Diseases of Pacific Coast Conifers

Total Page:16

File Type:pdf, Size:1020Kb

Diseases of Pacific Coast Conifers United Slates Department of Agriculture Forest Service Agriculture Handbook 521 0^1 Diseases of Pacific Coast »> K to§4f^K 4^^. r° V '^ ^ tS-^ä Diseases of Pacific Coast Conifers Robert F. Scharpf, Technical Coordinator, Retired Project Leader, Forest Disease Research USDA Forest Service Pacific Southwest Research Station Albany, CA ,#^^^ United States Department of Agriculture flAil) Forest Service Agriculture Handbook 521 Revised June 1993 DISEASES OF PACIFIC COAST CONIFERS Robert F. Scharpf U.S. Department of Agriculture Forest Service Agriculture FHandbook No. 521 Abstract Scharpf, Robert F., tech. coord. 1993. Diseases of Pacific Coast Conifers. Agrie. FHandb. 521. Washington, DC: U.S. Department of Agriculture, Forest Service. 199 p. This handbook provides basic information needed to identify the common diseases of Pacific Coast conifers. FHosts, distribution, disease cycles, and identifying characteristics are described for more than 1 50 diseases, including cankers, diebacks, galls, rusts, needle diseases, root diseases, mistletoes, and rots. Diseases in which abiotic factors are involved are also described. For some groups of diseases, a descriptive key to field identification is included. Oxford: 44/#5—1 747 Coniferae (79) Keywords: Diagnosis, abiotic diseases, needle diseases, cankers, dieback, galls, rusts, mistletoes, root diseases, rots. Contents Preface iv Acknowledgments iv Introduction v CHAPTER 1 Abiotic Diseases 1 CHAPTER 2 Needle Diseases 33 CHAPTER 3 Cankers, Diebacks, and Galls 61 CHAPTER 4 Rusts 83 CHAPTERS Mistletoes 112 CHAPTER 6 Root Diseases 136 CHAPTER? Rots 150 Glossary 181 Index to Host Plants, With Scientific Equivalents 188 Index to Disease Causal Agents 191 For sale by the U.S. Government Printing Office Superintendent of Documents, Mail Stop: SSOP, Washington, DC 20402-9328 ISBN 0-16-041765-1 Preface This publication is a major revision of U.S. Department of Agriculture Handbook 521, first issued in 1978 and slightly revised and reissued in 1979. It has been updated to include new informa- tion that will help identify many of the diseases of conifers growing along the Pacific Coast of western North America. The revisions have been made mainly to provide the latest information on diagnosis, nomenclature, and new diseases, and to expand the coverage of important diseases of the Pacific Northwest. The basic format of this handbook remains essentially the same as the original version. The expanded coverage, more and better illustrations, and new informa- tion are designed to make this handbook a useful tool in diagnosing diseases of Pacific Coast conifers. Acknowledgments We want to thank our many colleagues who willingly contrib- uted their time and effort to the revision of this handbook. Special thanks go to those who provided photographs, critically reviewed the manuscript, and suggested improvement for use by field personnel. Dave Adams California Department of Forestry Brenda Callan Canadian Forestry Research Centre, BC Canada Tom Chase South Dakota State University Fields Cobb University of California, Berkeley Greg Filip Oregon State University Everett FHansen Oregon State University Jack Marshall California Department of Forestry Art McCain University of California at Berkeley (retired) J. R. Parmeter, Jr University of California at Berkeley (retired) Jack Sutherland Canadian Forestry Research Centre, BC Canada Tim Tidwell California Department of Forestry Francis Uecker USDA Agricultural Research Service, Beltsville, MD Personnel of the USDA Forest Service Jim Byler John Kleijunas Greg DeNitto Bill Otrosina Susan Frankel John Pronos Don Goheen Mark Schultz Frank G. FHawksworth Jane Taylor IV introduction Robert F. Scharpf and Robert V. Bega Tree diseases are a natural part of the forest ecosystem. For the most part, the native diseases occur at endemic levels and only occasionally appear as spectacular or damaging epidemic outbreaks. However, even at endemic levels, damage to western forests from some diseases can, over time, be quite serious. A few introduced foreign diseases also occur in western North America, and some cause serious injury to native species. This handbook was designed to bring under one cover the basic information needed to identify some of the common diseases of Pacific Coast conifers. Although written primarily to help identify conifer diseases of the Pacific Coast states, the handbook should be useful throughout western North America where most of these diseases also occur. Diseases of seedlings or of conifers grown in nurseries are not covered in this handbook. Other publications deal specifically with seedling diseases. The information contained in this handbook is intended to serve a comparatively broad group interested in such activities as resource management, conservation, forestry, tree farming, outdoor recreation, and growing ornamental trees. Except for a few texts written on forest pathology, most of the available literature on tree diseases is in the form of bulletins, monographs, articles, and shorter contributions issued from time to time through a variety of publication outlets. A tree disease is primarily a disturbance of the normal functions of a tree or the deterioration of its parts. Therefore, it is fundamental to recognize the parts oí the tree that are attacked by disease-produc- ing agents and the kinds of disease common to them. Also, when attempting to diagnose a particular conifer disorder, the environmen- tal conditions that allow disease-causing agents to adapt and success- fully attack must be kept in mind. The roots of a tree, for example, require conditions for infection and establishment of an organism widely different from those to be found surrounding the leaves of the same tree. An organism causing a disease of living tissues may possess a different mode of attack and environment than one that produces a heart rot in the dead tissues of the heartwood. AGENTS OF TREE DISEASE Agents of disease can readily be classified as (1 ) abiotic, non- organic, nonliving agents, such as air and soil pollutants, ice, snow, wind, frost; and (2) biotic or living organisms, such as mistletoes, bacteria, and fungi. Viruses are not included because they have not been found to cause diseases of western conifers. Climate, soils, and vegetation vary greatly along the Pacific Coast. The cool, humid conditions of the Pacific Northwest contrast with the arid conditions of southern California. Aside from host specificity and biologic competition, the important factors influenc- ing the prevalence and virulence of disease pests are environmental; they include temperature, moisture, soil condition, and human influences. The same disease may, and usually does, have different degrees of intensity depending on the locale and the conditions under which the host is growing. For example, the canker fungus Botryophaeria ribis has never been found attacking the giant red- wood in its natural habitat. However, when the tree is planted in the warmer areas of western United States, B. ribis causes severe branch flagging, top dieback, and even death. The activities of humans affect most of the diseases described in this publication and must be considered in diagnosing a disease and evaluating the damage caused. On sites where trees are growing, every effort should be made to minimize environmental changes. Logging and construction work— particularly road construction and land leveling for housing, for campgrounds, and for picnic site development—are frequently a source of injury to trees. Apart from mechanical damage to above-ground parts of trees by machinery, roots can be injured if they are severed or if they are covered with excessive amounts of soil. Overdevelopment in previously undevel- oped areas may damage trees. Trees may also be damaged in indirect ways, such as through groundwater depletion or pollution. Conversely, humans must also be protected from diseased trees in recreation sites—particularly campgrounds, picnic areas, and summer home sites. Control oí hazardous trees is of prime impor- tance in both existing and future sites. Trees that fail because of disease or other agents can destroy lives and property. This publication is organized primarily for use in field diagnosis and, except for the chapters on rusts and mistletoes, it describes symp- toms based on the part of the tree attacked. Host genus and species are used as a major separation of cankers, mistletoes, and rusts. Pertinent literature citations relating to the diseases follow each chapter, and a glossary of terms and an index of hosts and diseases are included at the end of this handbook. Scientific names that have become widely accepted since the previous edition are included where appropriate. Control recommendations are not discussed except in special instances because of the continual changes in methods and materials used for control. As the environment undergoes changes, and as tree VI values continue to increase, particularly for recreational and esthetic use, specific control recommendations will also change. DIAGNOSIS OF TREE DISEASE Diagnosis of plant diseases is the art of identifying a disease from its symptoms, signs, and patterns. The symptoms (expressions of the diseased host), signs (evidences of the cause), and patterns of occur- rence provide the clues on which the investigator bases the diagnosis. The following guide will help diagnose tree disease: 1. Determine as accurately as possible the part of the plant that is actually affected. For example, the death of only
Recommended publications
  • Tree Species Distribution Maps for Central Oregon
    APPENDIX 7: TREE SPECIES DISTRIBUTION MAPS FOR CENTRAL OREGON A7-150 Appendix 7: Tree Species Distribution Maps Table A7-5. List of distribution maps for tree species of central Oregon. The species distribution maps are prefaced by four maps (pages A7-151 through A7-154) showing all locations surveyed in each of the four major data sources Map Page Forest Inventory and Analysis plot locations A7-151 Ecology core Dataset plot locations A7-152 Current Vegetation Survey plot locations A7-153 Burke Museum Herbarium and Oregon Flora Project sample locations A7-154 Scientific name Common name Symbol Abies amabilis Pacific silver fir ABAM A7-155 Abies grandis - Abies concolor Grand fir - white fir complex ABGR-ABCO A7-156 Abies lasiocarpa Subalpine fir ABLA A7-157 Abies procera - A. x shastensis Noble fir - Shasta red fir complex ABPR-ABSH A7-158 [magnifica x procera] Acer glabrum var. douglasii Douglas maple ACGLD4 A7-159 Alnus rubra Red alder ALRU2 A7-160 Calocedrus decurrens Incense-cedar CADE27 A7-161 Chrysolepis chrysophylla Golden chinquapin CHCH7 A7-162 Frangula purshiana Cascara FRPU7 A7-163 Juniperus occidentalis Western juniper JUOC A7-164 Larix occidentalis Western larch LAOC A7-165 Picea engelmannii Engelmann spruce PIEN A7-166 Pinus albicaulis Whitebark pine PIAL A7-167 Pinus contorta var. murrayana Sierra lodgepole pine PICOM A7-168 Pinus lambertiana Sugar pine PILA A7-169 Pinus monticola Western white pine PIMO3 A7-170 Pinus ponderosa Ponderosa pine PIPO A7-171 Populus balsamifera ssp. trichocarpa Black cottonwood POBAT A7-172
    [Show full text]
  • Thuja Plicata Has Many Traditional Uses, from the Manufacture of Rope to Waterproof Hats, Nappies and Other Kinds of Clothing
    photograph © Daniel Mosquin Culturally modified tree. The bark of Thuja plicata has many traditional uses, from the manufacture of rope to waterproof hats, nappies and other kinds of clothing. Careful, modest, bark stripping has little effect on the health or longevity of trees. (see pages 24 to 35) photograph © Douglas Justice 24 Tree of the Year : Thuja plicata Donn ex D. Don In this year’s Tree of the Year article DOUGLAS JUSTICE writes an account of the western red-cedar or giant arborvitae (tree of life), a species of conifers that, for centuries has been central to the lives of people of the Northwest Coast of America. “In a small clearing in the forest, a young woman is in labour. Two women companions urge her to pull hard on the cedar bark rope tied to a nearby tree. The baby, born onto a newly made cedar bark mat, cries its arrival into the Northwest Coast world. Its cradle of firmly woven cedar root, with a mattress and covering of soft-shredded cedar bark, is ready. The young woman’s husband and his uncle are on the sea in a canoe carved from a single red-cedar log and are using paddles made from knot-free yellow cedar. When they reach the fishing ground that belongs to their family, the men set out a net of cedar bark twine weighted along one edge by stones lashed to it with strong, flexible cedar withes. Cedar wood floats support the net’s upper edge. Wearing a cedar bark hat, cape and skirt to protect her from the rain and INTERNATIONAL DENDROLOGY SOCIETY TREES Opposite, A grove of 80- to 100-year-old Thuja plicata in Queen Elizabeth Park, Vancouver.
    [Show full text]
  • Dying Cedar Hedges —What Is the Cause?
    Points covered in this factsheet Symptoms Planting problems Physiological effects Environmental, Soil and Climate factors Insect, Disease and Vertebrate agents Dying Cedar Hedges —What Is The Cause? Attractive and normally trouble free, cedar trees can be great additions to the landscape. Dieback of cedar hedging in the landscape is a common prob- lem. In most cases, it is not possible to pinpoint one single cause. Death is usually the result of a combination of envi- ronmental stresses, soil factors and problems originating at planting. Disease, insect or animal injury is a less frequent cause. Identifying The Host Certain species of cedar are susceptible to certain problems, so identifying the host plant can help to identify the cause and whether a symptom is an issue of concern or is normal for that plant. The most common columnar hedging cedars are Thuja plicata (Western Red Cedar - native to the West Coast) and Thuja occidentalis (American Arborvitae or Eastern White ICULTURE, PLANT HEALTH UNIT Cedar). Both species are often called arborvitae. Common varieties of Western Red ce- dar are ‘Emerald Giant’, ‘Excelsa’ and Atrovirens’. ‘Smaragd’ and ‘Pyramidalis’ are com- mon varieties of Eastern White cedar hedging. Species of Cupressus (Cypress), Chamaecyparis nootkatensis (Yellow Cedar or False Cypress) and Chamaecyparis law- soniana (Port Orford Cedar or lawsom Cypress) are also used in hedging. Symptoms The pattern of symptom development/distribution can provide a clue to whether the prob- lem is biotic (infectious) or abiotic (non-infectious). Trees often die out in a group, in one section of the hedge, or at random throughout the hedge.
    [Show full text]
  • Qty Size Name 6 1G Abies Bracteata 10 1G Abutilon Palmeri 1 1G Acaena Pinnatifida Var
    REGIONAL PARKS BOTANIC GARDEN, TILDEN REGIONAL PARK, BERKELEY, CALIFORNIA Celebrating 76 years of growing California native plants: 1940-2016 **FINAL**PLANT SALE LIST **FINAL** (9/30/2016 @ 6:00 PM) visit: www.nativeplants.org for the most up to date plant list FALL PLANT SALE OF CALIFORNIA NATIVE PLANTS SATURDAY, OCTOBER 1, 2016 PUBLIC SALE: 10:00 AM TO 3:00 PM MEMBERS ONLY SALE: 9:00 AM TO 10:00 AM MEMBERSHIPS ARE AVAILABLE AT THE ENTRY TO THE SALE AT 8:30 AM Qty Size Name 6 1G Abies bracteata 10 1G Abutilon palmeri 1 1G Acaena pinnatifida var. californica 18 1G Achillea millefolium 10 4" Achillea millefolium - Black Butte 28 4" Achillea millefolium 'Island Pink' 8 4" Achillea millefolium 'Rosy Red' - donated by Annie's Annuals 2 4" Achillea millefolium 'Sonoma Coast' 7 4" Acmispon (Lotus) argophyllus var. argenteus 9 1G Actea rubra f. neglecta (white fruits) 25 4" Adiantum x tracyi (A. jordanii x A. aleuticum) 5 1G Aesculus californica 1 2G Agave shawii var. shawii 2 1G Agoseris grandiflora 8 1G Alnus incana var. tenuifolia 2 2G Alnus incana var. tenuifolia 5 4" Ambrosia pumila 5 1G Amelanchier alnifolia var. semiintegrifolia 9 1G Anemopsis californica 5 1G Angelica hendersonii 3 1G Angelica tomentosa 1 1G Apocynum androsaemifolium x Apocynum cannabinum 7 1G Apocynum cannabinum 5 1G Aquilegia formosa 2 4" Aquilegia formosa 4 4" Arbutus menziesii 2 1G Arctostaphylos andersonii 2 1G Arctostaphylos auriculata 3 1G Arctostaphylos 'Austin Griffith' 11 1G Arctostaphylos bakeri 5 1G Arctostaphylos bakeri 'Louis Edmunds' 2 1G Arctostaphylos canescens 2 1G Arctostaphylos canescens subsp.
    [Show full text]
  • Western Indicators of Cull in Oregon Conifers
    United States Department of Agriculture Indicators of Cull in Forest Service Pacific Northwest Forest andRange Western Oregon Experiment Station General Technical Report PNW-1 44 Conifers September 1982 Paul E. Aho This file was created by scanning the printed publication. Mis-scans identified by the software have been corrected; however, some errors may remain. Author PAUL E. AH0 is a research plant pathologist, Pacific Northwest Forest and Range Experiment Station, Forestry Sciences Laboratory, 3200 Jefferson Way, Corvallis, Oregon 97331. Abstract Contents Aho, Paul E. Indicators of cull in 1 Introduction western Oregon conifers. Gen. 1 Defect Indicators Tech. Rep. PNW-144. Portland, OR: U.S. Department of Agriculture, 2 Decay Fungi Forest Service, Pacific Northwest 2 Red Ring Rot Forest and Range Experiment Station; 1982. 17 p. 4 Red Ring Rot (var. cancriforrnans) 5 Rust-Red Stringy Rot Descriptions and color photographs of 6 Brown Trunk Rot important fungal sporophores (conks), other indicators of cull (wounds), and 7 Red-Brown Butt Rot associated decays in western Oregon 8 Yellow Laminated Rot conifers are provided to aid timber markers, cruisers, and scalers in 9 White Spongy Rot identifying them. Cull factors are given 10 Mottled Rot for the indicators by tree species. 10 Yellow Pitted Rot Keywords: Cull logs, decay (wood), 11 Brown Crumbly Rot timber cruising, log scaling, coniferae, 12 Brown Cubical Rot western Oregon. 12 Brown Top Rot 13 Pencil Rot 14 Injuries Indicating Associated Defect 14 Basal Injuries 14 Trunk Injuries 14 Frost Cracks 15 Top Injuries 15 Forks 15 Crooks 16 Swollen Butts 16 Dwarf Mistletoe Cankers 16 Additional Souces of Information 17 Appendix Introduction Defect Indicators Timber cruisers and scalers must be Type and age of all kinds of wounds Two gene;al types of defect indicators able to estimate net volumes of stand- can be used to determine presence and are: ing trees and bucked logs accurately.
    [Show full text]
  • Vascular Plants at Fort Ross State Historic Park
    19005 Coast Highway One, Jenner, CA 95450 ■ 707.847.3437 ■ [email protected] ■ www.fortross.org Title: Vascular Plants at Fort Ross State Historic Park Author(s): Dorothy Scherer Published by: California Native Plant Society i Source: Fort Ross Conservancy Library URL: www.fortross.org Fort Ross Conservancy (FRC) asks that you acknowledge FRC as the source of the content; if you use material from FRC online, we request that you link directly to the URL provided. If you use the content offline, we ask that you credit the source as follows: “Courtesy of Fort Ross Conservancy, www.fortross.org.” Fort Ross Conservancy, a 501(c)(3) and California State Park cooperating association, connects people to the history and beauty of Fort Ross and Salt Point State Parks. © Fort Ross Conservancy, 19005 Coast Highway One, Jenner, CA 95450, 707-847-3437 .~ ) VASCULAR PLANTS of FORT ROSS STATE HISTORIC PARK SONOMA COUNTY A PLANT COMMUNITIES PROJECT DOROTHY KING YOUNG CHAPTER CALIFORNIA NATIVE PLANT SOCIETY DOROTHY SCHERER, CHAIRPERSON DECEMBER 30, 1999 ) Vascular Plants of Fort Ross State Historic Park August 18, 2000 Family Botanical Name Common Name Plant Habitat Listed/ Community Comments Ferns & Fern Allies: Azollaceae/Mosquito Fern Azo/la filiculoides Mosquito Fern wp Blechnaceae/Deer Fern Blechnum spicant Deer Fern RV mp,sp Woodwardia fimbriata Giant Chain Fern RV wp Oennstaedtiaceae/Bracken Fern Pleridium aquilinum var. pubescens Bracken, Brake CG,CC,CF mh T Oryopteridaceae/Wood Fern Athyrium filix-femina var. cyclosorum Western lady Fern RV sp,wp Dryopteris arguta Coastal Wood Fern OS op,st Dryopteris expansa Spreading Wood Fern RV sp,wp Polystichum munitum Western Sword Fern CF mh,mp Equisetaceae/Horsetail Equisetum arvense Common Horsetail RV ds,mp Equisetum hyemale ssp.affine Common Scouring Rush RV mp,sg Equisetum laevigatum Smooth Scouring Rush mp,sg Equisetum telmateia ssp.
    [Show full text]
  • Retrospective Analysis of Lophodermium Seditiosum Epidemics in Estonia
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Directory of Open Access Journals Acta Silv. Lign. Hung., Spec. Edition (2007) 31-45 Retrospective Analysis of Lophodermium seditiosum Epidemics in Estonia * Märt HANSO – Rein DRENKHAN Estonian University of Life Sciences, Institute of Forestry and Rural Engineering, Tartu, Estonia Abstract – The needle trace method (NTM), created and developed by the Finnish forest pathologists prof. T. Kurkela, dr. R. Jalkanen and T. Aalto during the last decade of the XX century, has been already used by several researchers of different countries for retrospective analysis of needle diseases (Hypodermella sulcigena , by R. Jalkanen et al. in Finland) or herbivorous insect pests of Scots pine (Diprion pini, by T. Kurkela et al. in Finland; Bupalus piniaria , by H. Armour et al. in Scotland), but as well of pests of Sitka spruce (Gilpinia hercyniae , by D.T. Williams et al. in England). Scots pine in forest nurseries and young plantations of Estonia is often but irregularly suffering from the epidemics of the needle cast fungus Lophodermium seditiosum . Current environmental regulations exclude from the regulatory (control) measures all the others except of well-argued prophylactic systems, built up on reliable prognoses. The last is inconceivable without the availability of a reliable, as well, and long- lasting retrospective time-series of L. seditiosum epidemics, which, as it is known from the last half of the XX century, are occupying large forest areas, usually not least than a half of (the small) Estonia. An appropriate time-series would be useful, as well, for the more basic understanding of the accelerated mortality processes during the stand formation in early pole-age Scots pine plantations.
    [Show full text]
  • Big Sur Capital Preventive Maintenance (CAPM) Project Approximately a 35-Mile Section on State Route 1, from Big Sur to Carmel-By-The-Sea, in the County of Monterey
    Big Sur Capital Preventive Maintenance (CAPM) Project Approximately a 35-mile section on State Route 1, from Big Sur to Carmel-by-the-Sea, in the County of Monterey 05-MON-01-PM 39.8/74.6 Project ID: 05-1400-0046 Project EA: 05-1F680 SCH#: 2018011042 Initial Study with Mitigated Negative Declaration Prepared by the State of California Department of Transportation April 2018 General Information About This Document The California Department of Transportation (Caltrans), has prepared this Initial Study with Mitigated Negative Declaration, which examines the potential environmental impacts of the Big Sur CAPM project on approximately a 35-mile section of State Route 1, located in Monterey County California. The Draft Initial Study was circulated for public review and comment from January 26, 2018 to February 26, 2018. A Notice of Intent to Adopt a Mitigated Negative Declaration, and Opportunity for Public Hearing was published in the Monterey County Herald on Friday January 26, 2018. The Notice of Intent and Opportunity for Public Hearing was mailed to a list of stakeholders that included both government agencies and private citizen groups who occupy and have interest in the project area. No comments were received during the public circulation period. The project has completed the environmental compliance with circulation of this document. When funding is approved, Caltrans can design and build all or part of the project. Throughout this document, a vertical line in the margin indicates a change that has been made since the draft document
    [Show full text]
  • Stuart, Trees & Shrubs
    Excerpted from ©2001 by the Regents of the University of California. All rights reserved. May not be copied or reused without express written permission of the publisher. click here to BUY THIS BOOK INTRODUCTION HOW THE BOOK IS ORGANIZED Conifers and broadleaved trees and shrubs are treated separately in this book. Each group has its own set of keys to genera and species, as well as plant descriptions. Plant descriptions are or- ganized alphabetically by genus and then by species. In a few cases, we have included separate subspecies or varieties. Gen- era in which we include more than one species have short generic descriptions and species keys. Detailed species descrip- tions follow the generic descriptions. A species description in- cludes growth habit, distinctive characteristics, habitat, range (including a map), and remarks. Most species descriptions have an illustration showing leaves and either cones, flowers, or fruits. Illustrations were drawn from fresh specimens with the intent of showing diagnostic characteristics. Plant rarity is based on rankings derived from the California Native Plant Society and federal and state lists (Skinner and Pavlik 1994). Two lists are presented in the appendixes. The first is a list of species grouped by distinctive morphological features. The second is a checklist of trees and shrubs indexed alphabetically by family, genus, species, and common name. CLASSIFICATION To classify is a natural human trait. It is our nature to place ob- jects into similar groups and to place those groups into a hier- 1 TABLE 1 CLASSIFICATION HIERARCHY OF A CONIFER AND A BROADLEAVED TREE Taxonomic rank Conifer Broadleaved tree Kingdom Plantae Plantae Division Pinophyta Magnoliophyta Class Pinopsida Magnoliopsida Order Pinales Sapindales Family Pinaceae Aceraceae Genus Abies Acer Species epithet magnifica glabrum Variety shastensis torreyi Common name Shasta red fir mountain maple archy.
    [Show full text]
  • Vascular Plant and Vertebrate Inventory of Fort Bowie National Historic Site Vascular Plant and Vertebrate Inventory of Fort Bowie National Historic Site
    Powell, Schmidt, Halvorson In Cooperation with the University of Arizona, School of Natural Resources Vascular Plant and Vertebrate Inventory of Fort Bowie National Historic Site Vascular Plant and Vertebrate Inventory of Fort Bowie National Historic Site Plant and Vertebrate Vascular U.S. Geological Survey Southwest Biological Science Center 2255 N. Gemini Drive Flagstaff, AZ 86001 Open-File Report 2005-1167 Southwest Biological Science Center Open-File Report 2005-1167 February 2007 U.S. Department of the Interior U.S. Geological Survey National Park Service In cooperation with the University of Arizona, School of Natural Resources Vascular Plant and Vertebrate Inventory of Fort Bowie National Historic Site By Brian F. Powell, Cecilia A. Schmidt , and William L. Halvorson Open-File Report 2005-1167 December 2006 USGS Southwest Biological Science Center Sonoran Desert Research Station University of Arizona U.S. Department of the Interior School of Natural Resources U.S. Geological Survey 125 Biological Sciences East National Park Service Tucson, Arizona 85721 U.S. Department of the Interior DIRK KEMPTHORNE, Secretary U.S. Geological Survey Mark Myers, Director U.S. Geological Survey, Reston, Virginia: 2006 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS-the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web:http://www.usgs.gov Telephone: 1-888-ASK-USGS Suggested Citation Powell, B. F, C. A. Schmidt, and W. L. Halvorson. 2006. Vascular Plant and Vertebrate Inventory of Fort Bowie National Historic Site.
    [Show full text]
  • Details of Important Plants in Rpbg
    DETAILS OF IMPORTANT PLANTS IN RPBG ABIES BRACTEATA. SANTA LUCIA OR BRISTLECONE FIR. PINACEAE, THE PINE FAMILY. A slender tree (especially in the wild) with skirts of branches and long glossy green spine-tipped needles with white stomatal bands underneath. Unusual for its sharp needles and pointed buds. Pollen cones borne under the branches between needles; seed cones short with long bristly bracts extending beyond scales and loaded with pitch, the cones at the top of the tree and shattering when ripe. One of the world’s rarest and most unique firs, restricted to steep limestone slopes in the higher elevations of the Santa Lucia Mountains. Easiest access is from Cone Peak Road at the top of the first ridge back of the ocean and reached from Nacimiento Ferguson Road. Signature tree at the Garden, and much fuller and attractive than in its native habitat. ACER CIRCINATUM. VINE MAPLE. SAPINDACEAE, THE SOAPBERRY FAMILY. Not a vine but a small deciduous tree found on the edge of conifer forests in northwestern California and the extreme northern Sierra (not a Bay Area species). Slow growing to perhaps 20 feet high with pairs of palmately lobed leaves that turn scarlet in fall, the lobes arranged like an expanded fan. Tiny maroon flowers in early spring followed by pairs of winged samaras that start pink and turn brown in late summer, the fruits carried on strong winds. A beautiful species very similar to the Japanese maple (A. palmatum) needing summer water and part-day shade, best in coastal gardens. A beautiful sight along the northern Redwood Highway in fall.
    [Show full text]
  • CHRISTMAS TREES FACTSHEET November 2008 an INTRODUCTION Ref: 050403
    CALU CHRISTMAS TREES FACTSHEET November 2008 AN INTRODUCTION Ref: 050403: INTRODUCTION Growing Christmas trees is an option which more and more garden centres, nurseries and other businesses are considering. Over recent years production numbers have increased significantly: from 4.4m trees produced in the UK in 2001, to 6.5m in 2005. Nevertheless, approximately one million Christmas trees are imported from the continent, mainly Denmark, each year. There are good arguments for setting up a Christmas tree plantation, including the strength of the Euro. This is making imported trees look less attractive as they become relatively more expensive. Home grown Christmas trees also have an attractive marketing factor which can encourage customers to buy them. However, setting up and running a Christmas tree plantation is a time and labour intensive operation which requires skills as well as foresight: it will take around seven to 10 years before the first crop of Christmas trees will be ready for the market. SPECIES Many species are used as Christmas trees: some are more fashionable in some years than others. Historically, it was the Norway spruce that was the traditional Christmas tree. In recent years various types of fir tree have overtaken the spruce in terms of popularity. This is because they tend to hold their needles better and are less prickly. However, they are slower growing and therefore more expensive to produce. Table 1 provides an overview of the characteristics of the most commonly bought Christmas tree species in the UK: Table 1: Common Christmas tree species Common Botanical name Characteristics name Noble fir Abies procera Typical “Christmassy” scent, soft needles, approx.
    [Show full text]