Sabinaite, a New Anhydrous Zirconium-Bearing Carbonate Mineral from Montreal Island, Quebec

Total Page:16

File Type:pdf, Size:1020Kb

Sabinaite, a New Anhydrous Zirconium-Bearing Carbonate Mineral from Montreal Island, Quebec Canadian Mineralogist Vol. 18, pp. 25-29 (1980) SABINAITE, A NEW ANHYDROUS ZIRCONIUM-BEARING CARBONATE MINERAL FROM MONTREAL ISLAND, QUEBEC J.L. JAMBOR CANMET, 55S Booth Street, Ottawa, Ontario K1A 0G1 B.D. STURMAN Department of Mineralogy and Geology, Royal Ontario Museum, Toronto, Ontario M5S 2C6 G.C. WEATHERLY Department of Metallurgy and Materials Science, University of Toronto, Toronto, Ontario M5S 1A4 Abstract rant au maximum 0.01 x 0.001 mm. Biaxe negative, IV 85°. a 1.74(2), P 1.80(2), v 1.85(1), X presque Fine-grained, white, powdery coatings and chalky perpendiculaire aux plaquettcs. L'analyse donnc aggregates of sabinaite occur in vugs in a dawsonite- Na.O 20.7, CaO 0.2, ZrO, 39.1, HfO, 0.47, TiO, rich silicocarbonatite sill at Montreal Island, Que 12.0, CO, 27.1, total 99.57 (poids). La sabinaite bec. The mineral is platy. roughly pseudohexagonal, est anhydre; sa teneur en fluor est ndgligeable; with maximum dimensions 0.01 x 0.001 mm, biaxial sa formule est (Na,Ca)».M(Zr,Hf)4.,0Ti,.MO».Ti> negative with IV 85°, a 1.74(2). P 1.80(2). r (CO,)„.,n soit, idealemenl. Na„Zr,+,Ti,09(CO,)„ x 1.85(1), X nearly normal to the plates. Analyses = 0.25. Elle ne reagit pas avec les acides froids, gave Na.O 20.7, CaO 0.2. ZrO, 39.1. HfO, 0.47. mais est soluble avec effervescence dans HCI chaud. TiO, 12.0, CO, 27.1, total 99.57 wt. %. Sabinaite La sabinaite est monoclinique; les dimensions de is anhydrous and has low or negligible F. The la mnille, obtenues en partie par diffraction elec- analytical formula is (Na,Ca)R.M(Zr,Hf)4.j»Ti,.M troniquc et en partie aux rayons X sur cliche 0,.,„(CO.,),.,o, theoretically NasZr^TiA^COa),, de poudre. sont: a 6.605(3), b 10.186(5). c 37.94 where x — 0.25. The mineral is unreactive in cold (5) A, P ~ 90". D„lc = 3.41 pour Z = 8 (for acids but is soluble with effervescence in warm mule analytique), Dm. 3.36. Les cinq raies les HCI. Sabinaite is monoclinic; cell dimensions, ob plus intenses du cliche' de poudre sont: 8.97(10) tained partly by electron diffraction and partly (012). 2.991(6)(036), 2.017(5)(240), 1.847(6), from the powder X-ray pattern, are a 6.605(3), 1.646(5). Le spectre infrarouge confirmc la pre b 10.186(5), c 37.94(5) A, P ~ 90°. D„„ is 3.41 sence de carbonate et l'absence de H,0 et d'OH. g/cms for Z = 8 (analytical formula), whereas Par ATD et ATG, on obtient une perte de poids £)„„ is 3.36 g/crn". Strongest lines of the powder de 28.1% et surtout du ZrO, monoclinique commc pattern are 8.97(10)(012), 2.991(6)(036), 2.017 produit de decomposition. La nouvelle espece est (5X240). 1.847(6). 1.646(5). The infrared spec dcdiee a Ann Phyllis Sabina, de la Commission trum of sabinaite confirms the presence of car gcologique du Canada. bonate and the absence of H,0 and OH. DTA and (Traduit par la Redaction) TGA gave a weight loss of 28.1%. with decom position mainly to monoclinic ZrO,. Sabinaite is Mots-cits: sabinaite, silicocarbonatite, carrierc St- named in honor of Ann Phyllis Sabina, of the Michcl, Montreal, dawsonite, carbonate anhydre de Geological Survey of Canada. zirconium et de titanium. Keywords: sabinaite, silicocarbonatite, St-Michel quarry, Montreal, dawsonite, anhydrous carbonate Introduction of zirconium and titanium. Dawsonite-bearing silicocarbonatite sills ex Sommaire posed in a limestone quarry at St-Michel, Mont real Island, Quebec, contain a varied mineralogy On trouve la sabinaite en enduits blancs, fine- ments grenus, pulvcrulcnts et en agrlgats crayeux that includes several unique barium- and zir dans les vacuoles d'un sill de silicocarbonatite a conium-bearing carbonates and a few as-yet- dawsonite sur l'ile de Montreal (Quebec). Elle unidentified minerals (Sabina 1979). In 1967 se prcsente en plaquettcs pseudo-hexagonales mesu- a new Na-Zr-Ti mineral was recognized and 25 Downloaded from http://pubs.geoscienceworld.org/canmin/article-pdf/18/1/25/4005447/25_18_1_cm.pdf by guest on 29 September 2021 26 THE CANADIAN MINERALOGIST subsequently designated as mineral No. 5 (Sabi Compact aggregates have a vitreous lustre, but na 1976, 1979) For almost a decade only a in some cases flakes are aligned and impart a minute amount of this mineral was available, silky lustre to thin coatings. The hardness of but persistent collecting and X-ray identifi the mineral could not be determined. cations by A.P. Sabina eventually resulted in Optical and scanning electron microscopy of the acquisition of sufficient material for a sabinaite shows that it is platy and commonly chemical analysis and characterization. The new roughly pseudohexagonal. Grains are generally mineral is named sabinaite in honor of Ann equant, but most of the prism edges are ir Phyllis Stenson (n6e Sabina), whose initial work regular. A few grains are well formed (Fig. 1) led to the recognition of the unusual mineral and have crystal edges that intersect at 115 to assemblage at the St-Michel quarry, and whose 120°, thus accounting for the pseudohex perseverance in collecting and identifying these agonal crystal shape. Perfect basal cleavage is rare minerals has provided the main impetus evident from the persistent flaky habit of toward their study. The new mineral and name ground samples; a good cleavage normal to have been approved by the Commission on the base is visible in some SEM photographs. New Minerals and Mineral Names, I.M.A. Sabinaite is optically transparent and color Cotype specimens of sabinaite are in the Na less, biaxial negative with 2V (universal stage) tional Mineral Collection at the Geological Sur 85(5)°, a 1-74(2), 0 1.80(2), y 1.85(1). X is vey of Canada, Ottawa (61017 to 61024 in perpendicular (or nearly) to the plates. clusive), and in the Royal Ontario Museum, Sabinaite does not fluoresce in ultraviolet Toronto (M35902). radiation. However, in some specimens this inertness is obscured by the presence of films of a gibbsitc-typc mineral (No. 3 of Sabina Properties 1976, 1979) that has an intense, while fluo Physical and optical properties rescence under long-wave ultraviolet light. Sabi naite shows no reaction in dilute and concen Sabinaite occurs in silicocarbonatite in the trated (1:1) hydrochloric acid at room temper upper levels of the quarry, where it forms ature, but is readily soluble with effervescence white, powdery coatings and compact, chalky in warm HCI. Pycnometer measurement of an aggregates in vugs. The mineral is microscopi approximately 300-mg sample used for the chem cally flaky, with maximum dimensions of about ical analysis of sabinaite gave a density of 0.01 mm in width and 0.001 mm in thickness. 3.36 g/cm'. X-ray data Sabinaite is too fine grained for standard single-crystal X-ray study. Electron-diffraction patterns of flat-lying plates show a net that can be interpreted as orthogonal, with h + k = In and dm = 10.2, dm, = 6.6 A. Observed forms for sabinaite therefore become {100} and {110}, platy {001}, with cleavages {001} and {100}. Attempts to obtain the third cell para meter by tilting the plates were not successful because of multiple diffraction and reciprocal lattice streaking. Controlled tilting experiments about [100] do not give identical patterns and indicate that the unit cell is not precisely ortho- rhombic. Therefore, either monoclinic or triclinic symmetry would be possible, but the systematic hkO extinctions indicate that the cell is mono clinic. The X-ray powder pattern of sabinaite was indexed by using the orthogonal dimensions from the electron-diffraction pattern and cal Fig. 1. SEM photograph showing the typical platy culating c and (j from the powder data. Satis habit and crystal shape (top right) of sabinaite. factory indexing was obtained with c = 37.94 Bar represents 1 p.m. A, $ = 90" (Table 1). Downloaded from http://pubs.geoscienceworld.org/canmin/article-pdf/18/1/25/4005447/25_18_1_cm.pdf by guest on 29 September 2021 SABINAITE, AN ANHYDROUS ZIRCONIUM-BEARING CARBONATE 27 TABLE 1. POWDER X-RAY DIFFRACTION DATA FOR SABINAITE by microprobe at CANMET, and Na,0, CO, hM. hU and F were determined by wet-chemical methods 'est neas dealc W neas dcalc at the Geological Survey of Canada. No other 10 B.97 8.974 012 1 2.243 2.244 048 i S.10 5.093 020 1 2.153 2.150 0.2.16 elements were detected by microprobe. <i 4.57 4.568 106 <IB 2.126 2.124 148 2 4.48 4.487 024 1 2.109 2.108 0.0.18 The analyses in Table 2, recalculated to 100 1 4.30 4.299 018 5 2.017 2.017 240 wt. %, yield a formula of (Na,Ca)B.M(Zr,Hf)4.,o 1 3.307 3.303 200 2 1.946 <>B 3.277 3.279 033 6 1.847 Tii.9a08.«(COs),.10, approximately Nao(Zr,Hf)4+» 2 3.252 3.254 202 2 1.824 1 3.009 3.010 131 3 1.795 Ti,Os(CO»)s assuming 33 O atoms and no F 6 2.991 2.991 036 <i 1.730 atoms. The analytically derived value of x is <»B 2.942 2.937 133 <» 1.693 <i 2.768 2.771 220 3 1.687 0.18 to 0.20, whereas the theoretical value is <)B 2.742 2.742 222 5 1.646 0.25.
Recommended publications
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • Adamsite-(Y), a New Sodium–Yttrium Carbonate Mineral
    1457 The Canadian Mineralogist Vol. 38, pp. 1457-1466 (2000) ADAMSITE-(Y), A NEW SODIUM–YTTRIUM CARBONATE MINERAL SPECIES FROM MONT SAINT-HILAIRE, QUEBEC JOEL D. GRICE§ and ROBERT A. GAULT Research Division, Canadian Museum of Nature, P.O. Box 3443, Station D, Ottawa, Ontario K1P 6P4, Canada ANDREW C. ROBERTS Geological Survey of Canada, 601 Booth Street, Ottawa, Ontario K1A 0E8, Canada MARK A. COOPER Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada ABSTRACT Adamsite-(Y), ideally NaY(CO3)2•6H2O, is a newly identified mineral from the Poudrette quarry, Mont Saint-Hilaire, Quebec. It occurs as groups of colorless to white and pale pink, rarely pale purple, flat, acicular to fibrous crystals. These crystals are up to 2.5 cm in length and form spherical radiating aggregates. Associated minerals include aegirine, albite, analcime, ancylite-(Ce), calcite, catapleiite, dawsonite, donnayite-(Y), elpidite, epididymite, eudialyte, eudidymite, fluorite, franconite, gaidonnayite, galena, genthelvite, gmelinite, gonnardite, horváthite-(Y), kupletskite, leifite, microcline, molybdenite, narsarsukite, natrolite, nenadkevichite, petersenite-(Ce), polylithionite, pyrochlore, quartz, rhodochrosite, rutile, sabinaite, sérandite, siderite, sphalerite, thomasclarkite-(Y), zircon and an unidentified Na–REE carbonate (UK 91). The transparent to translucent mineral has a vitreous to pearly luster and a white streak. It is soft (Mohs hardness 3) and brittle with perfect {001} and good {100} and {010} cleav- ␣ ␤ ␥ ° ° ages. Adamsite-(Y) is biaxial positive, = V 1.480(4), = 1.498(2), = 1.571(4), 2Vmeas. = 53(3) , 2Vcalc. = 55 and is nonpleochroic. Optical orientation: X = [001], Y = b, Z a = 14° (in ␤ obtuse). It is triclinic, space group P1,¯ with unit-cell parameters refined from powder data: a 6.262(2), b 13.047(6), c 13.220(5) Å, ␣ 91.17(4), ␤ 103.70(4), ␥ 89.99(4)°, V 1049.1(5) Å3 and Z = 4.
    [Show full text]
  • Infrare D Transmission Spectra of Carbonate Minerals
    Infrare d Transmission Spectra of Carbonate Mineral s THE NATURAL HISTORY MUSEUM Infrare d Transmission Spectra of Carbonate Mineral s G. C. Jones Department of Mineralogy The Natural History Museum London, UK and B. Jackson Department of Geology Royal Museum of Scotland Edinburgh, UK A collaborative project of The Natural History Museum and National Museums of Scotland E3 SPRINGER-SCIENCE+BUSINESS MEDIA, B.V. Firs t editio n 1 993 © 1993 Springer Science+Business Media Dordrecht Originally published by Chapman & Hall in 1993 Softcover reprint of the hardcover 1st edition 1993 Typese t at the Natura l Histor y Museu m ISBN 978-94-010-4940-5 ISBN 978-94-011-2120-0 (eBook) DOI 10.1007/978-94-011-2120-0 Apar t fro m any fair dealin g for the purpose s of researc h or privat e study , or criticis m or review , as permitte d unde r the UK Copyrigh t Design s and Patent s Act , 1988, thi s publicatio n may not be reproduced , stored , or transmitted , in any for m or by any means , withou t the prio r permissio n in writin g of the publishers , or in the case of reprographi c reproductio n onl y in accordanc e wit h the term s of the licence s issue d by the Copyrigh t Licensin g Agenc y in the UK, or in accordanc e wit h the term s of licence s issue d by the appropriat e Reproductio n Right s Organizatio n outsid e the UK. Enquirie s concernin g reproductio n outsid e the term s state d here shoul d be sent to the publisher s at the Londo n addres s printe d on thi s page.
    [Show full text]
  • Carbon Mineral Ecology: Predicting the Undiscovered Minerals of Carbon
    American Mineralogist, Volume 101, pages 889–906, 2016 Carbon mineral ecology: Predicting the undiscovered minerals of carbon ROBERT M. HAZEN1,*, DANIEL R. HUMMER1, GRETHE HYSTAD2, ROBERT T. DOWNS3, AND JOSHUA J. GOLDEN3 1Geophysical Laboratory, Carnegie Institution, 5251 Broad Branch Road NW, Washington, D.C. 20015, U.S.A. 2Department of Mathematics, Computer Science, and Statistics, Purdue University Calumet, Hammond, Indiana 46323, U.S.A. 3Department of Geosciences, University of Arizona, 1040 East 4th Street, Tucson, Arizona 85721-0077, U.S.A. ABSTRACT Studies in mineral ecology exploit mineralogical databases to document diversity-distribution rela- tionships of minerals—relationships that are integral to characterizing “Earth-like” planets. As carbon is the most crucial element to life on Earth, as well as one of the defining constituents of a planet’s near-surface mineralogy, we focus here on the diversity and distribution of carbon-bearing minerals. We applied a Large Number of Rare Events (LNRE) model to the 403 known minerals of carbon, using 82 922 mineral species/locality data tabulated in http://mindat.org (as of 1 January 2015). We find that all carbon-bearing minerals, as well as subsets containing C with O, H, Ca, or Na, conform to LNRE distributions. Our model predicts that at least 548 C minerals exist on Earth today, indicating that at least 145 carbon-bearing mineral species have yet to be discovered. Furthermore, by analyzing subsets of the most common additional elements in carbon-bearing minerals (i.e., 378 C + O species; 282 C + H species; 133 C + Ca species; and 100 C + Na species), we predict that approximately 129 of these missing carbon minerals contain oxygen, 118 contain hydrogen, 52 contain calcium, and more than 60 contain sodium.
    [Show full text]
  • Mineral Index
    Mineral Index Abhurite T.73, T.355 Anandite-Zlvl, T.116, T.455 Actinolite T.115, T.475 Anandite-20r T.116, T.45S Adamite T.73,T.405, T.60S Ancylite-(Ce) T.74,T.35S Adelite T.115, T.40S Andalusite (VoU, T.52,T.22S), T.27S, T.60S Aegirine T.73, T.30S Andesine (VoU, T.58, T.22S), T.41S Aenigmatite T.115, T.46S Andorite T.74, T.31S Aerugite (VoU, T.64, T.22S), T.34S Andradite T.74, T.36S Agrellite T.115, T.47S Andremeyerite T.116, T.41S Aikinite T.73,T.27S, T.60S Andrewsite T.116, T.465 Akatoreite T.73, T.54S, T.615 Angelellite T.74,T.59S Akermanite T.73, T.33S Ankerite T.74,T.305 Aktashite T.73, T.36S Annite T.146, T.44S Albite T.73,T.30S, T.60S Anorthite T.74,T.415 Aleksite T.73, T.35S Anorthoclase T.74,T.30S, T.60S Alforsite T.73, T.325 Anthoinite T.74, T.31S Allactite T.73, T.38S Anthophyllite T.74, T.47S, T.61S Allanite-(Ce) T.146, T.51S Antigorite T.74,T.375, 60S Allanite-(La) T.115, T.44S Antlerite T.74, T.32S, T.60S Allanite-(Y) T.146, T.51S Apatite T.75, T.32S, T.60S Alleghanyite T.73, T.36S Aphthitalite T.75,T.42S, T.60 Allophane T.115, T.59S Apuanite T.75,T.34S Alluaudite T.115, T.45S Archerite T.75,T.31S Almandine T.73, T.36S Arctite T.146, T.53S Alstonite T.73,T.315 Arcubisite T.75, T.31S Althausite T.73,T.40S Ardaite T.75,T.39S Alumino-barroisite T.166, T.57S Ardennite T.166, T.55S Alumino-ferra-hornblende T.166, T.57S Arfvedsonite T.146, T.55S, T.61S Alumino-katophorite T.166, T.57S Argentojarosite T.116, T.45S Alumino-magnesio-hornblende T.159,T.555 Argentotennantite T.75,T.47S Alumino-taramite T.166, T.57S Argyrodite (VoU,
    [Show full text]
  • Volume 66, 1981*
    INDEX, VOLUME 66, 1981* Ab jnixio M0 calculations 819,1237 Analyses, cont. Analyses,cont. 'l233 974 Achondrite, oriented olivine ec1og i ie 459 zoisite, Cr epi dote, Cr 974 ANDERS0N,C.S. and S.t^l. BAILEY: ACKERMAND,DIETRICH see pattern FRANZ,GERHARD 872 eugsteri te A newcation ordering 185 Acrofanite, newmineral (abstr) I'r00 fayal i te 95 in amesite-2az Adu.laria,analyses 484 Fe dolomite 51? ANDERSON,J.B. sEeSHOEMAKER, 485 forsteri te 498 G.L. 169 Aegirine, analyses genesis 938 Afghanite, structure 777 fri edeli te I 061 Andesite,experirnental garnet 463,7lI ,743,1027 Anilite, Cu-Sbond 813 Ajoite, newdata 201 phase AKIZUKI,MIZUHIK0: Investigation glasses, Na 547 Anorthite, equilibria ll83 of phase transition of natural graphitic sulfidic schists 916 Antaractica greenali te az5 meteoriticolivine I 233 ZnSminerals by high resolu- '1006 to22 tion electron microscopy halloysite r 004 surinamite,etc. 480 Antigorite, dissolution 801 _: Origin of optical heulandi te variation in analcime 403 hypersthene 75,337 Apatite Albi te i I menite 95,728,978 analyses 670 analys es 484 iron formation 89,51 1 inclusionin Cr diopside 347 heat capacity 1202 jonsomervilleite 834 Apuanite, microstructure I 073 Aldermanite,new mineral (abstr) 1099 kanoite 128 Aragonite,oolite 789 ARAKI.TAKAHARU and P.B. M00RE: Alforsite, newmineral 1050 kaolinite rock I 004 - Alkali diffusion, EPMA 547 kar'l i te 875 Diieni te, cul+Mn?tFe3l(oH)6 kornerupine 743 (Asrt03)5(Si lr04J i(Asr+04 ) : Alkali feldspars, thennodynamic t+; functi ons 1202 kutnahorite 280 metallic (AslrCu clusters Alkremite, Utah 741 kyani te 706 in an oxide matrix 1263 ALLARD,L.F.
    [Show full text]
  • Sabinaite, a New Anhydrous Zirconium.Bearing
    eanadian Mineralogist Vol. 18, pp. 25-29 (1980) SABINAITE,A NEWANHYDROUS ZIRCONIUM.BEARING CARBONATE MINERAL FROMMONTREAL ISLAND, OUEBEC J.L. JAMBOR CANMET, 555 Booth Street, Ottawa, Ontalio KIA 0G1 B.D. STURMAN Departrnentof Mineralogy and Geology, Royal Ontario Museum,Toronto, Ontario MsS 2C6 G.C. WEATHERLY Departmentol Metallurgt and Materials Science, University of Toronto, Toronto, Ontario MSS 1A4 Ansrnecr rant au maximum 0.01 x 0.001 mm. Biaxe nEgative, 2y 85o, a 1.74Q), p 1.80(2), v 1.85(1), X presque Fine-grained, white, powdery coatings and chalky perpendiculaire aux plaquettes. L'analyse donne aggregatesof sabinaite occur in vugs in a dawsonite- NazO 20.7, CaO 0.2, ZrO,39.l, HfO, 0.47. TiO, rich silicocarbonatite sill at Montreal Island, Qu6- 12.0, CO,27.1, total 99.57 (poids). La sabinaite bec. The mineral is platy, roughly pseudohexagonal, est anhydre; sa teneur en fluor est n6gligeable; with maximum dimensions 0.01 x 0.001 mm, biaxial sa formule est (Na,Ca)a.ra(Zr,Hf)o.2oTit.nrO".rn negative with 2V 85", c 1.74(2), P 1.80(2), v (COi)8.10 soit, idfulement, Nalra+JirO"(CO.)6, r 1.85(1), X nearly normal to the plates. Analyses - O.25. Elle ne r6agit pas avec les acides froids, gave NarO 20,7, CaO 0.2, ZrOz 39.1, IIfOn O.47. mais est soluble avec effervescencedans HCI chaud. TiO12.0, CO2 nJ, total 99.57 wt. Vo. Sabinaite La sabinaite est monoclinique; les dimensions de is anhydrous and has low or neelieible F.
    [Show full text]
  • General Index Lep – Lil
    GENERAL INDEX LEP – LIL SABINAITE Zaire Michigan Canada Shinkolobwe mine 8:(390), 9:33, 20:284 Isle Royale lode, Houghton County (various Québec SALESITE mines) (after clinochlore) 23:M68 Keweenaw Peninsula (several localities listed) Mt. St-Hilaire (tabular, micaceous to 6 mm) Chile (massive) 14:224 21:333–334p,d,c 9: 9: Chuquicamata 325h,d,c, 326p Laurium mine, Houghton County: after clino- SABUGALITE SAMARSKITE chlore; also primary acicular 23:M68; with Brazil Metamict 4:218 kinoite 14:224 Minas Gerais United States Mass mine, Ontonagon County (acicular) Córrego Frio mine, near Linópolis (spots in Colorado 14:224 scorzalite) 14:233 Pikes Peak region 16:228n “SAPPHIRE” Italy Texas See Corundum Sardinia Clear Creek pegmatite, Burnet County (small Arcu su Linnarbu, near Capoterra 18:183 masses) 8:90 SAPPHIRINE Spain SAMPLEITE Australia Pedro Alvaro, Salamanca region 9:(113) Northern Territory Chile SACROFANITE Harts Range, northeast of Alice Springs Chuquicamata 8:(390), 8:(517), 9:330d,c Italy 15:100–101c,p,q SAMSONITE Lazio Canada Sacrofano quarry (1 cm crystals) 23:434n Germany Northwest Territories Mt. Walker, Somerset Island (tabular crystals SAFFLORITE Niedersachsen St. Andreasberg 17:(9) to 3 cm) 22:386n Canada SANBORNITE Resolute (south of), Somerset Island 18:362n Northwest Territories Greenland Port Radium (safflorite-rammelsbergite) Canada Fiskenæsset (Qeqertarsuatsiaat) region 24:G12– 20:(207) Yukon 13p,h Germany Gunn claim, near MacMillan Pass 17:340n Madagascar Halle SANIDINE Androy: rounded, to 15 mm 24:50n; to 4 cm Mansfeld Kupferschiefer 17:(10) Bulgaria 24:230 Obersachsen Kyustendil (twins) 22:459n SARABAUITE Schneeberg 17:(13) Canada Malaysia Odenwald British Columbia Mackenheim 8:305 Sarabau mine, Sarawak: 9:(113); announced Beaverdell (near) (euhedral to 5 cm, some 9:116h Rheinland-Pfalz Carlsbad twins) 23:428n Angelika mine, Nieder-Beerbach 17:(7) Québec SARCOPSIDE Mexico Mt.
    [Show full text]
  • Alt I5LNER&S
    4r>.'44~' ¶4,' Alt I5LNER&SI 4t *vX,it8a.rsAt s 4"5' r K4Wsx ,4 'fv, '' 54,4 'T~~~~~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~~' 4>i4^ 44 4 r 44,4 >s0 s;)r i; X+9;s tSiX,.<t;.W.FE0''¾'"',f,,v-;, s sHteS<T^ 4~~~~~~~~~~~~~~~~~~~~'44'" 4444 ;,t,4 ~~~~~~~~~' "e'(' 4 if~~~~~~~~~~0~44'~"" , ",4' IN:A.S~~ ~ ~ C~ f'"f4444.444"Z'.4;4 4 p~~~~~~~~~~~~~~~~~~~44'1s-*o=4-4444's0zs*;.-<<<t4 4 4 A'.~~~44~~444) O 4t4t '44,~~~~~~~~~~i'$'" a k -~~~~~~44,44.~~~~~~~~~~~~~~~~~~44-444444,445.44~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~.V 4X~~~~~~~~~~~~~~4'44 44 444444444.44. AQ~~ ~ ~~~~, ''4'''t :i2>#ZU '~f"44444' i~~'4~~~k AM 44 2'tC>K""9N 44444444~~~~~~~~~~~,4'4 4444~~~~IT fpw~~ ~ ~ ~ ~ ~ ~ 'V~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Ae, ~~~~~~~~~~~~~~~~~~~~~~2 '4 '~~~~~~~~~~4 40~~~~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ' 4' N.~~..Fg ~ 4F.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ " ~ ~ ~ 4 ~~~ 44zl "'444~~474'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ ~ ~ &~1k 't-4,~~~~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ :"'".'"~~~~~~~~~~~~~~~~~"4 ~~ 444"~~~~~~~~~'44*#"44~~~~~~~~~~4 44~~~~~'f"~~~~~4~~~'yw~~~~4'5'# 44'7'j ~4 y~~~~~~~~~~~~~~~~~~~~~~~~~~~~~""'4 1L IJ;*p*44 *~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~44~~~~~~~~~~~~~~~~~~~~1 q A ~~~~~ 4~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~W~~k* A SYSTEMATIC CLASSIFICATION OF NONSILICATE MINERALS JAMES A. FERRAIOLO Department of Mineral Sciences American Museum of Natural History BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY VOLUME 172: ARTICLE 1 NEW YORK: 1982 BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY Volume 172, article l, pages 1-237,
    [Show full text]
  • Shin-Skinner January 2018 Edition
    Page 1 The Shin-Skinner News Vol 57, No 1; January 2018 Che-Hanna Rock & Mineral Club, Inc. P.O. Box 142, Sayre PA 18840-0142 PURPOSE: The club was organized in 1962 in Sayre, PA OFFICERS to assemble for the purpose of studying and collecting rock, President: Bob McGuire [email protected] mineral, fossil, and shell specimens, and to develop skills in Vice-Pres: Ted Rieth [email protected] the lapidary arts. We are members of the Eastern Acting Secretary: JoAnn McGuire [email protected] Federation of Mineralogical & Lapidary Societies (EFMLS) Treasurer & member chair: Trish Benish and the American Federation of Mineralogical Societies [email protected] (AFMS). Immed. Past Pres. Inga Wells [email protected] DUES are payable to the treasurer BY January 1st of each year. After that date membership will be terminated. Make BOARD meetings are held at 6PM on odd-numbered checks payable to Che-Hanna Rock & Mineral Club, Inc. as months unless special meetings are called by the follows: $12.00 for Family; $8.00 for Subscribing Patron; president. $8.00 for Individual and Junior members (under age 17) not BOARD MEMBERS: covered by a family membership. Bruce Benish, Jeff Benish, Mary Walter MEETINGS are held at the Sayre High School (on Lockhart APPOINTED Street) at 7:00 PM in the cafeteria, the 2nd Wednesday Programs: Ted Rieth [email protected] each month, except JUNE, JULY, AUGUST, and Publicity: Hazel Remaley 570-888-7544 DECEMBER. Those meetings and events (and any [email protected] changes) will be announced in this newsletter, with location Editor: David Dick and schedule, as well as on our website [email protected] chehannarocks.com.
    [Show full text]
  • The New IMA List of Minerals – a Work in Progress – Updated: March 2020
    The New IMA List of Minerals – A Work in Progress – Updated: March 2020 In the following pages of this document a comprehensive list of all valid mineral species is presented. The list is distributed (for terms and conditions see below) via the web site of the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association, which is the organization in charge for approval of new minerals, and more in general for all issues related to the status of mineral species. The list, which will be updated on a regular basis, is intended as the primary and official source on minerals. Explanation of column headings: Name : it is the presently accepted mineral name (and in the table, minerals are sorted by name). CNMMN/CNMNC approved formula : it is the chemical formula of the mineral. IMA status : A = approved (it applies to minerals approved after the establishment of the IMA in 1958); G = grandfathered (it applies to minerals discovered before the birth of IMA, and generally considered as valid species); Rd = redefined (it applies to existing minerals which were redefined during the IMA era); Rn = renamed (it applies to existing minerals which were renamed during the IMA era); Q = questionable (it applies to poorly characterized minerals, whose validity could be doubtful). IMA No. / Year : for approved minerals the IMA No. is given: it has the form XXXX-YYY, where XXXX is the year and YYY a sequential number; for grandfathered minerals the year of the original description is given. In some cases, typically for Rd and Rn minerals, the year may be followed by s.p.
    [Show full text]
  • 1 Geological Association of Canada Mineralogical
    GEOLOGICAL ASSOCIATION OF CANADA MINERALOGICAL ASSOCIATION OF CANADA 2006 JOINT ANNUAL MEETING MONTRÉAL, QUÉBEC FIELD TRIP 4A : GUIDEBOOK MINERALOGY AND GEOLOGY OF THE POUDRETTE QUARRY, MONT SAINT-HILAIRE, QUÉBEC by Charles Normand (1) Peter Tarassoff (2) 1. Département des Sciences de la Terre et de l’Atmosphère, Université du Québec À Montréal, 201, avenue du Président-Kennedy, Montréal, Québec H3C 3P8 2. Redpath Museum, McGill University, 859 Sherbrooke Street West, Montréal, Québec H3A 2K6 1 INTRODUCTION The Poudrette quarry located in the East Hill suite of the Mont Saint-Hilaire alkaline complex is one of the world’s most prolific mineral localities, with a species list exceeding 365. No other locality in Canada, and very few in the world have produced as many species. With a current total of 50 type minerals, the quarry has also produced more new species than any other locality in Canada, and accounts for about 25 per cent of all new species discovered in Canada (Horváth 2003). Why has a single a single quarry with a surface area of only 13.5 hectares produced such a mineral diversity? The answer lies in its geology and its multiplicity of mineral environments. INTRODUCTION La carrière Poudrette, localisée dans la suite East Hill du complexe alcalin du Mont Saint-Hilaire, est l’une des localités minéralogiques les plus prolifiques au monde avec plus de 365 espèces identifiées. Nul autre site au Canada, et très peu ailleurs au monde, n’ont livré autant de minéraux différents. Son total de 50 minéraux type à ce jour place non seulement cette carrière au premier rang des sites canadiens pour la découverte de nouvelles espèces, mais représente environ 25% de toutes les nouvelles espèces découvertes au Canada (Horváth 2003).
    [Show full text]