Phellinus Weirii and Other Native Root Pathogens As Determinants of Forest Structure and Process in Western North America1

Total Page:16

File Type:pdf, Size:1020Kb

Phellinus Weirii and Other Native Root Pathogens As Determinants of Forest Structure and Process in Western North America1 P1: FHA August 1, 2000 13:14 Annual Reviews AR107-21 Annu. Rev. Phytopathol. 2000. 38:515–39 PHELLINUS WEIRII AND OTHER NATIVE ROOT PATHOGENS AS DETERMINANTS OF FOREST STRUCTURE AND PROCESS IN WESTERN NORTH AMERICA1 E.M. Hansen Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331; e-mail: [email protected] Ellen Michaels Goheen USDA Forest Service, SW Oregon Forest Insect and Disease Service Center, Central Point, Oregon 97502; e-mail: [email protected] Key Words Phellinus weirii, laminated root rot, Douglas-fir, forest ecology, forest succession ■ Abstract The population structure and ecological roles of the indigenous patho- gen Phellinus weirii, cause of laminated root rot in conifer forests of western North America, are examined. This pathogen kills trees in slowly expanding mortality cen- ters, creating gaps in the forest canopy. It is widespread, locally abundant, and very long-lived. It is among the most important disturbance agents in the long intervals be- tween stand-replacing events such as wildfire or harvest in these ecosystems and shapes the structure and composition of both wild and managed forests. Trees are infected and killed regardless of individual vigor. Management of public lands is changing dramati- cally, with renewed emphasis on natural forest structures and processes but pathogens, especially root rot fungi, remain a significant challenge to “ecosystem management.” Annu. Rev. Phytopathol. 2000.38:515-539. Downloaded from www.annualreviews.org CONTENTS Access provided by U.S. Department of Agriculture (USDA) on 09/02/16. For personal use only. INTRODUCTION ................................................ 516 THE PRIMEVAL FOREST ......................................... 517 PHELLINUS WEIRII .............................................. 519 Pathology .................................................... 519 Population Structure ............................................. 521 Impacts on Forest Structure ........................................ 522 Impacts on Succession and Diversity ................................. 524 1The US Government has the right to retain a nonexclusive, royalty-free license in and to any copyright covering this paper. 515 P1: FHA August 1, 2000 13:14 Annual Reviews AR107-21 516 HANSEN GOHEEN Impacts on Nutrient Cycling ....................................... 526 Effects of Tree Vigor ............................................ 527 PATHOGENS AND OLD-GROWTH FORESTS ..........................529 THE FOREST TODAY AND TOMORROW ............................. 530 Recent Changes in the Forest....................................... 530 Trends in Forest Management ...................................... 531 Ecosystem Management .......................................... 532 Modeling Root Disease ........................................... 534 INTRODUCTION In agricultural ecosystems pathogens are considered “pests” interfering with the production of a healthy, valuable crop. Pathogens first evolved, however, free of human expectations in much more complex natural ecosystems, and the destruction and loss we ascribe to them today are just one interpretation of their successful evolutionary strategy. Tree pathogens are integral components of forest ecosystems around the world, altering forests in many ways, both subtle and profound. In forests managed for economic value, pathogens force changes in management practices, reduce profitability, or even threaten economic viability. Here, however, we take an ecological perspective on the interactions between plant pathogens and the forest communities they inhabit. We focus on the population structure and ecological roles of one indigenous root rot pathogen, Phellinus weirii (Murr.) Gilbertson, in Douglas-fir and mountain hemlock forests of the Pacific Northwest. This and similar root decay fungi play similar roles in the other forest types of western North America, but we draw our main examples from the forests we know best. Our views of forest pathogens are inevitably dominated by a few exotic patho- gens in vulnerable forests and a strong professional legacy—the idea that a goal of forest management is regulated, disease- and decay-free forests on the nineteenth- century European model (34). Even today there is little appreciation for the signif- icant effects that indigenous pathogens have on natural forests. Recent reviews do a poor job of distinguishing native from exotic pathogens, and wild from disturbed Annu. Rev. Phytopathol. 2000.38:515-539. Downloaded from www.annualreviews.org ecosystems (4). Access provided by U.S. Department of Agriculture (USDA) on 09/02/16. For personal use only. Pathogens affect forests most dramatically by killing trees. Plants, of course, are not defenseless against pathogens, and in ecosystems where plants and pathogens have evolved together, the evolutionary success of both is assured. Because evolution acts on populations, not individuals, however, some indigenous patho- gens can and do kill single trees or even groups of trees in natural ecosystems with- out threatening the forest as a whole. They kill big trees and in the process change the diversity of the forest community, and they kill small and young and weak trees, maintaining the fitness of the ecosystem. Many forest pathogens do not kill trees directly, but still affect the forest community by altering competitiveness and reproductive success of trees, and nutrient cycling and primary productivity of the P1: FHA August 1, 2000 13:14 Annual Reviews AR107-21 PHELLINUS WEIRII AND FOREST STRUCTURE 517 forest ecosystem. They change local population structure of individual species and landscape-scale patterns of forest succession. Some pathogens play critical roles in determining range limits and habitat occupancy. In some ecosystems, including the vast coniferous forests of western North America, pathogens are among the most important disturbance agents in the long intervals between stand-replacing events such as wildfire or harvest; the wild forests we know today look and function as they do because of pathogens. Pathogens have been invisible to or misunderstood by most forest ecologists, unless entire forests are destroyed by exotic diseases such as chestnut blight. There is a widespread presumption that indigenous pathogens kill trees only if they are physiologically stressed or weakened by other agents or in response to mismanagement of forest lands. Some pathogens fill these scavenger roles in forest ecosystems, but others kill vigorous dominant trees, altering the very structure and composition of the forest. In the coniferous forests of western North America, Phellinus weirii has this effect. Phellinus weirii kills trees in slowly expanding mortality centers, creating gaps in the forest canopy. Gap or patch dynamics is an important component in current studies of forest ecosystem dynamics (37), with gaps in the canopy created by “dis- turbance agents.” Pathogens differ from other disturbance agents such as lightning or hurricanes in fundamental ways, however, and pathogen-induced gaps have dif- ferent consequences to forest communities than other types of gaps. Pathogens usu- ally affect species differentially, that is they exhibit host specificity, and pathogens act slowly. A lightning strike or a tornado kills all the tree species in a discrete patch instantaneously, but Phellinus weirii, for example, kills Douglas-fir but not western hemlock in a patch that slowly increases in size throughout the life of the stand. THE PRIMEVAL FOREST Conifers dominate the temperate forest ecosystems of western North America. Forests extend nearly continuously about 1000 km across mountainous terrain from the eastern slopes of the Rocky Mountains to the Pacific Ocean, broken in places by the Columbia Plateau, the Great Basin, and large and small river valleys. Annu. Rev. Phytopathol. 2000.38:515-539. Downloaded from www.annualreviews.org Coniferous forests cover 82,000,000 ha in Oregon, Washington, Idaho, and British Access provided by U.S. Department of Agriculture (USDA) on 09/02/16. For personal use only. Columbia, about 52% of this region. Two main north-south mountain ranges, the Coast Ranges and the Cascade Mountains, dissect the area and through their influence on maritime temperature and precipitation, geology, and soils, delimit several very distinctive ecosystems (11). Forests west of the Cascade Mountains in Oregon and Washington and the Coast Mountains in British Columbia (westside forests) are strongly influenced by the Pacific Ocean. Annual precipitation in the Douglas-fir forests ranges from 150 to more than 500 cm a year. The maritime climate, with mild, wet winters and dry summers, favors evergreens over deciduous tree species. Conifer forests of the Northwest are more productive and accumulate greater standing biomass P1: FHA August 1, 2000 13:14 Annual Reviews AR107-21 518 HANSEN GOHEEN than other forests. Great size and age of dominant tree species are typical of western coastal forests and make them unique among the forests of the world (51). Western hemlock [Tsuga heterophylla (Raf.) Sarg.], a shade-tolerant tree, is the principal late-successional species in most westside ecosystems, but Douglas- fir [Pseudotsuga menziesii (Mirb.) Franco] dominates most forests. In the drier forests of southwestern Oregon and northern California, ponderosa pine (Pinus ponderosa Dougl. ex. Loud.), sugar pine (P. lambertiana Dougl.), and hardwood species such as Pacific madrone (Arbutus menziesii Pursh), California black oak (Quercus
Recommended publications
  • PROCEEDINGS of the 25Th ANNUAL WESTERN INTERNATIONAL FOREST DISEASE WORK CONFERENCE
    PROCEEDINGS OF THE 25th ANNUAL WESTERN INTERNATIONAL FOREST DISEASE WORK CONFERENCE Victoria, British Columbia September 1977 Proceedings of the 25th Annual Western International Forest Disease Work Conference Victoria, British Columbia September 1977 Compiled by: This scan has not been edited or customized. The quality of the reproduction is based on the condition of the original source. Proceedings of the Twenty-Fifth Western International Forest Disease Work Conference Victoria, British Columbia September 1977 TABLE OF CONTENTS Page Forward Opening Remarks, Chairman Don Graham 2 Memorial Statement - Stuart R. Andrews 3 Welcoming Address: Forest Management in British Columbia with Particular Reference to the Province's Forest disease Problems Bill Young 5 Keynote Address: Forest Diseases as a Part of the Forest Ecosystem Paul Brett PANEL: REGULATORY FUNCTIONS OF DISEASES IN FOREST ECOSYSTEMS 10 Introduction to Regulatory Functions of Diseases in Forest Ecosystems J. R. Parmeter 11 Relationships of Tree Diseases and Stand Density Ed F. Wicker 13 Forest Diseases as Determinants of Stand Composition and Forest Succession Earl E. Nelson 18 Regulation of Site Selection James W. Byler 21 Disease and Generation Time J. R. Parmeter PANEL: INTENSIVE FOREST MANAGEMENT AS INFLUENCED BY FOREST DISEASES 22 Dwarf Mistletoe and Western Hemlock Management K. W. Russell 30 Phellinus weirii and Intensive Management Workshops as an aid in Reaching the Practicing Forester G. W. Wallis 33 Fornes annosus in Second-Growth Stands Duncan Morrison 36 Armillaria mellea and East Side Pine Management Gregory M. Filip 39 Thinning Second Growth Stands Paul E. Aho PANEL: KNOWLEDGE UTILIZATION IN WESTERN FOREST PATHOLOGY 44 Knowledge Utilization in Western Forest Pathology R Z.
    [Show full text]
  • Workshop Meeting Agenda Monday, September 18, 2017, 7:00 PM City Hall Council Chambers, 898 Elk Drive, Brookings, OR 97415 1
    Workshop Meeting Agenda Monday, September 18, 2017, 7:00 PM City Hall Council Chambers, 898 Elk Drive, Brookings, OR 97415 1. Call To Order 2. Roll Call 3. Topics a. Azalea Park Tree Removal Documents: AZALEA PARK TREE REMOVAL CWR.PDF AZALEA PARK TREE REMOVAL.ATT.A.ARBORIST REPORT.PDF AZALEA PARK TREE REMOVAL.ATT.B.COST ESTIMATE.PDF AZALEA PARK TREE REMOVAL.ATT.C.ARTICLE.PDF AZALEA PARK TREE REMOVAL.ATT.D.PRESS RELEASE.PDF b. Submitted Materials Documents: 1.2014 FIELD GUIDE FOR HAZARD TREE ID_STELPRD3799993.PDF 2.LONG RANGE PLANNING FOR DEVELOPED SITES.PDF 3.TRIGLIA INPUT EMAIL.PDF 4.TRIGLIA INPUT EMAIL ATTACHMENT.PDF 5.ASHDOWN QUESTIONS FOR FRENCH.PDF 4. Adjournment All public meetings are held in accessible locations. Auxiliary aids will be provided upon request with at least 72 hours advance notification. Please contact 469-1102 if you have any questions regarding this notice. for the greatest good Field Guide for Hazard-Tree Identification and Mitigation on Developed Sites in Oregon and Washington Forests 2014 Non-Discrimination Policy The U.S. Department of Agriculture (USDA) prohibits discrimination against its customers, employees, and applicants for employment on the bases of race, color, national origin, age, disability, sex, gender identity, religión, reprisal, and where applicable, political beliefs, marital status, familial or parental status, sexual orientation, or all or part of an individual’s income is derived from any public assistance program, or protected genetic information in employment or in any program or activity conducted or funded by the Department. (Not all prohibited bases will apply to all programs and/ or employment activities.) To File an Employment Complaint If you wish to file an employment complaint, you must contact your agency’s EEO Counselor (click the hyperlink for list of EEO counselors) within 45 days of the date of the alleged discriminatory act, event, or in the case of a personnel action.
    [Show full text]
  • Phellinus Sulphurascens and the Closely Related P
    Mycologia, 86(1), 1994, pp. 121-130. Phellinus sulphurascens and the closely related P. weirii in North America Michael J. Larsen1 cedar as “perennial P. weirii. ” Clark (1958) deter- Francis F. Lombard mined that “cedar isolates” and “noncedar isolates” Joseph W. Clark may be separated on the basis of cultural character- U.S. Department ofAgriculture, Forest Service, Forest istics. However, Nobles (1948, 1965) did not distinguish Products Laboratory,2 One Gifford Pinchot Drive, the two forms in axenic culture. Angwin (1989) and Madison, Wisconsin 53705-2398 Angwin and Hansen (1989, in press) developed a back- pairing method to determine compatibility in mono- karyon-monokaryon and monokaryon-heterokaryon Abstract: Monokaryotic isolates of Phellinus sulphur- (di-mon) pairings and demonstrated a high degree of ascens, a fungus originally described from the Primorsk genetic isolation (incompatibility) between the western Territory, Russia, are compatible with monokaryotic redcedar and Douglas-fir forms. Protein banding pat- isolates of, what has been called in North America, terns obtained by polyacrylamide gel electrophoresis the Douglas-fir form of P. weirii. Phellinus weirii, orig- (SDS-PAGE) further demonstrated the genetic differ- inally described from Idaho as a root and stem decay ences between the two groups. However, because ex- fungus of western redcedar, is not compatible with amples of partial compatibility were observed in some monokaryotic isolates of P. sulphurascens or the Doug- monokaryon-monokaryon pairings, Angwin and Han- las-fir form of P. weirii. Differences between P. sul- sen (1989, in press) concluded that the groups are best phurascens and P. weirii are noted. Observations on referred to as “intersterility groups.” Banik et al.
    [Show full text]
  • Laminated Root Rot in a Western Washington Plantation: 8-Year Mortality and Growth of Douglas-Fir As Related to Infected Stumps, Tree Density, and Fertilization
    United States Department of Laminated Root Rot in a Western Agriculture Washington Plantation: 8-Year Forest Service Mortality and Growth of Douglas- Pacific Northwest Research Station Fir as Related to Infected Stumps, Research Paper PNW-RP-569 Tree Density, and Fertilization November 2006 Richard E. Miller, Timothy B. Harrington, Walter G. Thies, and Jeff Madsen The Forest Service of the U.S. Department of Agriculture is dedicated to the principle of multiple use management of the Nation’s forest resources for sustained yields of wood, water, forage, wildlife, and recreation. Through forestry research, cooperation with the States and private forest owners, and management of the national forests and national grasslands, it strives—as directed by Congress—to provide increasingly greater service to a growing Nation. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or part of an individual’s income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination write USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W. Washington, DC 20250-9410, or call (800) 795- 3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.
    [Show full text]
  • Danville-Georgetown Open Space Forest Stewardship Plan
    Danville-Georgetown Open Space Forest Stewardship Plan March 2014 _______________________________________ Kevin Brown, Director Parks and Recreation Division Report produced by: King County Department of Natural Resources and Parks Parks and Recreation Division Water and Land Resources Division 201 South Jackson Street, Suites 700/600 Seattle, WA 98104-3855 (206) 477-4527 Suggested citation for this report: King County. 2014. Danville-Georgetown Open Space. Forest Stewardship Plan. King County Department of Natural Resources and Parks, Parks and Recreation Division, Water and Land Resources Division, Seattle, Washington. 1 Table of Contents Table of Contents ............................................................................................................................ 2 Executive Summary ………………………………………………………………………………4 Introduction ……………………………………………………………………………………… 5 General Property Information ..........................................................................................................5 History and Acquistion ................................................................................................................ 6 Surrounding land Use …………………………………………………………………………..7 Access …………………………………………………………………………………………..7 Easements .................................................................................................................................... 8 Natural Resource Analysis ...............................................................................................................8 Natural Resource
    [Show full text]
  • A Field Guide to Diseases and Insect Pests of Northern and Central
    2013 Reprint with Minor Revisions A FIELD GUIDE TO DISEASES & INSECT PESTS OF NORTHERN & CENTRAL ROCKY MOUNTAIN CONIFERS HAGLE GIBSON TUNNOCK United States Forest Service Department of Northern and Agriculture Intermountain Regions United States Department of Agriculture Forest Service State and Private Forestry Northern Region P.O. Box 7669 Missoula, Montana 59807 Intermountain Region 324 25th Street Ogden, UT 84401 http://www.fs.usda.gov/main/r4/forest-grasslandhealth Report No. R1-03-08 Cite as: Hagle, S.K.; Gibson, K.E.; and Tunnock, S. 2003. Field guide to diseases and insect pests of northern and central Rocky Mountain conifers. Report No. R1-03-08. (Reprinted in 2013 with minor revisions; B.A. Ferguson, Montana DNRC, ed.) U.S. Department of Agriculture, Forest Service, State and Private Forestry, Northern and Intermountain Regions; Missoula, Montana, and Ogden, Utah. 197 p. Formated for online use by Brennan Ferguson, Montana DNRC. Cover Photographs Conk of the velvet-top fungus, cause of Schweinitzii root and butt rot. (Photographer, Susan K. Hagle) Larvae of Douglas-fir bark beetles in the cambium of the host. (Photographer, Kenneth E. Gibson) FIELD GUIDE TO DISEASES AND INSECT PESTS OF NORTHERN AND CENTRAL ROCKY MOUNTAIN CONIFERS Susan K. Hagle, Plant Pathologist (retired 2011) Kenneth E. Gibson, Entomologist (retired 2010) Scott Tunnock, Entomologist (retired 1987, deceased) 2003 This book (2003) is a revised and expanded edition of the Field Guide to Diseases and Insect Pests of Idaho and Montana Forests by Hagle, Tunnock, Gibson, and Gilligan; first published in 1987 and reprinted in its original form in 1990 as publication number R1-89-54.
    [Show full text]
  • A Molecular Phylogeny for the Hymenochaetoid Clade
    Mycologia, 98(6), 2006, pp. 926–936. # 2006 by The Mycological Society of America, Lawrence, KS 66044-8897 Hymenochaetales: a molecular phylogeny for the hymenochaetoid clade Karl-Henrik Larsson1 the Hymenochaetaceae forms a distinct clade but Department of Plant and Molecular Sciences, Go¨teborg unfortunately all morphological characters support­ University, Box 461, SE 405 30 Go¨teborg, Sweden ing Hymenochaetaceae also are found in species Erast Parmasto outside the clade. Other subclades recovered by the Institute of Agricultural and Environmental Sciences, molecular phylogenetic analyses are less uniform, and Estonian University of Life Sciences, 181 Riia Street, the overall resolution within the nuclear LSU tree 51014 Tartu, Estonia presented here is still unsatisfactory. Key words: Basidiomycetes, Bayesian inference, Michael Fischer Blasiphalia, corticioid fungi, Hyphodontia, molecu­ Staatliches Weinbauinstitut, Merzhauser Straße 119, D-79100 Freiburg, Germany lar systematics, phylogeny, Rickenella Ewald Langer INTRODUCTION Universita¨t Kassel, FB 18 Naturwissenschaft, FG ¨ Okologie, Heinrich-Plett-Straße 40, D-34132 Kassel, Morphology.—The hymenochaetoid clade, herein also Germany called the Hymenochaetales, as we currently know it Karen K. Nakasone includes many variations of the fruit body types USDA Forest Service, Forest Products Laboratory, known among homobasidiomycetes (Agaricomyceti­ 1 Gifford Pinchot Drive, Madison, Wisconsin 53726 dae). Most species have an effused or effused-reflexed Scott A. Redhead basidioma but a few form stipitate mushroom-like ECORC, Agriculture & Agri-Food Canada, CEF, (agaricoid), coral-like (clavarioid) and spathulate to Neatby Building, Ottawa, Ontario, K1A 0C6 Canada rosette-like basidiomata (FIG. 1). The hymenia also are variable, ranging from smooth, to poroid, lamellate or somewhat spinose (FIG. 1). Such fruit Abstract: The hymenochaetoid clade is dominated body forms and hymenial types at one time formed by wood-decaying species previously classified in the the basis for the classification of fungi.
    [Show full text]
  • Heart Rot and Root Rot in Tropical Acacia Plantations
    Heart rot and root rot in tropical Acacia plantations Proceedings of a workshop held in Yogyakarta, Indonesia, 7–9 February 2006 Editors: Karina Potter, Anto Rimbawanto and Chris Beadle Australian Centre for International Agricultural Research Canberra 2006 The Australian Centre for International Agricultural Research (ACIAR) was established in June 1982 by an Act of the Australian Parliament. Its mandate is to help identify agricultural problems in developing countries and to commission collaborative research between Australian and developing country researchers in fields where Australia has a special research competence. Where trade names are used this constitutes neither endorsement of nor discrimination against any product by the Centre. ACIAR PROCEEDINGS SERIES This series of publications includes the full proceedings of research workshops or symposia organised or supported by ACIAR. Numbers in this series are distributed internationally to selected individuals and scientific institutions. © Australian Centre for International Agricultural Research, GPO Box 1571, Canberra, ACT 2601 Potter, K., Rimbawanto, A. and Beadle, C., ed., 2006. Heart rot and root rot in tropical Acacia plantations. Proceedings of a workshop held in Yogyakarta, Indonesia, 7–9 February 2006. Canberra, ACIAR Proceedings No. 124, 92p. ISBN 1 86320 507 1 print ISBN 1 86320 510 1 online Cover design: Design One Solutions Technical editing and desktop operations: Clarus Design Pty Ltd Printing: Elect Printing From: Potter, K., Rimbawanto, A. and Beadle, C., ed., 2006. Heart rot and root rot in tropical Acacia plantations. Proceedings of a workshop held in Yogyakarta, Indonesia, 7–9 February 2006. Canberra, ACIAR Proceedings No. 124. Foreword Fast-growing hardwood plantations are increasingly important to the economies of many countries around the Pacific rim, including Australia, Indonesia and the Philippines.
    [Show full text]
  • Data Sheet on Phellinus Weirii
    EPPO quarantine pest Prepared by CABI and EPPO for the EU under Contract 90/399003 Data Sheets on Quarantine Pests Phellinus weirii IDENTITY Name: Phellinus weirii (Murrill) R.L. Gilbertson Synonyms: Inonotus weirii (Murrill) Kotlaba & Pouzar Poria weirii (Murrill) Murrill Fomitiporia weirii Murrill Taxonomic position: Fungi: Basidiomycetes: Aphyllophorales Common Names: Laminated butt rot, yellow ring rot (English) Pourridié des racines des conifères (French) Podredumbre de las raíces de las coníferas (Spanish) Bayer computer code: INONWE EPPO A1 list: No. 19 EU Annex designation: I/A1 HOSTS In North America, the following species have been noted as hosts: Pseudotsuga menziesii (principal host), Abies amabilis, A. grandis, A. lasiocarpa, Larix occidentalis, Picea sitchensis, Pinus contorta, P. monticola, P. ponderosa, Tsuga heterophylla, T. mertensiana. In Japan, other species are attacked: A. mariesii, A. sachalinensis, Chamaecyparis sp., Picea jezoensis,T. diversifolia. Thuja plicata is highly to moderately resistant. In the EPPO region P. weirii could infect Pseudotsuga menziesii and possibly many other conifer species. GEOGRAPHICAL DISTRIBUTION EPPO region: Absent. Asia: China (Jilin), Japan (Honshu and Middle Hokkaido). North America: Canada (throughout the range of Pseudotsuga menziesii in southern British Columbia), north-western USA (Alaska, California, Idaho, Montana, Oregon, Washington, Wisconsin). EU: Absent. Distribution map: See IMI (1994, No. 490). BIOLOGY I. weirii occurs in forms with annual and perennial sporophores, the latter being found only on Thuja plicata. I. weirii clones are strikingly incompatible in culture. Single-spore isolates from the same fruiting body are mostly incompatible while those from different fruiting bodies are compatible (Hansen, 1979b). Infection occurs when roots of healthy trees grow in contact with infected roots.
    [Show full text]
  • Management of Laminated Root Rot Caused
    m+ 1 ~atmnalLiRwary BibliothTe nationale - * of Canada du Cana a '- Canadian Theses Service Service des theses canadiennes - -Ottawa. Canada NOTICE ., ?he quality of this microform is heavily dependent upon the La qualit4 de cette microform"e6pend grandement de la quality of the origanal thesis submitted for microfilming. qualit6 de la these soumise au microfilmage. Nous.avons Every effort has been made to ensurethe highest tout fait pour assurer une qualit6 supkrieure de reproduc- reproduction possible. tion. - If pages are missing, contact the university which gr'anted S'il manque 'des pages, veuillez mmmuniquer avec the degree. I'universit6 qui a confer6 le grade. Some pages may have indistinct print especially if the La qualit6 d'impression de certainei pages peot laisser a original pages were typed with a poor typewriter ribbondor desirer, surtout si les pages orginales ont 6tk dactylogra- ifthe univefsity sent us an inferior photocopy. phi6es A I'aide d'un ruban us6 ou sitl'universit6 nous a fait parvenir une photocopie de qualit&,inferieure. Reproduction in full or in part of this microform is overned La reproduction, meme partielle, dexette' microforme eSt bytheCanadiancopyright Act, R.S.C. 1970,~.d-30, and sournise a la Loi canadienne sur I6 droit 'd'abteur, SRC subsequent amendments. 1970, c. C-30, et ses amendements ~AGBMBITOF LAMINATED ROOT ROT CAUSED BY,PHBLLINUS WIRII A PROPESSIOHAL PAPER SUBHITTED IN PARTIAL PULFILLHEWT OF WTER OF PEST MANAGEMENT in the Department 0 f Biological Sciences > , Robert G. Praser 1989 . P 0 SIHON PRASBR WIVERSITY a All rights reserved. This work may not he . fl $eproduced in whole or *.'in part, by -photo~opy .
    [Show full text]
  • Genetic Diversity and Colonization Patterns of Onnia Tomentosa and Phellinus Tremulae (Hymenochaetaceae, Aphyllophorales) In
    Lakehead University Knowledge Commons,http://knowledgecommons.lakeheadu.ca Electronic Theses and Dissertations Electronic Theses and Dissertations from 2009 2016 Genetic diversity and colonization patterns of Onnia tomentosa and Phellinus tremulae (Hymenochaetaceae, Aphyllophorales) in the boreal forest near Thunder Bay, northwestern Ontario Hoegy, Zachary R. W. http://knowledgecommons.lakeheadu.ca/handle/2453/836 Downloaded from Lakehead University, KnowledgeCommons Genetic diversity and colonization patterns of Onnia tomentosa and Phellinus tremulae (Hymenochaetaceae, Aphyllophorales) in the boreal forest near Thunder Bay, northwestern Ontario by Zachary R.W. Hoegy A Graduate Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Masters of Science in Forestry Faculty of Natural Resource Management Lakehead University August, 2016 LIBRARY RIGHTS STATEMENT In presenting this thesis in partial fulfillment of the requirements of the M. Sc. F. degree at Lakehead University in Thunder Bay, I agree that the University will make it freely available for inspection. This thesis is made available by my authority solely for the purpose of private study and research and may not be copied or reproduced in whole or in part (except as permitted by Copyright Laws) without my written authority. Signature: ________________________________ Date: ____________________________________ ii A CAUTION TO THE READER This M. Sc. F. thesis has been through a semi-formal process of review and comment by at least two faculty members. It is made available for loan by the Faculty of Natural Resources Management for the purpose of advancing the practice of professional and scientific forestry. The reader should be aware that those opinions and conclusions expressed in this document are those of the student and do not necessarily reflect the opinions of either the thesis supervisor, the faculty, or Lakehead University.
    [Show full text]
  • Diseases of Pacific Coast Conifers
    United Slates Department of Agriculture Forest Service Agriculture Handbook 521 0^1 Diseases of Pacific Coast »> K to§4f^K 4^^. r° V '^ ^ tS-^ä Diseases of Pacific Coast Conifers Robert F. Scharpf, Technical Coordinator, Retired Project Leader, Forest Disease Research USDA Forest Service Pacific Southwest Research Station Albany, CA ,#^^^ United States Department of Agriculture flAil) Forest Service Agriculture Handbook 521 Revised June 1993 DISEASES OF PACIFIC COAST CONIFERS Robert F. Scharpf U.S. Department of Agriculture Forest Service Agriculture FHandbook No. 521 Abstract Scharpf, Robert F., tech. coord. 1993. Diseases of Pacific Coast Conifers. Agrie. FHandb. 521. Washington, DC: U.S. Department of Agriculture, Forest Service. 199 p. This handbook provides basic information needed to identify the common diseases of Pacific Coast conifers. FHosts, distribution, disease cycles, and identifying characteristics are described for more than 1 50 diseases, including cankers, diebacks, galls, rusts, needle diseases, root diseases, mistletoes, and rots. Diseases in which abiotic factors are involved are also described. For some groups of diseases, a descriptive key to field identification is included. Oxford: 44/#5—1 747 Coniferae (79) Keywords: Diagnosis, abiotic diseases, needle diseases, cankers, dieback, galls, rusts, mistletoes, root diseases, rots. Contents Preface iv Acknowledgments iv Introduction v CHAPTER 1 Abiotic Diseases 1 CHAPTER 2 Needle Diseases 33 CHAPTER 3 Cankers, Diebacks, and Galls 61 CHAPTER 4 Rusts 83 CHAPTERS Mistletoes 112 CHAPTER 6 Root Diseases 136 CHAPTER? Rots 150 Glossary 181 Index to Host Plants, With Scientific Equivalents 188 Index to Disease Causal Agents 191 For sale by the U.S. Government Printing Office Superintendent of Documents, Mail Stop: SSOP, Washington, DC 20402-9328 ISBN 0-16-041765-1 Preface This publication is a major revision of U.S.
    [Show full text]