Exploring the Kairomone-Based Foraging Behaviour Of

Total Page:16

File Type:pdf, Size:1020Kb

Exploring the Kairomone-Based Foraging Behaviour Of REVIEW published: 22 April 2021 doi: 10.3389/fevo.2021.641974 Exploring the Kairomone-Based Foraging Behaviour of Natural Enemies to Enhance Biological Edited by: Anne Marie Cortesero, Control: A Review University of Rennes 1, France Reviewed by: Pascal M. Ayelo 1,2†, Christian W. W. Pirk 2†, Abdullahi A. Yusuf 2†, Anaïs Chailleux 3,4†, Cesar Rodriguez-Saona, Samira A. Mohamed 1† and Emilie Deletre 1,3* Rutgers, The State University of New Jersey, United States 1 International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya, 2 Department of Zoology and Entomology, Maria Carolina Blassioli Moraes, University of Pretoria, Pretoria, South Africa, 3 UPR HORTSYS, Univ Montpellier, CIRAD, Montpellier, France, 4 Biopass2, Brazilian Agricultural Research Cirad-IRD-ISRA-UBG-Centre de coopération internationale en recherche agronomique pour le développement-Institut de Corporation (EMBRAPA), Brazil Recherche pour le Développement-Institut Sénégalais de Recherches Agricoles-Université Gaston Berger, Dakar, Senegal *Correspondence: Emilie Deletre [email protected] Kairomones are chemical signals that mediate interspecific interactions beneficial to organisms that detect the cues. These attractants can be individual compounds or †ORCID: Pascal M. Ayelo mixtures of herbivore-induced plant volatiles (HIPVs) or herbivore chemicals such as orcid.org/0000-0002-0027-2546 pheromones, i.e., chemicals mediating intraspecific communication between herbivores. Christian W. W. Pirk Natural enemies eavesdrop on kairomones during their foraging behaviour, i.e., location orcid.org/0000-0001-6821-7044 Abdullahi A. Yusuf of oviposition sites and feeding resources in nature. Kairomone mixtures are likely orcid.org/0000-0002-8625-6490 to elicit stronger olfactory responses in natural enemies than single kairomones. Anaïs Chailleux orcid.org/0000-0001-5653-8019 Kairomone-based lures are used to enhance biological control strategies via the Samira A. Mohamed attraction and retention of natural enemies to reduce insect pest populations and orcid.org/0000-0001-6836-7528 crop damage in an environmentally friendly way. In this review, we focus on ways to Specialty section: improve the efficiency of kairomone use in crop fields. First, we highlight kairomone This article was submitted to sources in tri-trophic systems and discuss how these attractants are used by natural Chemical Ecology, enemies searching for hosts or prey. Then we summarise examples of field application a section of the journal Frontiers in Ecology and Evolution of kairomones (pheromones vs. HIPVs) in recruiting natural enemies. We highlight the Received: 15 December 2020 need for future field studies to focus on the application of kairomone blends rather Accepted: 22 February 2021 than single kairomones which currently dominate the literature on field attractants for Published: 22 April 2021 natural enemies. We further discuss ways for improving kairomone use through attract Citation: Ayelo PM, Pirk CWW, Yusuf AA, and reward technique, olfactory associative learning, and optimisation of kairomone lure Chailleux A, Mohamed SA and formulations. Finally, we discuss why the effectiveness of kairomone use for enhancing Deletre E (2021) Exploring the biological control strategies should move from demonstration of increase in the number Kairomone-Based Foraging Behaviour of Natural Enemies to Enhance of attracted natural enemies, to reducing pest populations and crop damage below Biological Control: A Review. economic threshold levels and increasing crop yield. Front. Ecol. Evol. 9:641974. doi: 10.3389/fevo.2021.641974 Keywords: field application, attractant blend, HIPVs, pheromones, semiochemicals, crop yield, olfactory learning Frontiers in Ecology and Evolution | www.frontiersin.org 1 April 2021 | Volume 9 | Article 641974 Ayelo et al. Kairomone Use in Biological Control INTRODUCTION moth scales, increased the efficiency of host location by the parasitoids Trichogramma achaeae Nagaraja and Nagarkatti The foraging behaviour of a parasitoid or predator is a process (Hymenoptera: Trichogrammatidae) and Microplitis croceipes by which it searches for oviposition sites and feeding resources (Cresson) (Hymenoptera: Braconidae), thereby increasing the for its survival, growth, and reproductive success [reviewed in parasitisation rate in the field (Gross et al., 1975; Lewis et al., Kramer (2001)]. Natural enemies (used hereafter in reference to 1975). both parasitoids and predators) play a key role in the biological Pheromones are highly species-specific in mediating control of chewing, sucking, and gall-feeding herbivores (Vidal intraspecific interactions between the emitter and its conspecifics and Murphy, 2018). Understanding the foraging behaviour of (Dicke and Sabelis, 1988; Kost, 2008). They can be grouped into natural enemies is crucial for improving the biological control the following categories: (i) sex pheromones, (ii) aggregation of herbivorous pests (e.g., Mills and Wajnberg, 2008; Gunton pheromones, (iii) marking pheromones, and (iv) alarm and Pöyry, 2016; Mills and Heimpel, 2018). Parasitoids have long pheromones (Kost, 2008; Ruther, 2013). Eavesdropping is served as an insect model in the study of foraging behaviour a well-known phenomenon among natural enemies which for oviposition sites, which has often been viewed as a three- use pheromones of herbivorous insects as kairomones to sequence process: habitat location, host location, and host detect them (Aukema and Raffa, 2005). A typical example selection (Vinson, 1998; Fatouros et al., 2008). However, this is reported by Kpongbe et al. (2019) who demonstrated behavioural process can also be applied to predatory insects that isopentyl-butanoate—the aggregation pheromone of searching for prey (Fellowes et al., 2007; Pervez and Yadav, Clavigralla tomentosicollis Stål (Hemiptera: Coreidae)— 2018). During each of these foraging behavioural sequences, strongly attracts Gryon sp. (Hymenoptera: Scelionidae), the natural enemies rely on a combination of environmental stimuli parasitoid of Clavigralla species. However, not only herbivore to find their host and prey (hereafter jointly referred to pheromones play a role in the attraction of herbivore enemies, as herbivores). Although kairomones and visual signals are i.e., pheromones released by natural enemies also attract exploited by natural enemies, the former is well-known to play conspecific individuals seeking for mates (Ruther, 2013), an important role in their foraging behaviour (Colazza and and may modulate their responses to HIPVs (Cabello et al., Wanjberg, 2013; Lim and Ben-Yakir, 2020). Kairomones are 2017). For example, pheromones from males of the predator individual semiochemical molecules or mixtures that mediate Nabis pseudoferus Remane (Hemiptera: Nabidae) attracted interspecific interactions between living organisms (Dicke and conspecific females and enhanced their responses to HIPVs from Sabelis, 1988; Kost, 2008), while serving as long-range, short- Rhopalosiphum padi (L.) (Hemiptera: Aphididae)-infested wheat range, and contact cues during herbivore location by natural plants, whereas pheromones from males of the mirid predator enemies (Afsheen et al., 2008; Heil and Ton, 2008). Kairomones Nesidiocoris tenuis (Reuter) (Hemiptera: Miridae) attracted exploited by natural enemies are either plant volatiles or conspecific females but were found to reduce their attraction to herbivore-associated chemicals such as pheromones (Afsheen the HIPVs (Cabello et al., 2017). et al., 2008; Kaplan, 2012a; Kaiser et al., 2017; Peñaflor, Kairomone-based lures are deployed in crop plants of which 2019). the background odours shape the location of herbivores by Herbivory-induced plant volatiles (HIPVs) and oviposition- natural enemies (e.g., Schröder and Hilker, 2008; Randlkofer induced plant volatiles (OIPVs) are the reliable plant volatile et al., 2010). In this review, we focus on how to optimise field compounds that serve as long-range kairomones enabling applications of kairomones for improving biological control natural enemies to locate herbivore-infested plants (e.g., Dicke of insect pests. First, we present sources of kairomones in and van Loon, 2000; Mumm and Dicke, 2010; Hilker and tri-trophic systems and discuss how these kairomones are Fatouros, 2015; Turlings and Erb, 2018). The use of HIPVs exploited by natural enemies foraging for hosts or prey. Then and OIPVs to attract natural enemies has been pointed out we provide examples of kairomone field applications, and we as a novel avenue to achieve successful biological control stress how the attraction of natural enemies into crop fields (Kaplan, 2012a; Kelly et al., 2014; Murali-Baskaran et al., might be more efficient when using pheromones rather than 2018; Peri et al., 2018). For example, (E)-4,8-dimethyl-1,3,7- HIPVs. Finally, we highlight potential ways to improve the non-atriene (DMNT), an elm plant (Ulmus minor Mill use of kairomone-based lures for attracting enough natural [Ulmaceae]) OIPV induced by Xanthogaleruca luteola (Müller) enemies to reduce pest populations and crop damage below (Coleoptera: Chrysomelidae), attracted the parasitoid Oomyzus economic threshold levels while increasing crop yields in gallerucae (Fonscolombe) (Hymenoptera: Eulophidae) in the the field. field (Büchel et al., 2011). In addition to HIPVs and OIPVs, kairomones include chemicals emitted from different herbivore stages (eggs, larvae/nymphs, pupae, adults), herbivore by- CHEMICAL INTERACTIONS IN products (e.g., frass, honeydew, exuviae, mandibular
Recommended publications
  • Morphological Systematics of the Nightshade Flea Beetles Epitrix
    Clemson University TigerPrints All Theses Theses 8-2016 Morphological Systematics of the Nightshade Flea Beetles Epitrix Foudras and Acallepitrix Bechyné (Coleoptera: Chrysomelidae: Galerucinae: Alticini) in America North of Mexico Anthony Martin Deczynski Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_theses Recommended Citation Deczynski, Anthony Martin, "Morphological Systematics of the Nightshade Flea Beetles Epitrix Foudras and Acallepitrix Bechyné (Coleoptera: Chrysomelidae: Galerucinae: Alticini) in America North of Mexico" (2016). All Theses. 2479. https://tigerprints.clemson.edu/all_theses/2479 This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact [email protected]. MORPHOLOGICAL SYSTEMATICS OF THE NIGHTSHADE FLEA BEETLES EPITRIX FOUDRAS AND ACALLEPITRIX BECHYNÉ (COLEOPTERA: CHRYSOMELIDAE: GALERUCINAE: ALTICINI) IN AMERICA NORTH OF MEXICO A Thesis Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Master of Science Entomology by Anthony Martin Deczynski August 2016 Accepted by: Dr. Michael Caterino, Committee Chair Dr. Peter Adler Dr. J. Antonio Baeza ABSTRACT The flea beetle genera Epitrix and Acallepitrix are revised for America North of Mexico, building on a prior preliminary revision of the genus Epitrix by the author (Deczynski 2014). Four new species are described: Epitrix cuprea sp. nov., E. rileyi sp. nov., E. latifrons sp. nov., and E. vasinoda sp. nov., bringing the North American Epitrix fauna to a total of 26 species. A key is provided to adults of all species.
    [Show full text]
  • The Green Lacewings of the Genus Chrysopa in Maryland ( Neuroptera: Chrysopidae)
    The Green Lacewings of the Genus Chrysopa in Maryland ( Neuroptera: Chrysopidae) Ralph A. Bram and William E. Bickley Department of Entomology INTRODUCTION Tlw green lacewings which are members of the genus Chrysopa are extreme- ly lwndicia1 insects. The larvae are commonly called aphislions and are well known as predators of aphids and other injurious insects. They play an important part in the regulation of populations of pests under natural conditions, and in California they have been cultured in mass and released for the control of mealy- bugs ( Finney, 1948 and 1950) . The positive identification of members of the genus is desirable for the use of biological-control workers and entomologists in general. Descriptions of most of the Nearctic species of Chrysopidae have relied heavily on body pigmentation and to a lesser extent on wing shape, venational patterns and coloration. Specimens fade when preserved in alcohol or on pins, and natural variation in color patterns occurs in many species ( Smith 1922, Bickley 1952). It is partly for these reasons that some of the most common and relatively abundant representatives of the family are not easily recognized. The chrysopid fauna of North America was treated comprehensively by Banks ( 1903). Smith ( 1922) contributed valuable information about the biology of the green lacewings and about the morphology and taxonomy of the larvae. He also pro- vided k<'ys and other help for the identification of species from Kansas ( 1925, 1934) and Canada ( 1932). Froeschner ( 194 7) similarly dealt with Missouri species. Bickley and MacLeod ( 1956) presented a review of the family as known to occur in the N earctic region north of Mexico.
    [Show full text]
  • Bugila Phd Thesis Document Final
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UTL Repository Host-parasitoid relationships of Anagyrus sp. near pseudococci (Girault), (Hymenoptera, Encyrtidae), as a basis to improve biological control of pest mealybugs (Hemiptera, Pseudococcidae) TESE APRESENTADA PARA OBTENÇÃO DO GRAU DE DOUTOR EM ENGENHARIA AGRONÓMICA Abdalbaset Abusalah Ali Bugila Orientador: Professor Doutor José Carlos Franco Santos Silva Co-orientador: Professora Doutora Manuela Rodrigues Branco Simões JÚRI: Presidente : Reitor da Universidade de Lisboa Vogais: Doutora Laura Monteiro Torres Professora Catedrática, Escola de Ciências Agrárias e Veterinárias da Universidade de Trás-os-Montes e Alto Douro Doutor António Maria Marques Mexia Professor Catedrático, Instituto Superior de Agronomia da Universidade de Lisboa Doutor David João Horta Lopes Professor Auxiliar com agregação, Universidade dos Açores; Doutor José Carlos Franco Santos Silva Professor Auxiliar, Instituto Superior de Agronomia da Universidade de Lisboa Doutora Elisabete Tavares Lacerda de Figueiredo Oliveira Professora Auxiliar, Instituto Superior de Agronomia da Universidade de Lisboa. LISBOA 2014 Index Abstract vii ....................................................................................................................... Resumo viii ………………………………………………………………………..….…. 1. Introduction 1 ………………………………………………………………….….. 1.1. State of the art 2 …………………………………………………………….…. 1.2. Objectives 4 …………………………………………………………………..... 1.3. References 5 ……………………………………………………………….…..
    [Show full text]
  • Flea Beetles (Order: Coleoptera, Family: Chrysomelidae/Alticinae) Tobacco (Epitrix Hirtipennis (Melsheimer)) Southern Tobacco (
    Flea beetles (Order: Coleoptera, Family: Chrysomelidae/Alticinae) Tobacco (Epitrix hirtipennis (Melsheimer)) Southern tobacco (Epitrix fasciata (Blatchley)) Pale striped (Systena blanda (Melsheimer)) Description: Adult: The tobacco and southern tobacco flea beetle adults are small (1.4- 2.2 mm in length) and reddish, yellow brown, with a brown patch across the width of the elytra. The southern tobacco adult is slightly smaller and wider than the tobacco flea beetle. The pale striped flea beetle adult is larger (3.0- 4.3 mm long) and has a pair of pale yellow stripes lengthwise down the back, one stripe on each elytron. Immature stages: All of the above species have three larval instars that are whitish with darker heads, and all feed on fine roots near the soil surface or occasionally tunnel into larger roots. The tobacco flea beetle larvae range Tobacco flea beetle adult. from 1 mm after hatching to 4.2 mm at maturity, while the pale stripe larvae range from 1 to 11 mm. Biology: Life cycle: Tobacco flea beetle females can lay up to 200 eggs which hatch in 6- 8 days. The larval development typically lasts from 16-20 days under warm conditions. The last instar larva forms a small cell in the soil where it pupates, and the adult emerges 4-5 days later for a total of 26-33 days. The pale striped flea beetle requires a longer time to develop from egg to adult, 28-54 days total. Seasonal distribution: There are 3-4 generations of the tobacco flea beetles per year. High numbers have been observed in south Georgia in late June in Solanaceous crop transplants, and we think that this is likely a second generation.
    [Show full text]
  • Impact of Different Carbon Dioxide Concentrations in the Olfactory Response of Sipha Flava (Hemiptera: Aphididae) and Its Predators
    J Insect Behav (2014) 27:722–728 DOI 10.1007/s10905-014-9463-3 Impact of Different Carbon Dioxide Concentrations in the Olfactory Response of Sipha flava (Hemiptera: Aphididae) and its Predators Marcy G. Fonseca & Dayane R. Santos & Alexander M. Auad Revised: 6 August 2014 /Accepted: 8 August 2014 / Published online: 27 August 2014 # Springer Science+Business Media New York 2014 Abstract The increasing level CO2 may altered host plant physiology and hence affect the foraging behavior of herbivore insects and predator. Hence, the aim of this study was provides evidence that host plants grown at different levels of CO2 can alter the choice behavior of aphid, Sipha flava and their natural enemies, Cycloneda sanguinea and Diomus seminulus. The plant used was Pennisetum purpureum,cultivarCameron Piracicaba growing in greenhouse (mean value of CO2=440 ppm), climatic chamber with constant value of CO2=500 ppm and climatic chamber with fluctuating CO2 (mean value=368 ppm). A glass Y-shape olfactometer was used to verify the insects responses towards elephant grass plants cultivated under different conditions. The aphids were statistically more attracted by plants grown with constant CO2 level (500 ppm) than by plants grown with fluctuating CO2 level or plants grown in greenhouse. There was no difference in S. flava preference to non-infested versus infested plants by conspecifics. The predator C. sanguinea did not show difference between plants grown with constant CO2 level and infested or not with S. flava. However, the predator D. seminulus showed higher preference to plants grown with constant CO2 level and infested with S. flava.
    [Show full text]
  • Present Or Past Herbivory: a Screening of Volatiles Released from Brassica Rapa Under Caterpillar Attacks As Attractants for the Solitary Parasitoid, Cotesia Vestalis
    J Chem Ecol (2010) 36:620–628 DOI 10.1007/s10886-010-9802-6 Present or Past Herbivory: A Screening of Volatiles Released from Brassica rapa Under Caterpillar Attacks as Attractants for the Solitary Parasitoid, Cotesia vestalis Soichi Kugimiya & Takeshi Shimoda & Jun Tabata & Junji Takabayashi Received: 20 February 2010 /Revised: 7 April 2010 /Accepted: 11 May 2010 /Published online: 20 May 2010 # Springer Science+Business Media, LLC 2010 Abstract Females of the solitary endoparasitoid Cotesia decreased after removal of the host larvae, whereas vestalis respond to a blend of volatile organic compounds terpenoids and their related compounds continued to be (VOCs) released from plants infested with larvae of their released at high levels. Benzyl cyanide and dimethyl host, the diamondback moth (Plutella xylostella), which is trisulfide attracted parasitoids in a dose-dependent manner, an important pest insect of cruciferous plants. We investi- whereas the other compounds were not attractive. These gated the flight response of female parasitoids to the results suggest that nitrile and sulfide compounds tempo- cruciferous plant Brassica rapa, using two-choice tests rarily released from plants under attack by host larvae are under laboratory conditions. The parasitoids were more potentially more effective attractants for this parasitoid than attracted to plants that had been infested for at least 6 hr by other VOCs that are continuously released by host- the host larvae compared to intact plants, but they did not damaged plants. distinguish between plants infested for only 3 hr and intact plants. Although parasitoids preferred plants 1 and 2 days Key Words Herbivore-induced plant volatiles . after herbivory (formerly infested plants) over intact plants Indirect defense .
    [Show full text]
  • Arthropods and Nematodes: Functional Biodiversity in Forest Ecosystems
    2 Arthropods and Nematodes: Functional Biodiversity in Forest Ecosystems Pio Federico Roversi and Roberto Nannelli CRA – Research Centre for Agrobiology and Pedology, Florence Italy 1. Introduction Despite the great diversity of habitats grouped under a single name, forests are ecosystems characterized by the dominance of trees, which condition not only the epigeal environment but also life in the soil. Unlike other ecosystems such as grasslands or annual agricultural crops, forests are well characterized by precise spatial structures. In fact, we can identify three main layers in all forests: a canopy layer of tree crowns, including not only green photosynthesizing organs but also branches of various sizes; a layer formed by the tree trunks; a layer including bushes and grasses, which can sometimes be missing when not enough light filters through the canopy. To these layers must be added the litter and soil, which houses the root systems. Other characteristic features of forests, in addition to their structural complexity, are the longevity of the plants, the peculiar microclimates and the presence of particular habitats not found outside of these biocoenoses, such as fallen trunks and tree hollows. Even in the case of woods managed with relatively rapid cycles to produce firewood, forests are particularly good examples of ecosystems organized into superimposed layers that allow the maximum use of the solar energy. The biomass of forests is largely stored in the trees, with the following general distribution: ca. 2% in the leaves and almost 98% in trunks, branches and roots. In conditions of equilibrium between the arboreal vegetation and animal populations, saprophages, which use parts of plants and remains of organisms ending up in the litter, play a very important role.
    [Show full text]
  • Universidade Federal De Santa Catarina Centro De Ciências Agrárias Departamento De Fitotecnia
    UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO DE CIÊNCIAS AGRÁRIAS DEPARTAMENTO DE FITOTECNIA Controle biológico com Coleoptera: Coccinellidae das cochonilhas (Homoptera: Diaspididae, Dactylopiidae), pragas da “palma forrageira”. Ícaro Daniel Petter FLORIANÓPOLIS, SANTA CATARINA NOVEMBRO DE 2010 UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO DE CIÊNCIAS AGRÁRIAS DEPARTAMENTO DE FITOTECNIA Controle biológico com Coleoptera: Coccinellidae das cochonilhas (Homoptera: Diaspididae, Dactylopiidae), pragas da “palma forrageira”. Relatório do Estágio de Conclusão do Curso de Agronomia Graduando: Ícaro Daniel Petter Orientador: César Assis Butignol FLORIANÓPOLIS, SANTA CATARINA NOVEMBRO DE 2010 ii Aos meus pais, por tudo, minha mais profunda gratidão e consideração. iii AGRADECIMENTOS À UFSC e à Embrapa (CPATSA) pelo apoio na realização do estágio. Ao Professor César Assis Butignol pela orientação. A todos que, de alguma forma, contribuíram positivamente na minha graduação, meus sinceros agradecimentos. iv RESUMO Neste trabalho relata-se o programa de controle biológico das cochonilhas, Diaspis echinocacti Bouché, 1833 (Homoptera: Diaspididae) e Dactylopius opuntiae Cockerell, 1896 (Homoptera: Dactylopiidae), pragas da “palma forrageira” (Opuntia ficus-indica (Linnaeus) Mill, e Nopalea cochenillifera Salm- Dyck) (Cactaceae), no semi-árido nordestino, atualmente desenvolvido pela Embrapa Semi-Árido (CPATSA) em Petrolina (PE). Os principais trabalhos foram com duas espécies de coccinelídeos predadores, a exótica Cryptolaemus montrouzieri Mulsant,
    [Show full text]
  • Hymenoptera: Eulophidae) 321-356 ©Entomofauna Ansfelden/Austria; Download Unter
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Entomofauna Jahr/Year: 2007 Band/Volume: 0028 Autor(en)/Author(s): Yefremova Zoya A., Ebrahimi Ebrahim, Yegorenkova Ekaterina Artikel/Article: The Subfamilies Eulophinae, Entedoninae and Tetrastichinae in Iran, with description of new species (Hymenoptera: Eulophidae) 321-356 ©Entomofauna Ansfelden/Austria; download unter www.biologiezentrum.at Entomofauna ZEITSCHRIFT FÜR ENTOMOLOGIE Band 28, Heft 25: 321-356 ISSN 0250-4413 Ansfelden, 30. November 2007 The Subfamilies Eulophinae, Entedoninae and Tetrastichinae in Iran, with description of new species (Hymenoptera: Eulophidae) Zoya YEFREMOVA, Ebrahim EBRAHIMI & Ekaterina YEGORENKOVA Abstract This paper reflects the current degree of research of Eulophidae and their hosts in Iran. A list of the species from Iran belonging to the subfamilies Eulophinae, Entedoninae and Tetrastichinae is presented. In the present work 47 species from 22 genera are recorded from Iran. Two species (Cirrospilus scapus sp. nov. and Aprostocetus persicus sp. nov.) are described as new. A list of 45 host-parasitoid associations in Iran and keys to Iranian species of three genera (Cirrospilus, Diglyphus and Aprostocetus) are included. Zusammenfassung Dieser Artikel zeigt den derzeitigen Untersuchungsstand an eulophiden Wespen und ihrer Wirte im Iran. Eine Liste der für den Iran festgestellten Arten der Unterfamilien Eu- lophinae, Entedoninae und Tetrastichinae wird präsentiert. Mit vorliegender Arbeit werden 47 Arten in 22 Gattungen aus dem Iran nachgewiesen. Zwei neue Arten (Cirrospilus sca- pus sp. nov. und Aprostocetus persicus sp. nov.) werden beschrieben. Eine Liste von 45 Wirts- und Parasitoid-Beziehungen im Iran und ein Schlüssel für 3 Gattungen (Cirro- spilus, Diglyphus und Aprostocetus) sind in der Arbeit enthalten.
    [Show full text]
  • Impact of Odor Signals on Cycloneda Sanguinea (Coleoptera: Coccinellidae) Searching Behavior
    Cien. Inv. Agr. 35(2): 205-210. 2008 www.rcia.puc.cl NOTA DE INVESTIGACION Impact of odor signals on Cycloneda sanguinea (Coleoptera: Coccinellidae) searching behavior Guillermo E. Heit1, Graciela Cohen2, and Graciela Mareggiani1 1Cátedra de Zoología Agrícola, Facultad de Agronomía, Universidad de Buenos Aires, Avda. San Martín 4453 (1417), Buenos Aires, Argentina. 2Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina. Abstract G. Heit, G. Cohen, and G. Mareggiani. 2008. Impact of odor signals on Cycloneda sanguinea (Coleoptera: Coccinellidae) searching behavior. Cien. Inv. Agr. 35(2):205-210. Volatile infochemicals generated by aphids, their host plants, or from the interaction between host plant and herbivore (herbivore-induced volatile plant compounds) are among the environmental stimuli used by predators to locate prey. The objective of this study was to evaluate the olfactometric response of the predator Cycloneda sanguinea (Coleoptera: Coccinellidae) to volatile infochemicals associated with the tomato plant, Lycopersicon esculentum Mill. (Solanaceae), and the aphid prey Myzus persicae Sulzer (Hemiptera: Aphididae). Predator behavior was evaluated in an airfl ow olfactometer at 24 ± 2ºC with 65 ± 10% relative humidity and a 16 h photoperiod. Latency time and the number of visits to the active chamber where the odor source was located were recorded. The odor sources studied were: a. thirty healthy aphids; b. uninfested tomato leaves; c. infested tomato with 30 healthy aphids; d. infested tomato leaves with 30 stressed aphids; e. thirty stressed aphids. C. sanguinea adults were strongly attracted to the odors of infested tomato leaves, but for the other odor sources, they did not visit active chambers more often than inactive chambers.
    [Show full text]
  • Occurrence of Diamondback Moths Plutella Xylostella and Their Parasitoid Wasps
    bioRxiv preprint doi: https://doi.org/10.1101/357814; this version posted June 28, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Occurrence of diamondback moths Plutella xylostella and their parasitoid wasps 2 Cotesia vestalis in mizuna greenhouses and their surrounding areas 3 4 Junichiro Abe1†, Masayoshi Uefune2†, Kinuyo Yoneya3, Kaori Shiojiri4 and Junji 5 Takabayashi5 6 7 1 National Agricultural Research Center for Western Region, Ayabe, Kyoto, 623-0035, 8 Japan 9 2 Department Agrobiological Resources, Faculty of Agriculture, Meijo University, 10 Nagoya, Aichi 468-8502, Japan 11 3 Entomological Laboratory, Faculty of Agriculture, Kindai University, 3327-204, 12 Nakamachi, Nara 631-8505, Japan 13 4 Department of Agriculture, Ryukoku University, 1-5 Ooe, Otsu, Shiga 520-2194, 14 Japan 15 5 Center for Ecological Research, Kyoto University, Otsu, Shiga, 520-2113, Japan 16 17 † Both are equally contributed to this paper 18 19 Correspondence: Junichiro Abe, National Agricultural Research Center for Western 20 Region, Ayabe, Kyoto, 623-0035, Japan; Tel: +81-84-923-4100 Fax: +81-84-924-7893 21 E-mail: [email protected] 22 23 1 bioRxiv preprint doi: https://doi.org/10.1101/357814; this version posted June 28, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 24 Author Contribution 25 JA, MU and JT conceived research. A, MU, YK and KS conducted 26 experiments. JA and MU analysed field data and conducted statistical analyses.
    [Show full text]
  • Neuroptera: Chrysopidae)
    Zootaxa 3351: 1–14 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2012 · Magnolia Press ISSN 1175-5334 (online edition) A new genus of Neotropical Chrysopini (Neuroptera: Chrysopidae) FRANCISCO SOSA1 & SERGIO DE FREITAS2 1 Universidad Centroccidental “Lisandro Alvarado”, Museo Entomológico “Dr. José Manuel Osorio” (UCOB), Barquisimeto, Lara, . E-mail: [email protected] 2 Universidade Estadual Paulista, Jaboticabal, São Paulo, Brazil (deceased) Abstract Titanochrysa Sosa & Freitas is a new genus of Neotropical Chrysopini (Chrysopidae: Chrysopinae) recorded from Costa Rica, Venezuela and Brazil. Titanochrysa gen. nov. shares several external and genitalic characters with Ceraeochrysa Adams, 1982; Chrysopodes Navás, 1913; Cryptochrysa Freitas & Penny, 2000; Parachrysopiella Brooks & Barnard, 1990 and Ungla Navás 1914. It may be distinguished from those genera by its very long sternite 8+9, sternites 2–8 usually with microtholi, male geni- talia with the dorsal surface of the arcessus striated, gonosaccus well-developed, bearing elongate gonosetae and microsetae, and a spoon-like gonapsis. Herein, Titanochrysa circumfusa (Burmeister, 1939) [= Chrysopodes circumfusa (Burmeister)] comb. nov. and Titanochrysa pseudovaricosa (Penny) [= Ceraeochrysa pseudovaricosa Penny, 1998] comb. nov. were identi- fied; Titanochrysa ferreirai Sosa & Freitas sp. nov. and Titanochrysa trespuntensis Sosa & Freitas sp. nov. were described. The external morphology, and male and female genitalia of all these species
    [Show full text]