Walnut Twig Beetle Landing Rates Differ Between Host and Nonhost Hardwood Trees Under the Influence of Aggregation Pheromone in a Northern California Riparian Forest

Total Page:16

File Type:pdf, Size:1020Kb

Walnut Twig Beetle Landing Rates Differ Between Host and Nonhost Hardwood Trees Under the Influence of Aggregation Pheromone in a Northern California Riparian Forest Agricultural and Forest Entomology (2021), 23, 111–120 DOI: 10.1111/afe.12410 Walnut twig beetle landing rates differ between host and nonhost hardwood trees under the influence of aggregation pheromone in a northern California riparian forest ∗ † ‡ ∗ Crystal S. Homicz , Jackson P. Audley , Yigen Chen , Richard M. Bostock§, Catherine A. Tauber ¶ and ∗∗∗ Steven J. Seybold ∗ Department of Entomology and Nematology, University of California, Davis, CA, 95616, U.S.A., †Oak Ridge Institute for Science and Education, USDA Forest Service, Pacifc Southwest Research Station, Davis, CA, 95618, U.S.A., ‡Foundation Research, Analytics and Business Applications, E. & J. Gallo Winery, Modesto, CA, 95354, U.S.A., §Department of Plant Pathology, University of California, Davis, CA, 95616, U.S.A., ¶Department of Entomology, Cornell University, Ithaca, NY, 14853, U.S.A. and ∗∗ USDA Forest Service, Pacifc Southwest Research Station, Davis, CA, 95618, U.S.A. Abstract 1 Host selection behaviour of the walnut twig beetle (WTB) among hardwood trees was investigated in a riparian forest in northern California by monitoring the landing rate of the beetle with sticky traps on branches baited with 3-methyl-2-buten-1-ol, the male-produced aggregation pheromone. 2 The assay was conducted over 7 days (22 May to 29 May 2017) and compared landing rates on branches of six nonhost species paired with northern California black walnut, Juglans hindsii (the host). 3 A total of 2242/1192 WTB were collected on branches of host/nonhost pairs, and more WTB landed on J. hindsii than on nonhosts in 42 of 58 instances. Female landing rate generally exceeded male landing rate, which underscores the infuence of the male-produced synthetic pheromone in this system. 4 Landing rates of WTB males, females, and the combined sexes on boxelder, Acer negundo, and valley oak, Quercus lobata, did not differ signifcantly from the landing rates on J. hindsii, suggesting that these two nonhost riparian hardwoods do not repel WTB (in the context of the aggregation pheromone). 5 Signifcantly fewer WTB landed on Oregon ash, Fraxinus latifolia, river red gum, Eucalyptus camaldulensis, Fremont cottonwood, Populus fremontii, and red willow, Salix laevigata, than on J. hindsii, which suggests that these four nonhosts may repel one or both sexes of WTB in the context of the aggregation pheromone. Future analysis of the volatiles from these four hardwood species may lead to the discovery of semiochemical repellents for WTB. Keywords Chrysoperla, Geosmithia morbida, host selection behaviour, Juglans hindsii, northern California black walnut, Pityophthorus juglandis, Scolytidae, thousand cankers disease, walnut pest, walnut twig beetle. Introduction phloem occurs with each beetle attack causing thousand cankers disease (TCD), which results in the decline and mortality of wal- The walnut twig beetle (WTB), Pityophthorus juglandis Black- nut trees (Seybold et al., 2013b, 2019). man (Coleoptera: Scolytidae), vectors a phytopathogenic fun- Walnut twig beetle and G. morbida were frst described in gus, Geosmithia morbida Kolarík,̌ Freeland, Utley, & Tisserat the western U.S.A., and are thought to be native on Arizona (Ascomycota: Hypocreales: Bionectriaceae) to the phloem of walnut, Juglans major, in the southwestern U.S.A. and northern walnut and wingnut trees. A canker (e.g. tissue necrosis) in the Mexico (Bright, 1981; Kolaríǩ et al., 2011; Zerillo et al., 2014; Rugman-Jones et al., 2015; Seybold et al., 2016). Walnut twig Correspondence: Crystal S. Homicz. Tel.: (530) 524-2885; fax: (530) beetle was frst collected in New Mexico in 1896, followed by 752-1537; e-mail: [email protected] records in Arizona, California, and Chihuahua, Mexico (1907, © 2020 The Royal Entomological Society 112 C. S. Homicz et al. 1959, and 1960, respectively) (Bright, 1981; Rugman-Jones have been studied widely, however little is known of WTB’s et al., 2015; Seybold et al., 2016, 2019). The frst published response to nonhost trees. The host colonization behaviour of incidence of TCD occurred in New Mexico in 2001; however, the WTB may be explained by one of two prevailing hypotheses disease complex was likely active in the early 1990s in Oregon that explain bark beetle host colonization: (i) Walnut twig beetle and Utah based on reports of walnut tree mortality in those U.S. may actively respond to long-range volatile cues and signals states (reviewed in Tisserat et al., 2011). Following these events, while in fight to locate an appropriate host tree; (ii) WTB mortality due to TCD was noted in 2003 in Colorado (Tisserat may be infuenced by gustatory cues and shorter-range olfactory et al., 2011), whereas TCD was frst detected in California signals/cues once it has landed on a tree to select host which in 2008 in Yolo Co. and Solano Co. (Seybold et al., 2019). indicates use of random landing (Raffa et al., 2016). It has been However, the disease had likely been present much longer in shown that WTB likely uses long-range signals and/or cues while California (Flint et al., 2010). Following these descriptions, in fight to select susceptible hosts (Hishinuma, 2017; Audley TCD was detected in the eastern U.S.A., with reports from et al., 2020; Lona et al., 2020). While feeding, the male beetle Tennessee, Virginia, Pennsylvania, Ohio, Maryland, Indiana, and releases an aggregation pheromone (3-methyl-2-buten-1-ol) to North Carolina (Tisserat et al., 2011; Seybold et al., 2013b). attract female and additional male beetles to the tree (Seybold Most recently (2013) TCD was discovered in fve regions in Italy et al., 2015). Male WTB then mate with several females and the (Faccoli et al., 2016; Moricca et al., 2018). cohort completes its life cycle in the phloem of the selected host Thousand cankers disease threatens walnut trees grown for tree. urban shade cover, agriculture, and wood production, as well In this study, we examined how WTB responded in fight to as trees in native North American riparian stands that provide tree volatile cues, in the presence of an aggregation pheromone benefts to wildlife (Hefty et al., 2018; Seybold et al., 2019). lure, to distinguish between J. hindsii (host trees) and nonhost In California, two native tree species, southern California black hardwood trees. Additionally, we were interested in testing the walnut, Juglans californica, and northern California black infuence of sex and branch aspect on behavioural responses walnut, Juglans hindsii, have particularly limited distributions as well. The sex ratio can be revealing of the infuence of (Jepson, 1917; Griffn & Critchfeld, 1972). These native wal- semiochemical constituents. For example, we typically observe nut tree species are found in riparian ecosystems and food approximately twice as many female beetles responding to the plains throughout California’s foothills and valleys. J. hindsii aggregation pheromone lure in trapping assays (Chen & Sey- is listed as critically imperilled by the California Native Plant bold, 2014; Seybold et al., 2015). Deviations from a 2:1 female Society (CNPS, 2018), therefore, conservation of the species to male ratio were interpreted as potentially different sensitiv- is a high priority. Even though their range has been signif- ities to volatile profles. We also assessed WTB preference for cantly reduced, they still occur throughout the state with similar branch aspect (top, bottom, left, right) because past studies have canopy and undergrowth structure as their historical counterparts found higher landing rates on the bottom side of the branch (Katibah, 1984). (Hishinuma, 2017). Bark beetles have been shown to use their antennae to Understanding host selection behaviour of WTB will likely sense semiochemicals (volatile chemical compounds that inform potential management strategies for this invasive bark elicit behavioural responses in receiving organisms) such as beetle and disease complex. This study also reports on the pheromones and kairomones to locate trees while in fight possible attraction of potential WTB predators and natural for colonization, feeding, and reproduction (Silverstein, 1981; enemies of foliar walnut pests to the pheromone lure. Studying Wood, 1982; Raffa et al., 1993; Borden, 1997; Raffa, 2001; these behavioural phenomena in a native riparian area provides Raffa et al., 2016; Seybold et al., 2018). Bark beetles follow a an opportunity to discover ecologically sourced volatiles that four-step process for host colonization: (i) the dispersal phase, repel the WTB. Knowledge of the action of these volatiles where (ii) selection phase, (iii) concentration phase, and (iv) establish- the WTB’s hosts and natural enemies are present, may form the ment phase (Wood, 1982). The beetles begin the dispersal phase basis for the development of a semiochemical repellent that can by responding to cues from the host trees and/or pheromones be used within an integrated pest management setting to protect after emerging from the brood tree. They then select a potential walnut trees in urban landscapes, native habitat, and commercial host tree by responding to stimuli from the host while in fight nut orchards. and/or after landing. Next, they initiate colonization by boring through the bark and into the phloem. During the concentration phase, they release aggregation pheromone to attract other Materials and methods conspecifcs. The establishment phase occurs when a tree has Site description been suffciently colonized by bark beetles and fungal inoculum. Past studies have shown that host colonization can
Recommended publications
  • The Green Lacewings of the Genus Chrysopa in Maryland ( Neuroptera: Chrysopidae)
    The Green Lacewings of the Genus Chrysopa in Maryland ( Neuroptera: Chrysopidae) Ralph A. Bram and William E. Bickley Department of Entomology INTRODUCTION Tlw green lacewings which are members of the genus Chrysopa are extreme- ly lwndicia1 insects. The larvae are commonly called aphislions and are well known as predators of aphids and other injurious insects. They play an important part in the regulation of populations of pests under natural conditions, and in California they have been cultured in mass and released for the control of mealy- bugs ( Finney, 1948 and 1950) . The positive identification of members of the genus is desirable for the use of biological-control workers and entomologists in general. Descriptions of most of the Nearctic species of Chrysopidae have relied heavily on body pigmentation and to a lesser extent on wing shape, venational patterns and coloration. Specimens fade when preserved in alcohol or on pins, and natural variation in color patterns occurs in many species ( Smith 1922, Bickley 1952). It is partly for these reasons that some of the most common and relatively abundant representatives of the family are not easily recognized. The chrysopid fauna of North America was treated comprehensively by Banks ( 1903). Smith ( 1922) contributed valuable information about the biology of the green lacewings and about the morphology and taxonomy of the larvae. He also pro- vided k<'ys and other help for the identification of species from Kansas ( 1925, 1934) and Canada ( 1932). Froeschner ( 194 7) similarly dealt with Missouri species. Bickley and MacLeod ( 1956) presented a review of the family as known to occur in the N earctic region north of Mexico.
    [Show full text]
  • T.C Harran Ünġversġtesġ Fen Bġlġmlerġ Enstġtüsü
    T.C HARRAN ÜNĠVERSĠTESĠ FEN BĠLĠMLERĠ ENSTĠTÜSÜ YÜKSEK LĠSANS TEZĠ BĠRECĠK (ġANLIURFA) ĠLÇESĠ FIRAT VADĠSĠ’NDEKĠ ANTEPFISTIĞI BAHÇELERĠNDE YAPAY KIġLAMA BARINAKLARINDA KIġLAYAN BÖCEK (ARTHROPODA: INSECTA) FAUNASININ BELĠRLENMESĠ Yeliz SABUNCU BĠTKĠ KORUMA ANABĠLĠM DALI ġANLIURFA 2019 Dr. Öğr. Üyesi Mehmet MAMAY danıĢmanlığında, Yeliz SABUNCU‟nun hazırladığı “Birecik (ġanlıurfa) Ġlçesi Fırat Vadisi’ndeki Antepfıstığı Bahçelerinde Yapay KıĢlama Barınaklarında KıĢlayan Böcek (Arthropoda: Insecta) Faunasının Belirlenmesi” konulu bu çalıĢma 10/06/2019 tarihinde aĢağıdaki jüri tarafından oy birliği ile Harran Üniversitesi Fen Bilimleri Enstitüsü Ziraat Mühendisliği Anabilim Dalı‟nda YÜKSEK LĠSANS TEZĠ olarak kabul edilmiĢtir. Ġmza DanıĢman : Dr. Öğr. Üyesi Mehmet MAMAY ………………… Üye : Prof. Dr. Ġnanç ÖZGEN ………………… Üye : Dr. Öğr. Üyesi Çetin MUTLU ………………… Bu Tezin Bitki Koruma Anabilim Dalı’nda Yapıldığını ve Enstitümüz Kurallarına Göre Düzenlendiğini Onaylarım Doç. Dr. Ġsmail HĠLALĠ Enstitü Müdürü Not: Bu tezde kullanılan özgün ve baĢka kaynaktan yapılan bildiriĢlerin, çizelge, Ģekil ve fotoğrafların kaynak gösterilmeden kullanımı, 5846 sayılı Fikir ve Sanat Eserleri Kanunundaki hükümlere tabidir. i ĠÇĠNDEKĠLER Sayfa No ÖZET ................................................................................................................................................... ii ABSTRACT ........................................................................................................................................ iii ġELĠLLER DĠZĠNĠ .............................................................................................................................
    [Show full text]
  • Review of Ecologically-Based Pest Management in California Vineyards
    Review Review of Ecologically-Based Pest Management in California Vineyards Houston Wilson 1,* and Kent M. Daane 2 1 Department of Entomology, University of California, Riverside, Riverside, CA 92521, USA 2 Department Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA 94720-3114, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-559-646-6519 Academic Editors: Alberto Pozzebon, Carlo Duso, Gregory M. Loeb and Geoff M. Gurr Received: 28 July 2017; Accepted: 6 October 2017; Published: 11 October 2017 Abstract: Grape growers in California utilize a variety of biological, cultural, and chemical approaches for the management of insect and mite pests in vineyards. This combination of strategies falls within the integrated pest management (IPM) framework, which is considered to be the dominant pest management paradigm in vineyards. While the adoption of IPM has led to notable and significant reductions in the environmental impacts of grape production, some growers are becoming interested in the use of an explicitly non-pesticide approach to pest management that is broadly referred to as ecologically-based pest management (EBPM). Essentially a subset of IPM strategies, EBPM places strong emphasis on practices such as habitat management, natural enemy augmentation and conservation, and animal integration. Here, we summarize the range and known efficacy of EBPM practices utilized in California vineyards, followed by a discussion of research needs and future policy directions. EBPM should in no way be seen in opposition, or as an alternative to the IPM framework. Rather, the further development of more reliable EBPM practices could contribute to the robustness of IPM strategies available to grape growers.
    [Show full text]
  • Using Plant Volatile Traps to Estimate the Diversity of Natural Enemy Communities in Orchard Ecosystems
    Tennessee State University Digital Scholarship @ Tennessee State University Agricultural and Environmental Sciences Department of Agricultural and Environmental Faculty Research Sciences 5-5-2016 Using plant volatile traps to estimate the diversity of natural enemy communities in orchard ecosystems Nicholas J. Mills University of California - Berkeley Vincent P. Jones Washington State University Callie C. Baker Washington State University Tawnee D. Melton Washington State University Shawn A. Steffan Washington State University See next page for additional authors Follow this and additional works at: https://digitalscholarship.tnstate.edu/agricultural-and-environmental- sciences-faculty Part of the Plant Sciences Commons Recommended Citation Nicholas J. Mills, Vincent P. Jones, Callie C. Baker, Tawnee D. Melton, Shawn A. Steffan, Thomas R. Unruh, David R. Horton, Peter W. Shearer, Kaushalya G. Amarasekare, Eugene Milickzy, "Using plant volatile traps to estimate the diversity of natural enemy communities in orchard ecosystems", Biological Control, Vol. 102, 2016, Pages 66-76, ISSN 1049-9644, https://doi.org/10.1016/j.biocontrol.2016.05.001. This Article is brought to you for free and open access by the Department of Agricultural and Environmental Sciences at Digital Scholarship @ Tennessee State University. It has been accepted for inclusion in Agricultural and Environmental Sciences Faculty Research by an authorized administrator of Digital Scholarship @ Tennessee State University. For more information, please contact [email protected].
    [Show full text]
  • Chemical Ecology of Pollination in Deceptive Ceropegia
    Chemical Ecology of Pollination in Deceptive Ceropegia CHEMICAL ECOLOGY OF POLLINATION IN DECEPTIVE CEROPEGIA DISSERTATION zur Erlangung des Doktorgrades Dr. rer. nat. an der Bayreuther Graduiertenschule für Mathematik und Naturwissenschaften (BayNAT) der Universität Bayreuth vorgelegt von Annemarie Heiduk Bayreuth, Januar 2017 Die vorliegende Arbeit wurde in der Zeit von Februar 2012 bis Dezember 2016 in Bayreuth am Lehrstuhl Pflanzensystematik unter der Betreuung von Herrn Univ.-Prof. Dr. Stefan Dötterl (Erst-Mentor) und Herrn PD Dr. Ulrich Meve (Zweit-Mentor) angefertigt. Gefördert wurde die Arbeit von Februar bis April 2012 durch den ‛Feuerwehrfond’ zur Doktorandenförderung der Universität Bayreuth, von Mai 2012 bis April 2015 durch ein Stipendium nach dem Bayerischen Eliteförderungsgesetzt (BayEFG), und von Mai bis Juli 2015 durch ein Stipendium des Bayerischen Programms zur Förderung der Chancengleichheit für Frauen in Forschung und Lehre. Vollständiger Abdruck der von der Bayreuther Graduiertenschule für Mathematik und Naturwissenschaften (BayNAT) der Universität Bayreuth genehmigten Dissertation zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.). Dissertation eingereicht am: 02.02.2017 Zulassung durch das Leitungsgremium: 10.02.2017 Wissenschaftliches Kolloquium: 31.05.2017 Amtierender Direktor: Prof. Dr. Stephan Kümmel Prüfungsausschuss: Prof. Dr. Stefan Dötterl (Erstgutachter) Prof. Dr. Konrad Dettner (Zweitgutachter) Prof. Dr. Heike Feldhaar (Vorsitz) Prof. Dr. Bettina Engelbrecht Declaration of self-contribution This dissertation is submitted as a “Cumulative Thesis“ and contains a general synopsis (Part I) and three manuscripts (Part II) about the chemical ecology and pollination biology of Ceropegia . The major part of the research presented here was accomplished by myself under supervision of Univ.-Prof. Dr. Stefan Dötterl (Universities of Bayreuth and Salzburg) and PD Dr.
    [Show full text]
  • Green Lacewing Species in Tennessee in Tennessee, We Have Found the Green Lacewing Lacewing Larvae Look Like Tiny Alligators
    College of Agriculture Cooperative Extension ANR-E1-2020 Entomology Insect Predators-Green Lacewings Kaushalya Amarasekare, Assistant Professor, Tennessee State University Contact: 615 963 5001, [email protected] Natural enemies such as green lacewings Adults (Neuroptera: Chrysopidae) are important for sus- Adult lacewings are green in color and have golden tainable agriculture because they provide us a free eyes. They have two pairs of green lacelike netted service in managing and controlling unwanted insect wings. The body of the adult is 1/2–3/4 inch long and mite (arthropod) pests in agricultural crops in depending on the species. They are not strong fliers fields and greenhouses. Green lacewings are preda- and are commonly found near aphid colonies. Adults tors of many soft-bodied insects (e.g. aphids, thrips, fly during night and are often attracted to night- mealybugs, soft scales, whiteflies, psyllids and small lights. They can live approximately 30-40 days. New- caterpillars) and mites (e.g. spider mites) and their ly emerged adults mate and lay eggs within 4–5 days. eggs. They are called generalist predators because It takes approximately one month to complete the they feed on many different types of insect and/or life cycle from newly laid eggs to emergence of mite prey. Green lacewings are considered as one of adults. the most important predatory natural enemies of agricultural pests. Eggs Adult females lay their eggs as small batches on plant materials. They prefer to lay eggs among aphid colonies. Lacewing larvae are cannibalistic and attack sibling eggs and larvae. To avoid the first hatched larva/larvae attacking unhatched eggs or young larvae, females lay each egg on a long stalk.
    [Show full text]
  • Namık Kemal University Tekirdağ Ziraat Fakültesi Dergisi
    ISSN : 1302-7050 JOTAF Journal of Tekirdag Agricultural Faculty Namık Kemal University ________________________________________________________________________ Tekirdağ Ziraat Fakültesi Dergisi Namik Kemal Üniversitesi An International Journal of Agriculture Sciences Volume / Cilt: 15 Number / Sayı: 3 Year / Yıl: 2018 Sahibi / Owner Namık Kemal Üniversitesi Ziraat Fakültesi Adına On Behalf of Namık Kemal University Agricultural Faculty Prof.Dr. Ahmet İSTANBULLUOĞLU Dekan / Dean Editörler Kurulu / Editorial Board Başkan / Editor in Chief Prof.Dr. Mustafa MİRİK Ziraat Fakültesi Bitki Koruma Bölümü Department of Plant Protection, Agricultural Faculty [email protected] Yayın Kurulu / Editorial Manager Prof.Dr. M. İhsan SOYSAL Zootekni / Animal Science Prof.Dr. Adnan ORAK Tarla Bitkileri / Field Crops Prof.Dr. Sezen ARAT Tarımsal Biyoteknoloji / Agricultural Biotechnology Prof.Dr. Aydın ADİLOĞLU Toprak Bilimi ve Bitki Besleme / Soil Science and Plant Nutrition Prof.Dr. Fatih KONUKCU Biyosistem Mühendisliği / Biosystem Engineering Prof.Dr. Ömer AZABAĞAOĞLU Tarım Ekonomisi / Agricultural Economics Prof.Dr. Ümit GEÇGEL Gıda Mühendisliği / Food Engineering Doç.Dr. Fulya TAN Biyosistem Mühendisliği / Biosystem Engineering Doç.Dr. Süreyya ALTINTAŞ Bahçe Bitkileri / Horticulture Doç.Dr. Özgür SAĞLAM Bitki Koruma / Plant Protection Dr.Öğr. Üyesi Harun HURMA Tarım Ekonomisi / Agricultural Economics Araş.Gör. Cansu AYVAZ Bitki Koruma / Plant Protection İndeksler / Indexing and abstracting CABI tarafından full-text olarak indekslenmektedir/ Included
    [Show full text]
  • Global Change and Predator–Prey Interactions on a Woody Perennial
    Global change and predator–prey interactions on a woody perennial by William Thomas Hentley B.Sc. M.Sc. Cardiff University School of Biosciences Submitted for the degree of Doctor of Philosophy September 2014 Doctor of Philosophy – Cardiff University 2014 Contents Table of Figures ....................................................................................................... vi Table of Tables ...................................................................................................... viii Declaration ................................................................................................................ x Acknowledgements ................................................................................................. xi General introduction ................................................................................................ 1 1.1 Global change ................................................................................................ 1 1.2 Factors driving herbivore abundance ............................................................ 2 1.2.1 Bottom-up processes .............................................................................. 2 1.2.1.1 Host plant acceptance ...................................................................... 3 1.2.1.2 Digesting plant material .................................................................... 3 1.2.2 Top -down processes ............................................................................... 4 1.2.3 Synergy of bottom-up and top-down
    [Show full text]
  • Diversity and Phenology of Predatory Arthropods Overwintering in Cardboard Bands Placed in Pear and Apple Orchards of Central Washington State
    ECOLOGY AND POPULATION BIOLOGY Diversity and Phenology of Predatory Arthropods Overwintering in Cardboard Bands Placed in Pear and Apple Orchards of Central Washington State DAVID R. HORTON,1 DEBRA A. BROERS, TONYA HINOJOSA, TAMERA M. LEWIS, EUGENE R. MILICZKY, AND RICHARD R. LEWIS USDAÐARS, 5230 Konnowac Pass Road, Wapato, WA 98951 Ann. Entomol. Soc. Am. 95(4): 469Ð480 (2002) ABSTRACT Overwintering shelters composed of cardboard bands were placed on pear and apple trees located in central Washington state to monitor overwintering by predatory arthropods and by two pest taxa. A subset of bands was sampled at regular intervals between late summer and mid- December to determine when taxa began to enter bands. The remaining bands were left undisturbed until collection in mid-December to determine the numbers and types of arthropods overwintering on tree trunks in these orchards. More than 8,000 predatory arthropods were collected from bands left undisturbed until mid-December, dominated numerically by Acari (Phytoseiidae) [Galendromus occidentalis (Nesbitt), Typhlodromus spp.], Araneae, and Neuroptera (Hemerobiidae, Chrysopidae). Predatory mite numbers were higher in bands placed in apple orchards than bands placed in pear orchards. The Araneae were particularly diverse, including Ͼ3,000 spiders representing nine families. Less abundant were Heteroptera, including a mirid [Deraeocoris brevis (Uhler)] and three species of Anthocoridae [Anthocoris spp., Orius tristicolor (White)]. Coleoptera included Coccinellidae, dom- inated by Stethorus picipes Casey, and unidentiÞed Staphylinidae and Carabidae. The bands that were collected at regular intervals to monitor phenology provided Ͼ15,000 predatory arthropods, domi- nated numerically by spiders, Dermaptera [Forficula auricularia (F.)], lacewings, and predatory mites.
    [Show full text]
  • Male-Produced Pheromone of the Green Lacewing, Chrysopa Nigricornis
    J Chem Ecol (2006) 32: 2163–2176 DOI 10.1007/s10886-006-9137-5 Male-Produced Pheromone of the Green Lacewing, Chrysopa nigricornis Qing-He Zhang & Rodney G. Schneidmiller & Doreen R. Hoover & Kevin Young & Dewayne O. Welshons & Armenak Margaryan & Jeffrey R. Aldrich & Kamlesh R. Chauhan Received: 26 January 2006 / Revised: 26 May 2006 / Accepted: 27 May 2006 /Published online: 13 September 2006 # Springer Science + Business Media, Inc. 2006 Abstract Gas chromatographic–electroantennographic detection (GC–EAD) analysis showed that male antennae of the green lacewing, Chrysopa nigricornis Burmeister, the most common lacewing species in the U.S. Pacific Northwest, consistently responded to two compounds in thoracic extracts of conspecific males: 1-tridecene and (1R,2S,5R,8R)- iridodial. These compounds were not detected in extracts of the abdominal cuticle, and no other antennally active compounds were found in the abdominal samples. In field-trapping experiments, traps baited with iridodial significantly attracted large numbers of C. nigricornis males (both western and eastern forms) during summer and early fall, plus a few individuals of conspecific females only in early fall. Iridodial also attracted males of the goldeneyed lacewing, C. oculata Say, and, to a lesser extent, C. coloradensis Banks males. Methyl salicylate (MS), reported as an attractant for both sexes of C. nigricornis and C. oculata, was inactive by itself at the concentration tested in our study, but in a few instances slightly enhanced the responses of Chrysopa spp. to iridodial. However, MS alone and its binary blend with iridodial seemed to attract the hoverfly, Metasyrphus americanus (Weidemann). 2-Phenylethanol, a reported attractant for another lacewing, Chrysoperla plorabunda (Fitch) [= carnea (Say)], did not capture any lacewings.
    [Show full text]
  • 8 March 2013, 381 P
    See discussions, stats, and author profiles for this publication at: http://www.researchgate.net/publication/273257107 Mason, P. G., D. R. Gillespie & C. Vincent (Eds.) 2013. Proceedings of the Fourth International Symposium on Biological Control of Arthropods. Pucón, Chile, 4-8 March 2013, 381 p. CONFERENCE PAPER · MARCH 2013 DOWNLOADS VIEWS 626 123 3 AUTHORS, INCLUDING: Peter Mason Charles Vincent Agriculture and Agri-Food Canada Agriculture and Agri-Food Canada 96 PUBLICATIONS 738 CITATIONS 239 PUBLICATIONS 1,902 CITATIONS SEE PROFILE SEE PROFILE Available from: Charles Vincent Retrieved on: 13 August 2015 The correct citation of this work is: Peter G. Mason, David R. Gillespie and Charles Vincent (Eds.). 2013. Proceedings of the 4th International Symposium on Biological Control of Arthropods. Pucón, Chile, 4-8 March 2013, 380 p. Proceedings of the 4th INTERNATIONAL SYMPOSIUM ON BIOLOGICAL CONTROL OF ARTHROPODS Pucón, Chile March 4-8, 2013 Peter G. Mason, David R. Gillespie and Charles Vincent (Eds.) 4th INTERNATIONAL SYMPOSIUM ON BIOLOGICAL CONTROL OF ARTHROPODS Pucón, Chile, March 4-8, 2013 PREFACE The Fourth International Symposium on Biological Control of Arthropods, held in Pucón – Chile, continues the series of international symposia on the biological control of arthropods organized every four years. The first meeting was in Hawaii – USA during January 2002, followed by the Davos - Switzerland meeting during September 2005, and the Christchurch – New Zealand meeting during February 2009. The goal of these symposia is to create a forum where biological control researchers and practitioners can meet and exchange information, to promote discussions of up to date issues affecting biological control, particularly pertaining to the use of parasitoids and predators as biological control agents.
    [Show full text]
  • Raphidioptera and Neuroptera from the Hanford Site of Southcentral Washington State Richards
    PAN-PACIFIC ENTOMOLOGIST 74(4): 203-209, (1998) RAPHIDIOPTERA AND NEUROPTERA FROM THE HANFORD SITE OF SOUTHCENTRAL WASHINGTON STATE RICHARDS. ZACK',NORMAN D. PENNY^, JAMESB. JOHN SON^, AND DENNISL. STRENGE~ 'Department of Entomology, Washington State University, Pullman, Washington 99 164 2Department of Entomology, California Academy of Sciences, Golden Gate Park, San Francisco, California 941 18 3Departmentof Plant, Soil, and Entomological Sciences, University of Idaho, Moscow, Idaho 83844 4Pacific Northwest National Laboratory, Environmental Technology Division, PO. Box 999, Richland, Washington 99352 Abstract.-Information is presented concerning the species composition and seasonal appearance of Raphidioptera (snakeflies) and Neuroptera (lacewings and antlions) at the Hanford Nuclear Site located in southcentral Washington State. The Hanford Site represents one of the largest undisturbed remnants of a shrub-steppe habitat in the western United States and includes exten- sive Holocene and Recent sand dunes. A single snakefly [Raphidia bicolor Albarda] and 26 species of lacewings and antlions were collected during the period 1994-1997. New distribution records for Washington are: Eremochrysa tibialis Banks (Chrysopidae); Sympherobius arizonicus Banks (Hemerobiidae); and Clathroneuria schwarzi (Currie), Brachynemurus sackeni Hagen, Psammoleon sinuatus Cunie, Scotoleon nigrilabris (Hagen), and S. peregrinus (Hagen) (Myr- meleontidae). Key Words.-Insecta, Raphidioptera, Neuroptera, antlion, snakefly, lacewing, Hanford, biodi- versity. Penny et al. (1997) catalogued the Neuroptera, Megaloptera, and Raphidioptera of America north of Mexico. They listed 45 species in 23 genera and 11 families as occurring in Washington. Johnson (1995) reviewed the Columbia River Basin (including portions of Washington, Idaho, Oregon, and Nevada) fauna of Raphi- dioptera (snakeflies) and Neuroptera (lacewings and antlions) and found it to contain 86 species in 31 genera.
    [Show full text]