3 feet Scissors Step 1 Color each wedge of the circle with a different rainbow color. Use heavy paper or a paper plate. Step 2 Cut out the circle, as well as the center holes (you can use a sharp pencil to poke through, too!). Step 3 Feed the string through the holes and tie the ends together. Step 4 Pick up the string, one side of the loop in each hand so the circle is in the middle. Wind the string by rotating it, in a “jump-rope”-like motion. The string should be a little loose with the circle pulling it down in the middle. Step 5 Move your hands out to pull the string tight to get the wheel spinning. When the string is fully unwound, move your hands closer together so it can wind in the other direction If it’s not spinning fast enough, keep winding! Step 6 As it spins, what happens to the colors? What do you notice? Color Wheel Page 1 What did you notice when you spun the wheel? You may have seen the colors seem to disappear! Where did they go? Let’s think about light and color, starting with the sun. The light that comes from the sun is actually made up of all different colors on the light spectrum. When light hits a surface, some of the colors are absorbed and some are reflected. We only see the colors that are reflected back.
    [Show full text]
  • C-316: a Guide to Color
    COLLEGE OF AGRICULTURAL, CONSUMER AND ENVIRONMENTAL SCIENCES A Guide to Color Revised by Jennah McKinley1 aces.nmsu.edu/pubs • Cooperative Extension Service • Guide C-316 The College of Agricultural, Consumer and Environmental Sciences is an engine for economic and community development in New Figure 1. Sample color wheel. Mexico, improving the lives of New Color is one of the most important stimuli in the world. It affects our moods and personal characteristics. We speak of blue Mondays, being Mexicans through in the pink, seeing red, and everything coming up roses. Webster de- fines color as the sensation resulting from stimulating the eye’s retina with light waves of certain wavelengths. Those sensations have been academic, research, given names such as red, green, and purple. Color communicates. It tells others about you. What determines and extension your choice of colors in your clothing? In your home? In your office? In your car? Your selection of color is influenced by age, personality, programs. experiences, the occasion, the effect of light, size, texture, and a variety of other factors. Some people have misconceptions about color. They may feel cer- tain colors should never be used together, certain colors are always unflattering, or certain colors indicate a person’s character. These ideas will limit their enjoyment of color and can cause them a great deal of frustration in life. To get a better understanding of color, look at na- ture. Consider these facts: All About Discovery!TM • The prettiest gardens have a wide variety of reds, oranges, pinks, New Mexico State University violets, purples, and yellows all mixed together.
    [Show full text]
  • OSHER Color 2021
    OSHER Color 2021 Presentation 1 Mysteries of Color Color Foundation Q: Why is color? A: Color is a perception that arises from the responses of our visual systems to light in the environment. We probably have evolved with color vision to help us in finding good food and healthy mates. One of the fundamental truths about color that's important to understand is that color is something we humans impose on the world. The world isn't colored; we just see it that way. A reasonable working definition of color is that it's our human response to different wavelengths of light. The color isn't really in the light: We create the color as a response to that light Remember: The different wavelengths of light aren't really colored; they're simply waves of electromagnetic energy with a known length and a known amount of energy. OSHER Color 2021 It's our perceptual system that gives them the attribute of color. Our eyes contain two types of sensors -- rods and cones -- that are sensitive to light. The rods are essentially monochromatic, they contribute to peripheral vision and allow us to see in relatively dark conditions, but they don't contribute to color vision. (You've probably noticed that on a dark night, even though you can see shapes and movement, you see very little color.) The sensation of color comes from the second set of photoreceptors in our eyes -- the cones. We have 3 different types of cones cones are sensitive to light of long wavelength, medium wavelength, and short wavelength.
    [Show full text]
  • Color Communication Badges
    Color Communication Badges GREEN YELLOW RED Color Communication Badges are a system which were first developed in Autistic spaces and conferences. They help people tell everyone who can see their badge about their communication preferences. A color communication badge is a name tag holder that can pin or clip onto clothing. In the name tag holder there are three cards: one green card that says “GREEN”, one yellow card that says “YELLOW”, and one red card that says “RED.” The card that is currently visible is the active card; the other two are hidden behind the first one, accessible to the person if they should need them. Showing a green badge means that the person is actively seeking communication; they have trouble initiating conversations, but want to be approached by people who are interested in talking. Showing a yellow badge means that the person only wants to talk to people they recognize, not by strangers or people they only know from the Internet. The badge-wearer might approach strangers to talk, and that is okay; the approached people are welcome to talk back to them in that case. But unless you have already met the person face-to-face, you should not approach them to talk. Showing a red badge means that the person probably does not want to talk to anyone, or only wants to talk to a few people. The person might approach others to talk, and that is okay; the approached people are welcome to talk back to them in that case. But unless you have been told already by the badge-wearer that you are on their “red list”, you should not approach them to talk.
    [Show full text]