10Th Anniversary of the Human Genome Project

Total Page:16

File Type:pdf, Size:1020Kb

10Th Anniversary of the Human Genome Project Grand Celebration: 10th Anniversary of the Human Genome Project Volume 1 Edited by John Burn, James R. Lupski, Karen E. Nelson and Pabulo H. Rampelotto Printed Edition of the Special Issue Published in Genes www.mdpi.com/journal/genes John Burn, James R. Lupski, Karen E. Nelson and Pabulo H. Rampelotto (Eds.) Grand Celebration: 10th Anniversary of the Human Genome Project Volume 1 This book is a reprint of the special issue that appeared in the online open access journal Genes (ISSN 2073-4425) in 2014 (available at: http://www.mdpi.com/journal/genes/special_issues/Human_Genome). Guest Editors John Burn University of Newcastle UK James R. Lupski Baylor College of Medicine USA Karen E. Nelson J. Craig Venter Institute (JCVI) USA Pabulo H. Rampelotto Federal University of Rio Grande do Sul Brazil Editorial Office Publisher Assistant Editor MDPI AG Shu-Kun Lin Rongrong Leng Klybeckstrasse 64 Basel, Switzerland 1. Edition 2016 MDPI • Basel • Beijing • Wuhan ISBN 978-3-03842-123-8 complete edition (Hbk) ISBN 978-3-03842-169-6 complete edition (PDF) ISBN 978-3-03842-124-5 Volume 1 (Hbk) ISBN 978-3-03842-170-2 Volume 1 (PDF) ISBN 978-3-03842-125-2 Volume 2 (Hbk) ISBN 978-3-03842-171-9 Volume 2 (PDF) ISBN 978-3-03842-126-9 Volume 3 (Hbk) ISBN 978-3-03842-172-6 Volume 3 (PDF) © 2016 by the authors; licensee MDPI, Basel, Switzerland. All articles in this volume are Open Access distributed under the Creative Commons License (CC-BY), which allows users to download, copy and build upon published articles even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. However, the dissemination and distribution of physical copies of this book as a whole is restricted to MDPI, Basel, Switzerland. III Table of Contents List of Contributors ............................................................................................................ VII Preface .................................................................................................................................XI Debra J. H. Mathews and Leila Jamal Revisiting Respect for Persons in Genomic Research Reprinted from: Genes 2014, 5(1), 1-12 http://www.mdpi.com/2073-4425/5/1/1 .................................................................................. 1 Vincent Timmerman, Alleene V. Strickland and Stephan Züchner Genetics of Charcot-Marie-Tooth (CMT) Disease within the Frame of the Human Genome Project Success Reprinted from: Genes 2014, 5(1), 13-32 http://www.mdpi.com/2073-4425/5/1/13 .............................................................................. 13 Megan E. Aldrup-MacDonald and Beth A. Sullivan The Past, Present, and Future of Human Centromere Genomics Reprinted from: Genes 2014, 5(1), 33-50 http://www.mdpi.com/2073-4425/5/1/33 .............................................................................. 32 Nathalie Chami and Guillaume Lettre Lessons and Implications from Genome-Wide Association Studies (GWAS) Findings of Blood Cell Phenotypes Reprinted from: Genes 2014, 5(1), 51-64 http://www.mdpi.com/2073-4425/5/1/51 .............................................................................. 49 Jose Russo, Julia Santucci-Pereira and Irma H. Russo The Genomic Signature of Breast Cancer Prevention Reprinted from: Genes 2014, 5(1), 65-83 http://www.mdpi.com/2073-4425/5/1/65 .............................................................................. 63 IV Katsushi Tokunaga Lessons from Genome-Wide Search for Disease-Related Genes with Special Reference to HLA-Disease Associations Reprinted from: Genes 2014, 5(1), 84-96 http://www.mdpi.com/2073-4425/5/1/84 .............................................................................. 82 Hannelore Ehrenreich and Klaus-Armin Nave Phenotype-Based Genetic Association Studies (PGAS)—Towards Understanding the Contribution of Common Genetic Variants to Schizophrenia Subphenotypes Reprinted from: Genes 2014, 5(1), 97-105 http://www.mdpi.com/2073-4425/5/1/97 .............................................................................. 95 Albino Bacolla, David N. Cooper and Karen M. Vasquez Mechanisms of Base Substitution Mutagenesis in Cancer Genomes Reprinted from: Genes 2014, 5(1), 108-146 http://www.mdpi.com/2073-4425/5/1/108 .......................................................................... 104 Muhammad Imran Khan, Maleeha Azam, Muhammad Ajmal, Rob W. J. Collin, Anneke I. den Hollander, Frans P. M. Cremers and Raheel Qamar The Molecular Basis of Retinal Dystrophies in Pakistan Reprinted from: Genes 2014, 5(1), 176-195 http://www.mdpi.com/2073-4425/5/1/176 .......................................................................... 144 Sara L. Pulit, Maarten Leusink, Androniki Menelaou and Paul I. W. de Bakker Association Claims in the Sequencing Era Reprinted from: Genes 2014, 5(1), 196-213 http://www.mdpi.com/2073-4425/5/1/196 .......................................................................... 163 Megan J. Puckelwartz and Elizabeth M. McNally Genetic Profiling for Risk Reduction in Human Cardiovascular Disease Reprinted from: Genes 2014, 5(1), 214-234 http://www.mdpi.com/2073-4425/5/1/214 .......................................................................... 181 David J. Elliott Illuminating the Transcriptome through the Genome Reprinted from: Genes 2014, 5(1), 235-253 http://www.mdpi.com/2073-4425/5/1/235 .......................................................................... 203 V Nicola Whiffin and Richard S. Houlston Architecture of Inherited Susceptibility to Colorectal Cancer: A Voyage of Discovery Reprinted from: Genes 2014, 5(2), 270-284 http://www.mdpi.com/2073-4425/5/2/270 .......................................................................... 222 Dianne F. Newbury, Anthony P. Monaco and Silvia Paracchini Reading and Language Disorders: The Importance of Both Quantity and Quality Reprinted from: Genes 2014, 5(2), 285-309 http://www.mdpi.com/2073-4425/5/2/285 .......................................................................... 237 VII List of Contributors Muhammad Ajmal: Department of Biosciences, Faculty of Science, COMSATS Institute of Information Technology, Islamabad 45600, Pakistan; Department of Human Genetics, Radboud University Medical Center, Nijmegen 6500 HB, The Netherlands. Megan E. Aldrup-MacDonald: Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA; Division of Human Genetics, Duke University, Durham, NC 27710, USA. Maleeha Azam: Department of Biosciences, Faculty of Science, COMSATS Institute of Information Technology, Islamabad 45600, Pakistan; Department of Human Genetics, Radboud University Medical Center, Nijmegen 6500 HB, The Netherlands. Albino Bacolla: Dell Pediatric Research Institute, Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, 1400 Barbara Jordan Blvd., Austin, TX 78723, USA. Nathalie Chami: Montreal Heart Institute, Faculté de Médecine, Université de Montréal, 5000 Bélanger Street, Montréal, QC H1T 1C8, Canada. Rob W. J. Collin: Radboud Institute for Molecular Life Sciences/Department of Human Genetics, Radboud University Medical Center, Nijmegen 6500 HB, The Netherlands. David N. Cooper: Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK. Frans P. M. Cremers: Department of Biosciences, Faculty of Science, COMSATS Institute of Information Technology, Islamabad 45600, Pakistan; Radboud Institute for Molecular Life Sciences/Department of Human Genetics, Radboud University Medical Center, Nijmegen 6500 HB, The Netherlands. Paul I. W. de Bakker: Department of Medical Genetics, Institute for Molecular Medicine / Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands. Anneke I. den Hollander: Department of Ophthalmology/Department of Human Genetics, Radboud University Medical Center, Nijmegen 6500 HB, The Netherlands. Hannelore Ehrenreich: Max Planck Institute of Experimental Medicine, Hermann-Rein- Str.3, 37075 Göttingen, Germany; DFG Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Hermann-Rein-Str.3, 37075 Göttingen, Germany. David J. Elliott: Institute of Genetic Medicine, Newcastle University, Newcastle, NE1 3BZ, UK. Richard S. Houlston: Division of Genetics and Epidemiology / Molecular and Population Genetics Team, Genetics and Epidemiology, The Institute of Cancer Research, Sutton, SM2 5NG, UK. VIII Leila Jamal: Department of Health Policy and Management, Johns Hopkins Bloomberg School of Health, 615 North Wolfe St., Baltimore, MD 21205, USA; Division of Neurogenetics, Kennedy Krieger Institute, 801 N. Broadway, Rm. 564, Baltimore, MD 21205, USA. Muhammad Imran Khan: Department of Biosciences, Faculty of Science, COMSATS Institute of Information Technology, Islamabad 45600, Pakistan; Department of Human Genetics, Radboud University Medical Center, Nijmegen 6500 HB, The Netherlands. Guillaume Lettre: Montreal Heart Institute, Faculté de Médecine, Université de Montréal, 5000 Bélanger Street, Montréal, QC H1T 1C8, Canada. Maarten Leusink: Julius Center for Health Sciences and Primary Care / Department of Medical Genetics, Institute for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands; Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University,
Recommended publications
  • SRC Antibody - N-Terminal Region (ARP32476 P050) Data Sheet
    SRC antibody - N-terminal region (ARP32476_P050) Data Sheet Product Number ARP32476_P050 Product Name SRC antibody - N-terminal region (ARP32476_P050) Size 50ug Gene Symbol SRC Alias Symbols ASV; SRC1; c-SRC; p60-Src Nucleotide Accession# NM_005417 Protein Size (# AA) 536 amino acids Molecular Weight 60kDa Product Format Lyophilized powder NCBI Gene Id 6714 Host Rabbit Clonality Polyclonal Official Gene Full Name V-src sarcoma (Schmidt-Ruppin A-2) viral oncogene homolog (avian) Gene Family SH2D This is a rabbit polyclonal antibody against SRC. It was validated on Western Blot by Aviva Systems Biology. At Aviva Systems Biology we manufacture rabbit polyclonal antibodies on a large scale (200-1000 Description products/month) of high throughput manner. Our antibodies are peptide based and protein family oriented. We usually provide antibodies covering each member of a whole protein family of your interest. We also use our best efforts to provide you antibodies recognize various epitopes of a target protein. For availability of antibody needed for your experiment, please inquire (). Peptide Sequence Synthetic peptide located within the following region: QTPSKPASADGHRGPSAAFAPAAAEPKLFGGFNSSDTVTSPQRAGPLAGG This gene is highly similar to the v-src gene of Rous sarcoma virus. This proto-oncogene may play a role in the Description of Target regulation of embryonic development and cell growth. SRC protein is a tyrosine-protein kinase whose activity can be inhibited by phosphorylation by c-SRC kinase. Mutations in this gene could be involved in the
    [Show full text]
  • University of California, San Diego
    UNIVERSITY OF CALIFORNIA, SAN DIEGO The post-terminal differentiation fate of RNAs revealed by next-generation sequencing A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Biomedical Sciences by Gloria Kuo Lefkowitz Committee in Charge: Professor Benjamin D. Yu, Chair Professor Richard Gallo Professor Bruce A. Hamilton Professor Miles F. Wilkinson Professor Eugene Yeo 2012 Copyright Gloria Kuo Lefkowitz, 2012 All rights reserved. The Dissertation of Gloria Kuo Lefkowitz is approved, and it is acceptable in quality and form for publication on microfilm and electronically: __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ Chair University of California, San Diego 2012 iii DEDICATION Ma and Ba, for your early indulgence and support. Matt and James, for choosing more practical callings. Roy, my love, for patiently sharing the ups and downs of this journey. iv EPIGRAPH It is foolish to tear one's hair in grief, as though sorrow would be made less by baldness. ~Cicero v TABLE OF CONTENTS Signature Page .............................................................................................................. iii Dedication ....................................................................................................................
    [Show full text]
  • BRCA1-Dependent Transcriptional Regulation: Implication in Tissue-Specific Tumor Suppression
    cancers Review BRCA1-Dependent Transcriptional Regulation: Implication in Tissue-Specific Tumor Suppression Xiaowen Zhang * and Rong Li * Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, DC 20037, USA * Correspondence: [email protected] (X.Z.); [email protected] (R.L.) Received: 14 October 2018; Accepted: 11 December 2018; Published: 14 December 2018 Abstract: Germ-line mutations in breast cancer susceptibility gene 1 (BRCA1) predominantly predispose women to breast and ovarian cancers. BRCA1 is best known for its functions in maintenance of genomic integrity including repairing DNA double-strand breaks through homologous recombination and suppressing DNA replication stress. However, whether these universally important BRCA1 functions in maintenance of genomic stability are sufficient to account for its tissue-specific tumor-suppressing function remains unclear. Accumulating evidence indicates that there are previously underappreciated roles of BRCA1 in transcriptional regulation and chromatin remodeling. In this review, we discuss the functional significance of interactions between BRCA1 and various transcription factors, its role in epigenetic regulation and chromatin dynamics, and BRCA1-dependent crosstalk between the machineries of transcription and genome integrity. Furthermore, we propose a model of how transcriptional regulation could contribute to tissue-dependent tumor-suppressing function of BRCA1. Keywords: BRCA1; transcriptional regulation; epigenetic regulation; chromatin organization 1. Introduction Approximately 0.2% to 0.3% of the general population in the United States carries germ-line mutations in the tumor suppressor gene BRCA1 (BRCA1mut/+)[1,2]. Unlike tumor suppressors such as p53 that are implicated in a broad spectrum of cancers, BRCA1 functions in a gender- and tissue-specific manner.
    [Show full text]
  • Whole-Genome Microarray Detects Deletions and Loss of Heterozygosity of Chromosome 3 Occurring Exclusively in Metastasizing Uveal Melanoma
    Anatomy and Pathology Whole-Genome Microarray Detects Deletions and Loss of Heterozygosity of Chromosome 3 Occurring Exclusively in Metastasizing Uveal Melanoma Sarah L. Lake,1 Sarah E. Coupland,1 Azzam F. G. Taktak,2 and Bertil E. Damato3 PURPOSE. To detect deletions and loss of heterozygosity of disease is fatal in 92% of patients within 2 years of diagnosis. chromosome 3 in a rare subset of fatal, disomy 3 uveal mela- Clinical and histopathologic risk factors for UM metastasis noma (UM), undetectable by fluorescence in situ hybridization include large basal tumor diameter (LBD), ciliary body involve- (FISH). ment, epithelioid cytomorphology, extracellular matrix peri- ϩ ETHODS odic acid-Schiff-positive (PAS ) loops, and high mitotic M . Multiplex ligation-dependent probe amplification 3,4 5 (MLPA) with the P027 UM assay was performed on formalin- count. Prescher et al. showed that a nonrandom genetic fixed, paraffin-embedded (FFPE) whole tumor sections from 19 change, monosomy 3, correlates strongly with metastatic death, and the correlation has since been confirmed by several disomy 3 metastasizing UMs. Whole-genome microarray analy- 3,6–10 ses using a single-nucleotide polymorphism microarray (aSNP) groups. Consequently, fluorescence in situ hybridization were performed on frozen tissue samples from four fatal dis- (FISH) detection of chromosome 3 using a centromeric probe omy 3 metastasizing UMs and three disomy 3 tumors with Ͼ5 became routine practice for UM prognostication; however, 5% years’ metastasis-free survival. to 20% of disomy 3 UM patients unexpectedly develop metas- tases.11 Attempts have therefore been made to identify the RESULTS. Two metastasizing UMs that had been classified as minimal region(s) of deletion on chromosome 3.12–15 Despite disomy 3 by FISH analysis of a small tumor sample were found these studies, little progress has been made in defining the key on MLPA analysis to show monosomy 3.
    [Show full text]
  • Inherited Neuropathies
    407 Inherited Neuropathies Vera Fridman, MD1 M. M. Reilly, MD, FRCP, FRCPI2 1 Department of Neurology, Neuromuscular Diagnostic Center, Address for correspondence Vera Fridman, MD, Neuromuscular Massachusetts General Hospital, Boston, Massachusetts Diagnostic Center, Massachusetts General Hospital, Boston, 2 MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology Massachusetts, 165 Cambridge St. Boston, MA 02114 and The National Hospital for Neurology and Neurosurgery, Queen (e-mail: [email protected]). Square, London, United Kingdom Semin Neurol 2015;35:407–423. Abstract Hereditary neuropathies (HNs) are among the most common inherited neurologic Keywords disorders and are diverse both clinically and genetically. Recent genetic advances have ► hereditary contributed to a rapid expansion of identifiable causes of HN and have broadened the neuropathy phenotypic spectrum associated with many of the causative mutations. The underlying ► Charcot-Marie-Tooth molecular pathways of disease have also been better delineated, leading to the promise disease for potential treatments. This chapter reviews the clinical and biological aspects of the ► hereditary sensory common causes of HN and addresses the challenges of approaching the diagnostic and motor workup of these conditions in a rapidly evolving genetic landscape. neuropathy ► hereditary sensory and autonomic neuropathy Hereditary neuropathies (HN) are among the most common Select forms of HN also involve cranial nerves and respiratory inherited neurologic diseases, with a prevalence of 1 in 2,500 function. Nevertheless, in the majority of patients with HN individuals.1,2 They encompass a clinically heterogeneous set there is no shortening of life expectancy. of disorders and vary greatly in severity, spanning a spectrum Historically, hereditary neuropathies have been classified from mildly symptomatic forms to those resulting in severe based on the primary site of nerve pathology (myelin vs.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Primate Specific Retrotransposons, Svas, in the Evolution of Networks That Alter Brain Function
    Title: Primate specific retrotransposons, SVAs, in the evolution of networks that alter brain function. Olga Vasieva1*, Sultan Cetiner1, Abigail Savage2, Gerald G. Schumann3, Vivien J Bubb2, John P Quinn2*, 1 Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, U.K 2 Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, The University of Liverpool, Liverpool L69 3BX, UK 3 Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, D-63225 Germany *. Corresponding author Olga Vasieva: Institute of Integrative Biology, Department of Comparative genomics, University of Liverpool, Liverpool, L69 7ZB, [email protected] ; Tel: (+44) 151 795 4456; FAX:(+44) 151 795 4406 John Quinn: Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, The University of Liverpool, Liverpool L69 3BX, UK, [email protected]; Tel: (+44) 151 794 5498. Key words: SVA, trans-mobilisation, behaviour, brain, evolution, psychiatric disorders 1 Abstract The hominid-specific non-LTR retrotransposon termed SINE–VNTR–Alu (SVA) is the youngest of the transposable elements in the human genome. The propagation of the most ancient SVA type A took place about 13.5 Myrs ago, and the youngest SVA types appeared in the human genome after the chimpanzee divergence. Functional enrichment analysis of genes associated with SVA insertions demonstrated their strong link to multiple ontological categories attributed to brain function and the disorders. SVA types that expanded their presence in the human genome at different stages of hominoid life history were also associated with progressively evolving behavioural features that indicated a potential impact of SVA propagation on a cognitive ability of a modern human.
    [Show full text]
  • Research Publications by DISTINCTIONS Any Scientist of Pakistan in Last 10 Year and SERVICES  Secretary General, the Chemical Society of Pakistan
    CV and List of Publications PROF. DR. MUHAMMAD IQBAL CHOUDHARY (Hilal-e-Imtiaz, Sitara-e-Imtiaz, Tamgha-ei-Imtiaz) International Center for Chemical and Biological Sciences (H. E. J. Research Institute of Chemistry, Dr. Panjwani Center for Molecular Medicine and Drug Research) University of Karachi, Karachi-75270 Pakistan Tel: (92-21) 34824924, 34824925 Fax: 34819018, 34819019 E-mail: [email protected] Web Page: www.iccs.edu Biodata and List of Publications Pag No. 2 MUHAMMAD IQBAL CHOUDHARY (Hilal-e-Imtiaz, Sitara-e-Imtiaz, Tamgha-e-Imtiaz) D-131, Phase II, D. O. H. S., Malir Cant., Karachi-75270, Pakistan Ph.: 92-21-4901110 MAILING INTERNATIONAL CENTER FOR CHEMICAL AND BIOLOGICAL SCIENCES ADDRESS (H. E. J. Research Institute of Chemistry Dr. Panjwani Center for Molecular Medicine and Drug Research) University of Karachi Karachi-74270, Pakistan Tel: (92-21) 34824924-5 Fax: (92-21) 34819018-9 Email: [email protected] Web: www.iccs.edu DATE OF BIRTH September 11, 1959 (Karachi, Pakistan) EDUCATION Doctor of Science (D.Sc.) (University of Karachi ) 2005 Ph.D. (Organic Chemistry) 1987 H. E. J. Research Institute of Chemistry University of Karachi, Karachi-75270, Pakistan Thesis Title: "The Isolation and Structural Studies on Some Medicinal Plants of Pakistan, Buxus papillosa, Catharanthus roseus, and Cissampelos pareira." M.Sc. (Organic Chemistry) 1983 University of Karachi, Karachi-75270, Pakistan B.Sc. (Chemistry, Biochemistry, Botany) 1980 University of Karachi, Karachi-75270, Pakistan AWARDS & Declared as the top most scientist (Number 1) among 1,650 HONORS scientists of Pakistan in all disciplines / fields of science and technology (year 2012) by the Pakistan Council for Science and Technology (Ministry of Science and Technology), Pakistan.
    [Show full text]
  • Governance Structure of the State Bank of Pakistan
    Governance Structure of the State Bank of Pakistan The State Bank of Pakistan (SBP) is incorporated under the State Bank of Pakistan Act, 1956, which gives the Bank the authority to function as the central bank of the country. The Act mandates the Bank to regulate the monetary and credit system of Pakistan and to foster its growth in the best national interest with a view to securing monetary stability and fuller utilization of the country’s productive resources. Central Board of Directors The State Bank of Pakistan is governed by an independent Board of Directors, which is responsible for the general superintendence and direction of the affairs of the Bank. The Board is chaired by the Governor SBP and comprises of 8 non-executive Directors and Secretary Finance to the Federal Government. The Governor SBP is also the Chief Executive Officer of the Bank and manages the affairs of the Bank on behalf of the Central Board. The SBP Act, 1956 (as amended) stipulates that the Board members should be eminent professionals from the fields of economics, finance, banking and accountancy and shall have no conflict of interest with the business of the Bank. During FY13, all 7 vacant positions on the Board were filled through appointment of Directors by the Federal Government. Out of these 7 newly appointed Directors, 5 were appointed on February 26, 2013 followed by 2 appointments in March, 2013. Brief profile of the members of the Board is given on pages 9-10. The current composition of the Board brings a diverse range of professional expertise, adding value to the deliberations.
    [Show full text]
  • Aneuploidy: Using Genetic Instability to Preserve a Haploid Genome?
    Health Science Campus FINAL APPROVAL OF DISSERTATION Doctor of Philosophy in Biomedical Science (Cancer Biology) Aneuploidy: Using genetic instability to preserve a haploid genome? Submitted by: Ramona Ramdath In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Science Examination Committee Signature/Date Major Advisor: David Allison, M.D., Ph.D. Academic James Trempe, Ph.D. Advisory Committee: David Giovanucci, Ph.D. Randall Ruch, Ph.D. Ronald Mellgren, Ph.D. Senior Associate Dean College of Graduate Studies Michael S. Bisesi, Ph.D. Date of Defense: April 10, 2009 Aneuploidy: Using genetic instability to preserve a haploid genome? Ramona Ramdath University of Toledo, Health Science Campus 2009 Dedication I dedicate this dissertation to my grandfather who died of lung cancer two years ago, but who always instilled in us the value and importance of education. And to my mom and sister, both of whom have been pillars of support and stimulating conversations. To my sister, Rehanna, especially- I hope this inspires you to achieve all that you want to in life, academically and otherwise. ii Acknowledgements As we go through these academic journeys, there are so many along the way that make an impact not only on our work, but on our lives as well, and I would like to say a heartfelt thank you to all of those people: My Committee members- Dr. James Trempe, Dr. David Giovanucchi, Dr. Ronald Mellgren and Dr. Randall Ruch for their guidance, suggestions, support and confidence in me. My major advisor- Dr. David Allison, for his constructive criticism and positive reinforcement.
    [Show full text]
  • Download Thesis
    This electronic thesis or dissertation has been downloaded from the King’s Research Portal at https://kclpure.kcl.ac.uk/portal/ The Genetics and Spread of Amyotrophic Lateral Sclerosis Jones, Ashley Richard Awarding institution: King's College London The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without proper acknowledgement. END USER LICENCE AGREEMENT Unless another licence is stated on the immediately following page this work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence. https://creativecommons.org/licenses/by-nc-nd/4.0/ You are free to copy, distribute and transmit the work Under the following conditions: Attribution: You must attribute the work in the manner specified by the author (but not in any way that suggests that they endorse you or your use of the work). Non Commercial: You may not use this work for commercial purposes. No Derivative Works - You may not alter, transform, or build upon this work. Any of these conditions can be waived if you receive permission from the author. Your fair dealings and other rights are in no way affected by the above. Take down policy If you believe that this document breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 07. Oct. 2021 THE GENETICS AND SPREAD OF AMYOTROPHIC LATERAL SCLEROSIS Ashley Richard Jones PhD in Clinical Neuroscience - 1 - Abstract Our knowledge of the genetic contribution to Amyotrophic Lateral Sclerosis (ALS) is rapidly growing, and there is increasing research into how ALS spreads through the motor system and beyond.
    [Show full text]
  • Cofactor of BRCA1: a New Genetic Marker for Common Malignant Liver Cancer
    RESEARCH HIGHLIGHTS doi: 10.18282/amor.v2.i4.157 Cofactor of BRCA1: A new genetic marker for common malignant liver cancer new study has identified a vital gene in the pathogenesis and progression of liver cancer hepatocellular carcinoma (HCC), according to a A team of researchers at The American University in Cairo, Egypt, in a paper published in this issue of AMOR. The study on human gene ‘cofactor of BRCA1’ (dubbed COBRA1) and its potential role as a reliable cancer predictor for HCC is especially important owing to the disease’s grim outlook. HCC is “ranked as the second most common cause of cancer-related deaths in the world in 2012,” the authors said. “Thus, it is considered as a highly aggressive cancer with poor prognosis,” they added. The behavior of COBRA1 in the development and pro- gression of several cancers has previously been studied and established. Youssef observed, “For example, cell lines and tissues isolated from late-stage metastatic breast cancer tumors showed low expression levels of the COBRA1 protein, which is known to display tumor suppressor activ- ity.” In contrast, “another study reported that COBRA1 was overexpressed in upper gastrointestinal carcinoma (UGC) tissue samples,” they added. Yet, COBRA1’s involvement in HCC tumor formation and growth has been subjected to minimal studies. “To date, the molecular mechanisms underlying HCC patho- genesis have not been fully identified, thus resulting in a lack of reliable prognostic markers for HCC,” said the re- According to data from the Surveillance Epidemiology searchers. and End Results (SEER) program, hepatocellular carcino- ma accounts for 90% of all liver cancers worldwide.
    [Show full text]