Inhibition of Angiogenesis by Growth Factor Receptor Bound Protein 2-Src Homology 2 Domain Binding Antagonists

Total Page:16

File Type:pdf, Size:1020Kb

Inhibition of Angiogenesis by Growth Factor Receptor Bound Protein 2-Src Homology 2 Domain Binding Antagonists Molecular Cancer Therapeutics 1289 Inhibition of angiogenesis by growth factor receptor bound protein 2-Src homology 2 domain binding antagonists Jesus V. Soriano,1 Ningfei Liu,4 Yang Gao,2 characterized role of Grb2 in signaling cell cycle progres- Zhu-Jun Yao,2 Toshio Ishibashi,3 sion together with our present findings suggests that Charles Underhill,4 Terrence R. Burke, Jr.,2 Grb2-SH2 domain binding antagonists have the potential and Donald P. Bottaro1 to act as anticancer drugs that target both tumor and vascular cell compartments. [Mol Cancer Ther 2004;3(10): 1 2 Laboratories of Cellular and Molecular Biology and Medicinal 1289–99] Chemistry, National Cancer Institute, NIH, Bethesda, Maryland; 3Department of Otolaryngology, Social Insurance Central General Hospital, Tokyo, Japan; and 4Department of Cell Biology, Georgetown University, Washington, District of Columbia Introduction Angiogenesis, the sprouting of new capillaries from existing blood vessels, consists of a complex cascade of events in- Abstract cluding endothelial cell–mediated degradation and inva- Growth factor receptor bound protein 2 (Grb2) is an sion of the extracellular matrix, endothelial cell migration, intracellular adaptor protein that participates in the signal proliferation, differentiation, basement membrane deposi- transduction cascades of several angiogenic factors, tion, and the organization of endothelial cords into capil- including hepatocyte growth factor, basic fibroblast lary structures. This sequence of events is regulated by growth factor, and vascular endothelial growth factor. soluble angiogenic growth factors such as fibroblast growth We described previously the potent blockade of hepato- factor (FGF)-2, vascular endothelial growth factor (VEGF), cyte growth factor–stimulated cell motility, matrix inva- and hepatocyte growth factor (HGF) operating through an sion, and epithelial tubulogenesis by synthetic Grb2-Src intricate network of tyrosine kinase receptor–mediated homology 2 (SH2) domain binding antagonists. Here, we signaling pathways (1–5). The intracellular signal trans- show that these binding antagonists block basic morpho- duction pathways activated by various receptor tyrosine genetic events required for angiogenesis, including hep- kinases share a subset of common events and mediators. atocyte growth factor–, vascular endothelial growth On ligand binding, receptor kinases undergo autophos- factor–, and basic fibroblast growth factor–stimulated phorylation on multiple cytoplasmic tyrosine residues. endothelial cell proliferation and migration, as well as Phosphorylated tyrosine residues on receptors or receptor phorbol 12-myristate 13-acetate–stimulated endothelial substrates then become binding sites for Src homology 2 cell migration and matrix invasion. The Grb2-SH2 domain (SH2) domain and/or phosphotyrosine binding domain– binding antagonists also impair angiogenesis in vitro,as containing effector proteins. Growth factor receptor bound shown by the inhibition of cord formation by macrovas- protein 2 (Grb2; refs. 6–8) is an adaptor protein that binds cular endothelial cells on Matrigel. We further show that a phosphotyrosyl proteins through its SH2 domain and representative compound inhibits angiogenesis in vivo as interacts through its two SH3 domains with proteins measured using a chick chorioallantoic membrane assay. containing proline-rich motifs (9–11). These results suggest that Grb2 is an important mediator Grb2 was first found to link growth factor receptor ty- of key proangiogenic events, with potential application rosine kinases to the Ras signal transduction pathway to pathologic conditions where neovascularization con- (6, 12) as well as to other intracellular signaling proteins tributes to disease progression. In particular, the well- including Gab family members and phosphatidylinositol 3 (P1-3)-kinase, leading ultimately to cell cycle progression. In the epidermal growth factor (EGF) signaling pathway, receptor autophosphorylation allows Grb2 binding via its SH2 domain, bringing SH3 domain–bound SOS-1 into the Received 5/19/04; revised 7/14/04; accepted 8/11/04. EGF receptor (EGFR) signaling complex. SOS-1 then fa- Grant support: Swiss National Research Foundation Fellowship for Advanced Scientists (J.V. Soriano). cilitates guanine nucleotide exchange and activation of The costs of publication of this article were defrayed in part by the Ras and subsequently a cascade of kinase activation steps payment of page charges. This article must therefore be hereby marked involving Raf and mitogen-activated protein kinases advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. (MAPKs), which in turn stimulate the transcription of key Note: J.V. Soriano is presently at American Type Culture Collection, cell cycle regulators (13). SH2 domain–mediated recogni- P.O. Box 1549, Manassas, VA 20108. tion by Grb2 is specific for the phosphopeptide motif Requests for reprints: Donald P. Bottaro, Urologic Oncology Branch, pYXNX (where pY is phosphotyrosine, N is aspara- Center for Cancer Research, National Cancer Institute, Building 10, gine, and X is any residue), which is found in several Room 2B47, 9000 Rockville Pike, Bethesda, MD 20892-1501. Phone: 301-402-6499; Fax: 301-402-0922. tyrosine kinases and their substrates. Thus, ligand-inde- E-mail: [email protected] pendent EGFR activation, such as growth hormone– Copyright C 2004 American Association for Cancer Research. induced EGFR tyrosine phosphorylation by JAK2, also Mol Cancer Ther 2004;3(10). October 2004 Downloaded from mct.aacrjournals.org on September 26, 2021. © 2004 American Association for Cancer Research. 1290 Inhibition of Angiogenesis Mediated by Grb2 leads to Grb2-mediated MAPK pathway activation and c- fos expression (14, 15). Similarly, mechanical stress leading to increased angiotensin II production and transactivation of EGFR and other intracellular kinases implicates Grb2 recruitment in cardiac hypertrophy and myocardial remod- eling (16, 17). Many of the signaling pathways in which Grb2 functions are critical for vasculogenesis, angiogenesis, and lymphan- giogenesis. The VEGF receptors VEGFR2 and VEGFR3 bind Grb2 directly, and Grb2 is also recruited to receptors through its interaction with Shc (18–21). Similarly, Grb2 participates in the signaling pathways of FGF-2–, angio- poietin-1-, and HGF-stimulated vasculogenesis and angio- genesis via direct association with activated receptors and/ or through intermediaries such as FGF receptor substrate 2, Gab1, and Shc (22–25). As a mediator of signals down- stream of potent epithelial and endothelial growth and motility factors, it is not surprising that Grb2 has been implicated in tumor progression and metastasis. For example, Grb2 is critical in metastatic signaling down- stream of ErbB-2/Neu in a mouse model of mammary tumorigenesis (26), and the critical role of Grb2 in linking Figure 1. Chemical structures of Grb2-SH2 domain binding antagonists. HGF-stimulated c-Met activation with Ras and Rac- X, position of phosphotyrosine (pY) in the basic peptidomimetic structure regulated cell migration in normal development seems to recognized by the Grb2-SH2 domain, which is replaced with phosphono- methyl phenylalanine in compound C126 or with two carboxylic acid extend to c-Met-driven cell transformation and tumor moieties in C90, as shown below the backbone structure. Both moieties metastasis as well (27–30). confer resistance to cellular phosphatases. While all of these properties make Grb2 an excellent target for the design of therapeutic antitumor agents, Grand Rapids, MI). The HGF isoform HGF/NK1, which evaluating Grb2-SH2 domain binding antagonist phospho- has the same biological properties as full-length HGF, was peptides using preclinical models has been hampered by produced in a bacterial expression system and then their relative inability to cross the cell membrane, resulting purified and refolded as described previously (38). The in poor bioavailability (31, 32). The binding antagonists Grb2-SH2 domain binding antagonists designated C126 used in this study (33, 34) are potent tripeptide mimetic and C90 were synthesized and purified as described inhibitors that seem to have significantly improved po- (33, 34). Human recombinant basic FGF (bFGF) and human tential for cell membrane penetration (33); their chemical recombinant VEGF were from R&D Systems (Minneapolis, structures are shown in Fig. 1. Replacement of phosphotyr- MN). Phorbol 12-myristate 13-acetate (PMA) was from osine at position X (Fig. 1) with phosphonomethyl phe- Sigma Chemical Co. (St. Louis, MO). nylalanine (compound C126) or related structures protects Cultured Cell Lines this moiety from phosphatases (35). In a further evolution Human dermal microvascular (HMEC-1) endothelial of this concept, compound C90 has two carboxylic acid cells (39) were grown in RPMI 1640 (Biofluids, Rockville, moieties as a phosphomimetic group. These moieties confer MD) containing 10% fetal bovine serum (Biofluids) and resistance to cellular phosphatases and are the most potent 2 mmol/L glutamine (Sigma Chemical). Human micro- non-phosphorous-containing phosphotyrosine mimetics vascular endothelial cells (HMVEC) from neonatal dermis yet reported for the Grb2-SH2 domain (36, 37). We have were purchased from Cascade Biologicals (Portland, OR) reported previously that these synthetic inhibitors of the and cultured in medium 131 containing MVGS (media Grb2-SH2 domain potently block HGF-stimulated cell supplement)
Recommended publications
  • SRC Antibody - N-Terminal Region (ARP32476 P050) Data Sheet
    SRC antibody - N-terminal region (ARP32476_P050) Data Sheet Product Number ARP32476_P050 Product Name SRC antibody - N-terminal region (ARP32476_P050) Size 50ug Gene Symbol SRC Alias Symbols ASV; SRC1; c-SRC; p60-Src Nucleotide Accession# NM_005417 Protein Size (# AA) 536 amino acids Molecular Weight 60kDa Product Format Lyophilized powder NCBI Gene Id 6714 Host Rabbit Clonality Polyclonal Official Gene Full Name V-src sarcoma (Schmidt-Ruppin A-2) viral oncogene homolog (avian) Gene Family SH2D This is a rabbit polyclonal antibody against SRC. It was validated on Western Blot by Aviva Systems Biology. At Aviva Systems Biology we manufacture rabbit polyclonal antibodies on a large scale (200-1000 Description products/month) of high throughput manner. Our antibodies are peptide based and protein family oriented. We usually provide antibodies covering each member of a whole protein family of your interest. We also use our best efforts to provide you antibodies recognize various epitopes of a target protein. For availability of antibody needed for your experiment, please inquire (). Peptide Sequence Synthetic peptide located within the following region: QTPSKPASADGHRGPSAAFAPAAAEPKLFGGFNSSDTVTSPQRAGPLAGG This gene is highly similar to the v-src gene of Rous sarcoma virus. This proto-oncogene may play a role in the Description of Target regulation of embryonic development and cell growth. SRC protein is a tyrosine-protein kinase whose activity can be inhibited by phosphorylation by c-SRC kinase. Mutations in this gene could be involved in the
    [Show full text]
  • Stimulation of Endogenous GH and Interleukin-6 Receptors Selectively Activates Different Jaks and Stats, with a Stat5 Specific Synergistic Effect of Dexamethasone
    301 Stimulation of endogenous GH and interleukin-6 receptors selectively activates different Jaks and Stats, with a Stat5 specific synergistic effect of dexamethasone S von Laue1, J Finidori3, M Maamra1, X-Y Shen1, S Justice1, P R M Dobson2 and R J M Ross1 1Division of Clinical Sciences, University of Sheffield, UK 2Institute for Cancer Studies, University of Sheffield, UK 3INSERM, Unité 344, Faculté de Médecine Necker, Paris, France (Requests for offprints should be addressed to S von Laue, INSERM U344, Laboratoire d’Endocrinologie Moléculaire, Faculté de Médecine Necker-Enfants Malades, 156, rue de Vaugirard, 75 730 Paris cedex 15, France; Email: [email protected]) Abstract The interaction of GH, interleukin (IL)-6 and glucocorti- Stat3 activation. In contrast, the reporter gene containing coids is likely to be important in regulating the GH- the Stat3 responsive element (SIE) was IL-6 specific. The insulin-like growth factor (IGF)-I axis. The signalling levels of gene induction by GH and IL-6 were not altered cascades activated by GH and IL-6 appear to be very by the co-stimulation with GH and IL-6, suggesting that similar, as demonstrated by studies using overexpression of there is little cross-talk at the Jak–Stat activation level the receptor and other components of the Jak-Stat and between the two cytokines. Neither GH nor IL-6 acti- mitogen-activated protein (MAP) kinase pathways. Here vated the MAP-kinase responsive serum response element we show that the human embryonic kidney cell line 293 (SRE), unless GH receptors or gp130 were overexpressed. (HEK293) expresses GH and IL-6 receptors endogenously.
    [Show full text]
  • Increased in Vivo Phosphorylation of Ret Tyrosine 1062 Is a Potential Pathogenetic Mechanism of Multiple Endocrine Neoplasia Type 2B1
    [CANCER RESEARCH 61, 1426–1431, February 15, 2001] Increased in Vivo Phosphorylation of Ret Tyrosine 1062 Is a Potential Pathogenetic Mechanism of Multiple Endocrine Neoplasia Type 2B1 Domenico Salvatore, Rosa Marina Melillo, Carmen Monaco, Roberta Visconti, Gianfranco Fenzi, Giancarlo Vecchio, Alfredo Fusco, and Massimo Santoro2 Centro di Endocrinologia ed Oncologia Sperimentale del CNR, c/o Dipartimento di Biologia e Patologia Cellulare e Molecolare [D. S., R. M. M., C. M., R. V., G. V., M. S.], and Dipartimento di Endocrinologia ed Oncologia Molecolare e Clinica, Facolta` di Medicina e Chirurgia [G. F.], Universita` di Napoli “Federico II,” Naples, Italy; and Dipartimento di Medicina Sperimentale e Clinica, Facolta`di Medicina e Chirurgia di Catanzaro, Universita`di Catanzaro, Catanzaro [A. F], Italy ABSTRACT are responsible for the inheritance of MEN2A and MEN2B and FMTC. Each disease has a distinct phenotype: MEN2A is associated Mutations of the Ret receptor tyrosine kinase are responsible for with MTC, pheochromocytoma, and parathyroid hyperplasia. The inheritance of multiple endocrine neoplasia (MEN2A and MEN2B) and MEN2B phenotype is more severe, being characterized by an earlier familial medullary thyroid carcinoma syndromes. Although several famil- ial medullary thyroid carcinoma and most MEN2A mutations involve occurrence of more aggressive MTC. Unlike MEN2A patients, substitutions of extracellular cysteine residues, in most MEN2B cases MEN2B patients develop multiple mucosal neuromas and several there is a methionine-to-threonine substitution at position 918 (M918T) of skeletal abnormalities. Finally, FMTC consists only of an inherited the Ret kinase domain. The mechanism by which the MEN2B mutation predisposition to MTC (3). Involvement of different tissues corre- converts Ret into a potent oncogene is poorly understood.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • ITRAQ-Based Quantitative Proteomic Analysis of Processed Euphorbia Lathyris L
    Zhang et al. Proteome Science (2018) 16:8 https://doi.org/10.1186/s12953-018-0136-6 RESEARCH Open Access ITRAQ-based quantitative proteomic analysis of processed Euphorbia lathyris L. for reducing the intestinal toxicity Yu Zhang1, Yingzi Wang1*, Shaojing Li2*, Xiuting Zhang1, Wenhua Li1, Shengxiu Luo1, Zhenyang Sun1 and Ruijie Nie1 Abstract Background: Euphorbia lathyris L., a Traditional Chinese medicine (TCM), is commonly used for the treatment of hydropsy, ascites, constipation, amenorrhea, and scabies. Semen Euphorbiae Pulveratum, which is another type of Euphorbia lathyris that is commonly used in TCM practice and is obtained by removing the oil from the seed that is called paozhi, has been known to ease diarrhea. Whereas, the mechanisms of reducing intestinal toxicity have not been clearly investigated yet. Methods: In this study, the isobaric tags for relative and absolute quantitation (iTRAQ) in combination with the liquid chromatography-tandem mass spectrometry (LC-MS/MS) proteomic method was applied to investigate the effects of Euphorbia lathyris L. on the protein expression involved in intestinal metabolism, in order to illustrate the potential attenuated mechanism of Euphorbia lathyris L. processing. Differentially expressed proteins (DEPs) in the intestine after treated with Semen Euphorbiae (SE), Semen Euphorbiae Pulveratum (SEP) and Euphorbiae Factor 1 (EFL1) were identified. The bioinformatics analysis including GO analysis, pathway analysis, and network analysis were done to analyze the key metabolic pathways underlying the attenuation mechanism through protein network in diarrhea. Western blot were performed to validate selected protein and the related pathways. Results: A number of differentially expressed proteins that may be associated with intestinal inflammation were identified.
    [Show full text]
  • Metabolic Imaging Allows Early Prediction of Response to Vandetanib
    Metabolic Imaging Allows Early Prediction of Response to Vandetanib Martin A. Walter1,2,MatthiasR.Benz2,IsabelJ.Hildebrandt2, Rachel E. Laing2, Verena Hartung3, Robert D. Damoiseaux4, Andreas Bockisch3, Michael E. Phelps2,JohannesCzernin2, and Wolfgang A. Weber2,5 1Institute of Nuclear Medicine, University Hospital, Bern, Switzerland; 2Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California; 3Institute of Nuclear Medicine, University Hospital, Essen, Germany; 4Molecular Shared Screening Resources, UCLA, Los Angeles, California; and 5Department of Nuclear Medicine, University Hospital, Freiburg, Germany The RET (rearranged-during-transfection protein) protoonco- The RET (rearranged-during-transfection protein) proto- gene triggers multiple intracellular signaling cascades regulat- oncogene, located on chromosome 10q11.2, encodes for ing cell cycle progression and cellular metabolism. We therefore a tyrosine kinase of the cadherin superfamily that activates hypothesized that metabolic imaging could allow noninvasive detection of response to the RET inhibitor vandetanib in vivo. multiple intracellular signaling cascades regulating cell sur- Methods: The effects of vandetanib treatment on the full- vival, differentiation, proliferation, migration, and chemo- genome expression and the metabolic profile were analyzed taxis (1). Gain-of-function mutations in the RET gene result in the human medullary thyroid cancer cell line TT. In vitro, tran- in uncontrolled growth and cause human cancers and scriptional changes of pathways regulating cell cycle progres- cancer syndromes, such as Hu¨rthle cell cancer, sporadic sion and glucose, dopa, and thymidine metabolism were papillary thyroid carcinoma, familial medullary thyroid correlated to the results of cell cycle analysis and the uptake of 3H-deoxyglucose, 3H-3,4-dihydroxy-L-phenylalanine, and carcinoma, and multiple endocrine neoplasia types 2A 3H-thymidine under vandetanib treatment.
    [Show full text]
  • SUPPLEMENTARY METHODS Cell Culture.-Human Peripheral Blood
    SUPPLEMENTARY METHODS Cell culture.-Human peripheral blood mononuclear cells (PBMC) were isolated from buffy coats from normal donors over a Lymphoprep (Nycomed Pharma) gradient. Monocytes were purified from PBMC by magnetic cell sorting using CD14 microbeads (Miltenyi Biotech). Monocytes were cultured at 0.5 x 106 cells/ml for 7 days in RPMI 1640 (standard RPMI, which contains 1 mg/L folic acid) supplemented with 10% fetal calf serum, at 37ºC in a humidified atmosphere with 5% CO2, and containing GM-CSF (1000U/ml) or M-CSF (10 ng/ml, ImmunoTools) to generate GM-CSF- polarized macrophages (GM-MØ) or M-CSF-polarized macrophages (M-MØ). MTX pharmacokinetic studies in RA patients administered 25 mg MTX showed peak plasma levels of 1-2 µM MTX two hours after drug administration, but plasma levels decline to 10-50 nM MTX within 24-48 hours [1, 2]. MTX (50 nM), pemetrexed (PMX, 50 nM), folic acid (FA, 50 nM) [3], thymidine (dT, 10 µM), pifithrin-α (PFT, 25-50 µM), nutlin-3 (10 µM, Sigma-Aldrich) was added once on monocytes together with the indicated cytokine, or on monocytes and 7-day differentiated macrophages for 48h. Gene expression profiling.-For long-term MTX treatment, RNA was isolated from three independent preparations of monocytes either unexposed or exposed to MTX (50 nM) and differentiated to GM-MØ or M-MØ for 7-days. For short-term schedule, RNA was isolated from three independent samples of fully differentiated GM-MØ either unexposed or exposed to MTX (50 nM) for 48h, by using RNeasy Mini kit (QIAGEN).
    [Show full text]
  • Loss of B Cells in Patients with Heterozygous Mutations in IKAROS
    The new england journal of medicine Original Article Loss of B Cells in Patients with Heterozygous Mutations in IKAROS H.S. Kuehn, B. Boisson, C. Cunningham-Rundles, J. Reichenbach, A. Stray-Pedersen, E.W. Gelfand, P. Maffucci, K.R. Pierce, J.K. Abbott, K.V. Voelkerding, S.T. South, N.H. Augustine, J.S. Bush, W.K. Dolen, B.B. Wray, Y. Itan, A. Cobat, H.S. Sorte, S. Ganesan, S. Prader, T.B. Martins, M.G. Lawrence, J.S. Orange, K.R. Calvo, J.E. Niemela, J.-L. Casanova, T.A. Fleisher, H.R. Hill, A. Kumánovics, M.E. Conley, and S.D. Rosenzweig​​ ABSTRACT BACKGROUND The authors’ full names, academic de- Common variable immunodeficiency (CVID) is characterized by late-onset hypo- grees, and affiliations are listed in the gammaglobulinemia in the absence of predisposing factors. The genetic cause is Appendix. Address reprint requests to Dr. Conley at St. Giles Laboratory of Human unknown in the majority of cases, and less than 10% of patients have a family Genetics of Infectious Diseases, Rocke- history of the disease. Most patients have normal numbers of B cells but lack feller University, 1230 York Ave., Box 163, plasma cells. New York, NY 10065-6399, or at mconley@ rockefeller . edu. METHODS Drs. Kuehn and Boisson and Drs. Conley We used whole-exome sequencing and array-based comparative genomic hybrid- and Rosenzweig contributed equally to this article. ization to evaluate a subset of patients with CVID and low B-cell numbers. Mutant proteins were analyzed for DNA binding with the use of an electrophoretic mobility- N Engl J Med 2016;374:1032-43.
    [Show full text]
  • Glypican-3 Induces Oncogenicity by Preventing IGF-1R Degradation, a Process That Can Be Blocked by Grb10
    www.impactjournals.com/oncotarget/ Oncotarget, 2017, Vol. 8, (No. 46), pp: 80429-80442 Research Paper Glypican-3 induces oncogenicity by preventing IGF-1R degradation, a process that can be blocked by Grb10 Wei Cheng1,2,3, Po-Chun Huang4,5, Hsiao-Mei Chao6, Yung-Ming Jeng7, Hey-Chi Hsu7, Hung-Wei Pan8, Wuh-Liang Hwu9 and Yu-May Lee4,5,9 1Department of Pathology, Kee-Lung Hospital, Ministry of Health and Welfare, Kee-Lung, Taiwan 2Ching Kuo Institute of Management and Health, Kee-Lung, Taiwan 3National Taipei University of Nursing and Health Sciences, Taipei, Taiwan 4Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan 5Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan 6Department of Pathology, Wang Fang Hospital, Taipei Medical University, Taipei, Taiwan 7Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan 8Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan 9Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan Correspondence to: Yu-May Lee, email: [email protected] Keywords: glypican-3, hepatocellular carcinoma, insulin-like growth factor 1 receptor, ubiquitination, growth factor receptor- bound protein 10 Received: February 17, 2017 Accepted: June 18, 2017 Published: July 06, 2017 Copyright: Cheng et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Hepatocellular carcinoma (HCC) is the most common primary liver malignancy and is a major cause of cancer-related death worldwide.
    [Show full text]
  • The Human Gene Connectome As a Map of Short Cuts for Morbid Allele Discovery
    The human gene connectome as a map of short cuts for morbid allele discovery Yuval Itana,1, Shen-Ying Zhanga,b, Guillaume Vogta,b, Avinash Abhyankara, Melina Hermana, Patrick Nitschkec, Dror Friedd, Lluis Quintana-Murcie, Laurent Abela,b, and Jean-Laurent Casanovaa,b,f aSt. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065; bLaboratory of Human Genetics of Infectious Diseases, Necker Branch, Paris Descartes University, Institut National de la Santé et de la Recherche Médicale U980, Necker Medical School, 75015 Paris, France; cPlateforme Bioinformatique, Université Paris Descartes, 75116 Paris, France; dDepartment of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; eUnit of Human Evolutionary Genetics, Centre National de la Recherche Scientifique, Unité de Recherche Associée 3012, Institut Pasteur, F-75015 Paris, France; and fPediatric Immunology-Hematology Unit, Necker Hospital for Sick Children, 75015 Paris, France Edited* by Bruce Beutler, University of Texas Southwestern Medical Center, Dallas, TX, and approved February 15, 2013 (received for review October 19, 2012) High-throughput genomic data reveal thousands of gene variants to detect a single mutated gene, with the other polymorphic genes per patient, and it is often difficult to determine which of these being of less interest. This goes some way to explaining why, variants underlies disease in a given individual. However, at the despite the abundance of NGS data, the discovery of disease- population level, there may be some degree of phenotypic homo- causing alleles from such data remains somewhat limited. geneity, with alterations of specific physiological pathways under- We developed the human gene connectome (HGC) to over- come this problem.
    [Show full text]
  • Tyrosine Kinase Signalling in Breast Cancer
    http://breast-cancer-research.com/content/2/3/197 Review Tyrosine kinase signalling in breast cancer Modulation of tyrosine kinase signalling in human breast cancer through altered expression of signalling intermediates Rania Kairouz and Roger J Daly Cancer Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia Received: 7 December 1999 Breast Cancer Res 2000, 2:197–202 Accepted: 21 February 2000 The electronic version of this article can be found online at Published: 25 March 2000 http://breast-cancer-research.com/content/2/3/197 © Current Science Ltd Abstract The past decade has seen the definition of key signalling pathways downstream of receptor tyrosine kinases (RTKs) in terms of their components and the protein–protein interactions that facilitate signal transduction. Given the strong evidence that links signalling by certain families of RTKs to the progression of breast cancer, it is not surprising that the expression profile of key downstream signalling intermediates in this disease has also come under scrutiny, particularly because some exhibit transforming potential or amplify mitogenic signalling pathways when they are overexpressed. Reflecting the diverse cellular processes regulated by RTKs, it is now clear that altered expression of such signalling proteins in breast cancer may influence not only cellular proliferation (eg Grb2) but also the invasive properties of the cancer cells (eg EMS1/cortactin). Keywords: breast cancer, SH2 domain, SH3 domain, signal transduction, tyrosine kinase Introduction In addition to SH2 domains, many signalling proteins also Ligand binding to RTKs induces receptor dimerization, contain SH3 and/or pleckstrin homology domains. SH3 leading to activation of the intracellular kinase domain and domains consist of 50–75 residues and bind proline-rich autophosphorylation of specific tyrosine residues.
    [Show full text]
  • Xo PANEL DNA GENE LIST
    xO PANEL DNA GENE LIST ~1700 gene comprehensive cancer panel enriched for clinically actionable genes with additional biologically relevant genes (at 400 -500x average coverage on tumor) Genes A-C Genes D-F Genes G-I Genes J-L AATK ATAD2B BTG1 CDH7 CREM DACH1 EPHA1 FES G6PC3 HGF IL18RAP JADE1 LMO1 ABCA1 ATF1 BTG2 CDK1 CRHR1 DACH2 EPHA2 FEV G6PD HIF1A IL1R1 JAK1 LMO2 ABCB1 ATM BTG3 CDK10 CRK DAXX EPHA3 FGF1 GAB1 HIF1AN IL1R2 JAK2 LMO7 ABCB11 ATR BTK CDK11A CRKL DBH EPHA4 FGF10 GAB2 HIST1H1E IL1RAP JAK3 LMTK2 ABCB4 ATRX BTRC CDK11B CRLF2 DCC EPHA5 FGF11 GABPA HIST1H3B IL20RA JARID2 LMTK3 ABCC1 AURKA BUB1 CDK12 CRTC1 DCUN1D1 EPHA6 FGF12 GALNT12 HIST1H4E IL20RB JAZF1 LPHN2 ABCC2 AURKB BUB1B CDK13 CRTC2 DCUN1D2 EPHA7 FGF13 GATA1 HLA-A IL21R JMJD1C LPHN3 ABCG1 AURKC BUB3 CDK14 CRTC3 DDB2 EPHA8 FGF14 GATA2 HLA-B IL22RA1 JMJD4 LPP ABCG2 AXIN1 C11orf30 CDK15 CSF1 DDIT3 EPHB1 FGF16 GATA3 HLF IL22RA2 JMJD6 LRP1B ABI1 AXIN2 CACNA1C CDK16 CSF1R DDR1 EPHB2 FGF17 GATA5 HLTF IL23R JMJD7 LRP5 ABL1 AXL CACNA1S CDK17 CSF2RA DDR2 EPHB3 FGF18 GATA6 HMGA1 IL2RA JMJD8 LRP6 ABL2 B2M CACNB2 CDK18 CSF2RB DDX3X EPHB4 FGF19 GDNF HMGA2 IL2RB JUN LRRK2 ACE BABAM1 CADM2 CDK19 CSF3R DDX5 EPHB6 FGF2 GFI1 HMGCR IL2RG JUNB LSM1 ACSL6 BACH1 CALR CDK2 CSK DDX6 EPOR FGF20 GFI1B HNF1A IL3 JUND LTK ACTA2 BACH2 CAMTA1 CDK20 CSNK1D DEK ERBB2 FGF21 GFRA4 HNF1B IL3RA JUP LYL1 ACTC1 BAG4 CAPRIN2 CDK3 CSNK1E DHFR ERBB3 FGF22 GGCX HNRNPA3 IL4R KAT2A LYN ACVR1 BAI3 CARD10 CDK4 CTCF DHH ERBB4 FGF23 GHR HOXA10 IL5RA KAT2B LZTR1 ACVR1B BAP1 CARD11 CDK5 CTCFL DIAPH1 ERCC1 FGF3 GID4 HOXA11
    [Show full text]