Download Thesis

Total Page:16

File Type:pdf, Size:1020Kb

Download Thesis This electronic thesis or dissertation has been downloaded from the King’s Research Portal at https://kclpure.kcl.ac.uk/portal/ The Genetics and Spread of Amyotrophic Lateral Sclerosis Jones, Ashley Richard Awarding institution: King's College London The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without proper acknowledgement. END USER LICENCE AGREEMENT Unless another licence is stated on the immediately following page this work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence. https://creativecommons.org/licenses/by-nc-nd/4.0/ You are free to copy, distribute and transmit the work Under the following conditions: Attribution: You must attribute the work in the manner specified by the author (but not in any way that suggests that they endorse you or your use of the work). Non Commercial: You may not use this work for commercial purposes. No Derivative Works - You may not alter, transform, or build upon this work. Any of these conditions can be waived if you receive permission from the author. Your fair dealings and other rights are in no way affected by the above. Take down policy If you believe that this document breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 07. Oct. 2021 THE GENETICS AND SPREAD OF AMYOTROPHIC LATERAL SCLEROSIS Ashley Richard Jones PhD in Clinical Neuroscience - 1 - Abstract Our knowledge of the genetic contribution to Amyotrophic Lateral Sclerosis (ALS) is rapidly growing, and there is increasing research into how ALS spreads through the motor system and beyond. This thesis examines how genetic and non-genetic factors in ALS influence its spread. The genetic methods employed were PCR, genotyping, AFLP, DNA sequencing and gene expression. The methods to examine spread were H&E staining, clinical history, age of onset (AOO), survival and health utility. Statistical procedures applied included regression analyses of genetic and non-genetic factors, maximum likelihood estimation of genetic-phenotype variance and health utility, RNA-sequence analyses, and differential gene expression analysis. I found (A) that variation in the ATXN2 gene contributes to ALS, as does variation in C9ORF72 after correcting for the known C9ORF72 pathological hexanucleotide repeat (HREM). (B) On comparing regions of the spinal cord, patterns of differential gene expression between ALS cases and controls appeared consistent with spread and pathology. Functional annotation clustering revealed these genes were mostly involved in blood vessel and angiogenin-like function, glycoprotein-based activity, and leukocyte activity. (C) A significant proportion of survival variance in ALS could be explained by genetic variance. There were SNPs that predicted survival and AOO, one showing epistasis with the C9ORF72 HREM. (D) When modelling ALS progression using staging and a clinical trial dataset, the time and duration of each stage was statistically predictable. Staging also predicted health utility and other functional and psycho- metrics. The spread and pathology in ALS spinal cord regions affected gene expression profiles, which is likely a consequence of genetic susceptibility in that region. Indicators of spread, AOO and survival, could be predicted using genotypes. Disease progression was predictable as measured by clinical staging and health metrics. In summary, ALS spread seems to occur at a fixed rate in an individual and is influenced by genetics. - 2 - Table of Contents Abstract .......................................................................................................................................... 2 Table of Contents ........................................................................................................................... 3 Table of Figures ............................................................................................................................. 9 Table of Tables ............................................................................................................................ 11 Acknowledgements ...................................................................................................................... 13 Dedication .................................................................................................................................... 15 Chapter 1 Introduction and Literature Review ............................................................................. 17 1.1 Introduction ................................................................................................................... 17 1.2 Literature review of genetic discovery in ALS .............................................................. 19 1.2.1 Genetic Risk Factors ............................................................................................ 19 1.2.2 Genes identified through family-based studies .................................................... 20 1.2.3 Genes causing atypical ALS identified through family based studies .................. 25 1.2.4 Genes identified through candidate gene association studies ............................. 26 1.2.5 Genes identified through genome-wide association studies of unrelated samples 28 1.2.6 Genes identified through other methods .............................................................. 29 1.2.7 Genes modifying Age of Onset ............................................................................ 30 1.2.8 Genes modifying survival ..................................................................................... 32 1.2.9 Genes modifying onset site .................................................................................. 33 1.2.10 Genes modifying sex ............................................................................................ 33 1.2.11 Summary .............................................................................................................. 34 1.3 Literature review of disease spread and gene expression .......................................... 35 1.3.1 Disease spread .................................................................................................... 35 1.3.2 Disease-spread using health states ..................................................................... 38 1.3.3 Gene expression analyses ................................................................................... 39 1.3.4 eQTL analyses ..................................................................................................... 41 1.3.5 Summary .............................................................................................................. 42 Chapter 2 Genetic analyses using genotypes: ATXN2 and PLCD1 ......................................... 43 2.1 Introduction ................................................................................................................... 43 - 3 - 2.1.1 ATXN2 .................................................................................................................. 43 2.1.2 PLCD1 .................................................................................................................. 44 2.2 Methods ........................................................................................................................ 45 2.2.1 Sample population................................................................................................ 45 2.2.2 UK Sample Collection .......................................................................................... 46 2.2.3 UK Genotyping ..................................................................................................... 47 2.2.4 Genotype Statistical Quality Control .................................................................... 47 2.2.5 Phasing and imputation ........................................................................................ 47 2.2.6 Association and haplotype analyses .................................................................... 48 2.3 Results ......................................................................................................................... 49 2.3.1 ATXN2 .................................................................................................................. 49 2.3.2 PLCD1 .................................................................................................................. 50 2.4 Discussion .................................................................................................................... 51 2.4.1 ATXN2 .................................................................................................................. 51 2.4.2 PLCD1 .................................................................................................................. 52 2.4.3 Summary .............................................................................................................. 53 Chapter 3 Residual association at C9ORF72 ........................................................................... 55 3.1 Introduction ................................................................................................................... 55 3.2 Method ......................................................................................................................... 56 3.2.1 Sample collection ................................................................................................
Recommended publications
  • Environmental Influences on Endothelial Gene Expression
    ENDOTHELIAL CELL GENE EXPRESSION John Matthew Jeff Herbert Supervisors: Prof. Roy Bicknell and Dr. Victoria Heath PhD thesis University of Birmingham August 2012 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. ABSTRACT Tumour angiogenesis is a vital process in the pathology of tumour development and metastasis. Targeting markers of tumour endothelium provide a means of targeted destruction of a tumours oxygen and nutrient supply via destruction of tumour vasculature, which in turn ultimately leads to beneficial consequences to patients. Although current anti -angiogenic and vascular targeting strategies help patients, more potently in combination with chemo therapy, there is still a need for more tumour endothelial marker discoveries as current treatments have cardiovascular and other side effects. For the first time, the analyses of in-vivo biotinylation of an embryonic system is performed to obtain putative vascular targets. Also for the first time, deep sequencing is applied to freshly isolated tumour and normal endothelial cells from lung, colon and bladder tissues for the identification of pan-vascular-targets. Integration of the proteomic, deep sequencing, public cDNA libraries and microarrays, delivers 5,892 putative vascular targets to the science community.
    [Show full text]
  • Genetic Inhibition of the Ubiquitin Ligase Rnf5 Attenuates Phenotypes
    www.nature.com/scientificreports OPEN Genetic Inhibition Of The Ubiquitin Ligase Rnf5 Attenuates Phenotypes Associated To F508del Received: 02 February 2015 Accepted: 17 June 2015 Cystic Fibrosis Mutation Published: 17 July 2015 Valeria Tomati1, Elvira Sondo1, Andrea Armirotti2, Emanuela Caci1, Emanuela Pesce1, Monica Marini1, Ambra Gianotti1, Young Ju Jeon3, Michele Cilli4, Angela Pistorio1, Luca Mastracci4,5, Roberto Ravazzolo1,6, Bob Scholte7, Ze’ev Ronai3, Luis J. V. Galietta1 & Nicoletta Pedemonte1 Cystic fibrosis (CF) is caused by mutations in the CFTR chloride channel. Deletion of phenylalanine 508 (F508del), the most frequent CF mutation, impairs CFTR trafficking and gating. F508del- CFTR mistrafficking may be corrected by acting directly on mutant CFTR itself or by modulating expression/activity of CFTR-interacting proteins, that may thus represent potential drug targets. To evaluate possible candidates for F508del-CFTR rescue, we screened a siRNA library targeting known CFTR interactors. Our analysis identified RNF5 as a protein whose inhibition promoted significant F508del-CFTR rescue and displayed an additive effect with the investigational drug VX-809. Significantly, RNF5 loss in F508del-CFTR transgenic animals ameliorated intestinal malabsorption and concomitantly led to an increase in CFTR activity in intestinal epithelial cells. In addition, we found that RNF5 is differentially expressed in human bronchial epithelia from CF vs. control patients. Our results identify RNF5 as a target for therapeutic modalities to antagonize mutant CFTR proteins. Cystic Fibrosis (CF), one of the most common inherited diseases (~1/3000 in Caucasian populations), is caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR), a cAMP-regulated chloride channel expressed at the apical membrane of many types of epithelial cells1,2.
    [Show full text]
  • RNF5 Antibody
    RNF5 Antibody CATALOG NUMBER: 27-144 Antibody used in WB on Human HeLa at 0.2-1 ug/ml. Specifications APPLICATIONS: RNF5 antibody can be used for detection of RNF5 by ELISA at 1:12500. RNF5 antibody can be used for detection of RNF5 by western blot at 1 ug/mL, and HRP conjugated secondary antibody should be diluted 1:50,000 - 100,000. USER NOTE: Optimal dilutions for each application to be determined by the researcher. POSITIVE CONTROL: 1) Cat. No. 1201 - HeLa Cell Lysate PREDICTED MOLECULAR 20 kDa WEIGHT: IMMUNOGEN: Antibody produced in rabbits immunized with a synthetic peptide corresponding a region of human RNF5. HOST SPECIES: Rabbit Properties PURIFICATION: Antibody is purified by peptide affinity chromatography method. PHYSICAL STATE: Lyophilized BUFFER: Antibody is lyophilized in PBS buffer with 2% sucrose. Add 50 uL of distilled water. Final antibody concentration is 1 mg/mL. CONCENTRATION: 1 mg/ml STORAGE CONDITIONS: For short periods of storage (days) store at 4˚C. For longer periods of storage, store RNF5 antibody at -20˚C. As with any antibody avoid repeat freeze-thaw cycles. CLONALITY: Polyclonal CONJUGATE: Unconjugated Additional Info ALTERNATE NAMES: RNF5, RING5, RMA1 ACCESSION NO.: NP_008844 PROTEIN GI NO.: 5902054 OFFICIAL SYMBOL: RNF5 GENE ID: 6048 Background BACKGROUND: RNF5 contains a RING finger, which is a motif known to be involved in protein-protein interactions. This protein is a membrane-bound ubiquitin ligase. It can regulate cell motility by targeting paxillin ubiquitination and altering the distribution and localization of paxillin in cytoplasm and cell focal adhesions.The protein encoded by this gene contains a RING finger, which is a motif known to be involved in protein-protein interactions.
    [Show full text]
  • 1 Supporting Information for a Microrna Network Regulates
    Supporting Information for A microRNA Network Regulates Expression and Biosynthesis of CFTR and CFTR-ΔF508 Shyam Ramachandrana,b, Philip H. Karpc, Peng Jiangc, Lynda S. Ostedgaardc, Amy E. Walza, John T. Fishere, Shaf Keshavjeeh, Kim A. Lennoxi, Ashley M. Jacobii, Scott D. Rosei, Mark A. Behlkei, Michael J. Welshb,c,d,g, Yi Xingb,c,f, Paul B. McCray Jr.a,b,c Author Affiliations: Department of Pediatricsa, Interdisciplinary Program in Geneticsb, Departments of Internal Medicinec, Molecular Physiology and Biophysicsd, Anatomy and Cell Biologye, Biomedical Engineeringf, Howard Hughes Medical Instituteg, Carver College of Medicine, University of Iowa, Iowa City, IA-52242 Division of Thoracic Surgeryh, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada-M5G 2C4 Integrated DNA Technologiesi, Coralville, IA-52241 To whom correspondence should be addressed: Email: [email protected] (M.J.W.); yi- [email protected] (Y.X.); Email: [email protected] (P.B.M.) This PDF file includes: Materials and Methods References Fig. S1. miR-138 regulates SIN3A in a dose-dependent and site-specific manner. Fig. S2. miR-138 regulates endogenous SIN3A protein expression. Fig. S3. miR-138 regulates endogenous CFTR protein expression in Calu-3 cells. Fig. S4. miR-138 regulates endogenous CFTR protein expression in primary human airway epithelia. Fig. S5. miR-138 regulates CFTR expression in HeLa cells. Fig. S6. miR-138 regulates CFTR expression in HEK293T cells. Fig. S7. HeLa cells exhibit CFTR channel activity. Fig. S8. miR-138 improves CFTR processing. Fig. S9. miR-138 improves CFTR-ΔF508 processing. Fig. S10. SIN3A inhibition yields partial rescue of Cl- transport in CF epithelia.
    [Show full text]
  • Supplementary Table 1: Adhesion Genes Data Set
    Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like,
    [Show full text]
  • Aneuploidy: Using Genetic Instability to Preserve a Haploid Genome?
    Health Science Campus FINAL APPROVAL OF DISSERTATION Doctor of Philosophy in Biomedical Science (Cancer Biology) Aneuploidy: Using genetic instability to preserve a haploid genome? Submitted by: Ramona Ramdath In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Science Examination Committee Signature/Date Major Advisor: David Allison, M.D., Ph.D. Academic James Trempe, Ph.D. Advisory Committee: David Giovanucci, Ph.D. Randall Ruch, Ph.D. Ronald Mellgren, Ph.D. Senior Associate Dean College of Graduate Studies Michael S. Bisesi, Ph.D. Date of Defense: April 10, 2009 Aneuploidy: Using genetic instability to preserve a haploid genome? Ramona Ramdath University of Toledo, Health Science Campus 2009 Dedication I dedicate this dissertation to my grandfather who died of lung cancer two years ago, but who always instilled in us the value and importance of education. And to my mom and sister, both of whom have been pillars of support and stimulating conversations. To my sister, Rehanna, especially- I hope this inspires you to achieve all that you want to in life, academically and otherwise. ii Acknowledgements As we go through these academic journeys, there are so many along the way that make an impact not only on our work, but on our lives as well, and I would like to say a heartfelt thank you to all of those people: My Committee members- Dr. James Trempe, Dr. David Giovanucchi, Dr. Ronald Mellgren and Dr. Randall Ruch for their guidance, suggestions, support and confidence in me. My major advisor- Dr. David Allison, for his constructive criticism and positive reinforcement.
    [Show full text]
  • A Homozygous Missense Variant in VWA2, Encoding an Interactor of the Fraser-Complex, in a Patient with Vesicoureteral Reflux
    A homozygous missense variant in VWA2, encoding an interactor of the Fraser-complex, in a patient with vesicoureteral reflux The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation van der Ven, A. T., B. Kobbe, S. Kohl, S. Shril, H. Pogoda, T. Imhof, H. Ityel, et al. 2018. “A homozygous missense variant in VWA2, encoding an interactor of the Fraser-complex, in a patient with vesicoureteral reflux.” PLoS ONE 13 (1): e0191224. doi:10.1371/journal.pone.0191224. http://dx.doi.org/10.1371/ journal.pone.0191224. Published Version doi:10.1371/journal.pone.0191224 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:35014926 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA RESEARCH ARTICLE A homozygous missense variant in VWA2, encoding an interactor of the Fraser-complex, in a patient with vesicoureteral reflux Amelie T. van der Ven1, Birgit Kobbe2, Stefan Kohl1,3, Shirlee Shril1, Hans-Martin Pogoda4, Thomas Imhof5, Hadas Ityel1, Asaf Vivante1,6, Jing Chen1,7, Daw-Yang Hwang1,8, Dervla M. Connaughton1, Nina Mann1, Eugen Widmeier1, Mary Taglienti1, Johanna Magdalena Schmidt1, Makiko Nakayama1, Prabha Senguttuvan9, Selvin Kumar10, Velibor Tasic11, Elijah O. Kehinde12, Shrikant M. Mane13, Richard P. Lifton13,14, a1111111111 Neveen Soliman15, Weining Lu16,
    [Show full text]
  • Systematic Genetic Analysis of the MHC Region Reveals Mechanistic
    RESEARCH ARTICLE Systematic genetic analysis of the MHC region reveals mechanistic underpinnings of HLA type associations with disease Matteo D’Antonio1,2†, Joaquin Reyna2,3†, David Jakubosky3,4, Margaret KR Donovan4,5, Marc-Jan Bonder6, Hiroko Matsui1, Oliver Stegle6, Naoki Nariai2‡, Agnieszka D’Antonio-Chronowska1,2, Kelly A Frazer1,2* 1Institute for Genomic Medicine, University of California, San Diego, San Diego, United States; 2Department of Pediatrics, Rady Children’s Hospital, University of California, San Diego, San Diego, United States; 3Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, United States; 4Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, San Diego, United States; 5Department of Biomedical Informatics, University of California, San Diego, San Diego, United States; 6European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, United Kingdom Abstract The MHC region is highly associated with autoimmune and infectious diseases. Here we conduct an in-depth interrogation of associations between genetic variation, gene expression and disease. We create a comprehensive map of regulatory variation in the MHC region using WGS from 419 individuals to call eight-digit HLA types and RNA-seq data from matched iPSCs. Building on this regulatory map, we explored GWAS signals for 4083 traits, detecting colocalization for 180 *For correspondence: disease loci with eQTLs. We show that eQTL analyses taking HLA type haplotypes into account [email protected] have substantially greater power compared with only using single variants. We examined the † These authors contributed association between the 8.1 ancestral haplotype and delayed colonization in Cystic Fibrosis, equally to this work postulating that downregulation of RNF5 expression is the likely causal mechanism.
    [Show full text]
  • Regular Article
    From www.bloodjournal.org by guest on April 6, 2015. For personal use only. Regular Article IMMUNOBIOLOGY Hemophagocytic lymphohistiocytosis caused by dominant-negative mutations in STXBP2 that inhibit SNARE-mediated membrane fusion Waldo A. Spessott,1 Maria L. Sanmillan,1 Margaret E. McCormick,1 Nishant Patel,2 Joyce Villanueva,3 Kejian Zhang,4 Kim E. Nichols,5 and Claudio G. Giraudo1 1Department of Pathology and Laboratory Medicine, and 2Division of Oncology, Department of Pediatrics, The Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA; 3Division of Bone Marrow Transplant and Immune Deficiency, and 4Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH; and 5Division of Cancer Predisposition, Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN Key Points Familial hemophagocytic lymphohistiocytosis (F-HLH) and Griscelli syndrome type 2 (GS) are life-threatening immunodeficiencies characterized by impaired cytotoxic T lymphocyte • Monoallelic STXBP2 mutations (CTL) and natural killer (NK) cell lytic activity. In the majority of cases, these disorders are affecting codon 65 impair caused by biallelic inactivating germline mutations in genes such as RAB27A (GS) and PRF1, lymphocyte cytotoxicity and UNC13D, STX11,andSTXBP2 (F-HLH). Although monoallelic (ie, heterozygous) mutations contribute to hemophagocytic have been identified in certain patients, the clinical significance and molecular mechanisms lymphohistiocytosis. by which these mutations influence CTL and NK cell function remain poorly understood. • Munc18-2R65Q/W mutant Here, we characterize 2 novel monoallelic hemophagocytic lymphohistiocytosis (HLH)- associated mutations affecting codon 65 of STXPB2, the gene encoding Munc18-2, a member proteins function in a dominant- of the SEC/MUNC18 family.
    [Show full text]
  • Detailed Characterization of Human Induced Pluripotent Stem Cells Manufactured for Therapeutic Applications
    Stem Cell Rev and Rep DOI 10.1007/s12015-016-9662-8 Detailed Characterization of Human Induced Pluripotent Stem Cells Manufactured for Therapeutic Applications Behnam Ahmadian Baghbaderani 1 & Adhikarla Syama2 & Renuka Sivapatham3 & Ying Pei4 & Odity Mukherjee2 & Thomas Fellner1 & Xianmin Zeng3,4 & Mahendra S. Rao5,6 # The Author(s) 2016. This article is published with open access at Springerlink.com Abstract We have recently described manufacturing of hu- help determine which set of tests will be most useful in mon- man induced pluripotent stem cells (iPSC) master cell banks itoring the cells and establishing criteria for discarding a line. (MCB) generated by a clinically compliant process using cord blood as a starting material (Baghbaderani et al. in Stem Cell Keywords Induced pluripotent stem cells . Embryonic stem Reports, 5(4), 647–659, 2015). In this manuscript, we de- cells . Manufacturing . cGMP . Consent . Markers scribe the detailed characterization of the two iPSC clones generated using this process, including whole genome se- quencing (WGS), microarray, and comparative genomic hy- Introduction bridization (aCGH) single nucleotide polymorphism (SNP) analysis. We compare their profiles with a proposed calibra- Induced pluripotent stem cells (iPSCs) are akin to embryonic tion material and with a reporter subclone and lines made by a stem cells (ESC) [2] in their developmental potential, but dif- similar process from different donors. We believe that iPSCs fer from ESC in the starting cell used and the requirement of a are likely to be used to make multiple clinical products. We set of proteins to induce pluripotency [3]. Although function- further believe that the lines used as input material will be used ally identical, iPSCs may differ from ESC in subtle ways, at different sites and, given their immortal status, will be used including in their epigenetic profile, exposure to the environ- for many years or even decades.
    [Show full text]
  • Role of Genomic Variants in the Response to Biologics Targeting Common Autoimmune Disorders
    Role of genomic variants in the response to biologics targeting common autoimmune disorders by Gordana Lenert, PhD The thesis submitted to the Faculty of Graduate and Postdoctoral Affairs in partial fulfillment of the requirements for the degree of Master of Science Ottawa-Carleton Joint Program in Bioinformatics Carleton University Ottawa, Canada © 2016 Gordana Lenert Abstract Autoimmune diseases (AID) are common chronic inflammatory conditions initiated by the loss of the immunological tolerance to self-antigens. Chronic immune response and uncontrolled inflammation provoke diverse clinical manifestations, causing impairment of various tissues, organs or organ systems. To avoid disability and death, AID must be managed in clinical practice over long periods with complex and closely controlled medication regimens. The anti-tumor necrosis factor biologics (aTNFs) are targeted therapeutic drugs used for AID management. However, in spite of being very successful therapeutics, aTNFs are not able to induce remission in one third of AID phenotypes. In our research, we investigated genomic variability of AID phenotypes in order to explain unpredictable lack of response to aTNFs. Our hypothesis is that key genetic factors, responsible for the aTNFs unresponsiveness, are positioned at the crossroads between aTNF therapeutic processes that generate remission and pathogenic or disease processes that lead to AID phenotypes expression. In order to find these key genetic factors at the intersection of the curative and the disease pathways, we combined genomic variation data collected from publicly available curated AID genome wide association studies (AID GWAS) for each disease. Using collected data, we performed prioritization of genes and other genomic structures, defined the key disease pathways and networks, and related the results with the known data by the bioinformatics approaches.
    [Show full text]
  • In-Depth Analysis of the Plasma Proteome in ME/CFS Exposes Disrupted Ephrin-Eph and Immune System Signaling
    proteomes Article In-Depth Analysis of the Plasma Proteome in ME/CFS Exposes Disrupted Ephrin-Eph and Immune System Signaling Arnaud Germain , Susan M. Levine and Maureen R. Hanson * Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA; [email protected] (A.G.); [email protected] (S.M.L.) * Correspondence: [email protected]; Tel.: +1-607-254-4833 Abstract: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a disabling disease with worldwide prevalence and limited therapies exclusively aimed at treating symptoms. To gain insights into the molecular disruptions in ME/CFS, we utilized an aptamer-based technology that quantified 4790 unique human proteins, allowing us to obtain the largest proteomics dataset yet available for this disease, detecting highly abundant proteins as well as rare proteins over a nine- log dynamic range. We report a pilot study of 20 ME/CFS patients and 20 controls, all females. Significant differences in the levels of 19 proteins between cohorts implicate pathways related to the extracellular matrix, the immune system and cell–cell communication. Outputs of pathway and cluster analyses robustly highlight the ephrin pathway, which is involved in cell–cell signaling and regulation of an expansive variety of biological processes, including axon guidance, angiogenesis, epithelial cell migration, and immune response. Receiver Operating Characteristic (ROC) curve analyses distinguish the plasma proteomes of ME/CFS patients from controls with a high degree of accuracy (Area Under the Curve (AUC) > 0.85), and even higher when using protein ratios (AUC up to 0.95), that include some protein pairs with established biological relevance.
    [Show full text]