Neuroptera: Chrysopidae)

Total Page:16

File Type:pdf, Size:1020Kb

Neuroptera: Chrysopidae) View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Online Research @ Cardiff Conspecific and Heterogeneric Lacewings Respond to (Z)-4-Tridecene Identified from Chrysopa formosa (Neuroptera: Chrysopidae) 1 1 2 2 2 Sándor Koczor & Ferenc Szentkirályi & József Vuts & John C. Caulfield & David M. Withall & John A. 2 2 1 Pickett & Michael A. Birkett & Miklós Tóth Abstract Green lacewings (Chrysopidae) are predators of soft-bodied pest insects and are among the most important biological control agents in crop protection. Chrysopa spp. are of special importance since, unlike most green lacewing species, adults are also predatory. The current study was undertaken in search of Chrysopa formosa compounds with semiochemical activity. Using coupled gas chromatography-electroantennography (GC-EAG), head and thorax extracts of C. formosa elicited EAG responses to a compound subsequently identified by coupled GC/mass spectrometry, microchemistry, chemical synthesis and GC peak enhancement as (Z)-4-tridecene. In field experiments, this compound decreased attraction of adult C. formosa to (1R,4aS,7S,7aR)-nepetalactol and that of Chrysoperla carnea species-complex to a ternary floral lure, with the inhibitory effect found to be dose-dependent. Our results suggest that (Z)-4-tridecene may serve as a general warning signal among multiple green lacewing species. Perspectives for potential practical applications are discussed. Keywords Chrysopa formosa Chrysoperla carnea species-complex (Z)-4-tridecene (1R,4aS,7S,7aR)-nepetalactol . Synthetic ternary floral bait Repellency Biological control Predator Introduction Chrysoperla spp., Chrysopa spp. are also of importance for biological control since, unlike most green lacewings, Green lacewings (Chrysopidae) comprise a species-rich fam- adults are also predatory (Bozsik 1992; Canard 2001). ily with more than 1200 taxa described worldwide (Brooks To maximize the control impact of green lacewings, de-tailed and Barnard 1990). Their larvae are predatory and are of in- knowledge of their chemical ecology is of key importance terest for biological control of agricultural pests (Pappas et al. (Aldrich and Zhang 2016). To date, studies have mainly reported 2011). Chrysoperla spp. for instance, are considered impor- on behavioral responses of lacewings to plant or aphid tant agents of biological control (Pappas et al. 2011), and are semiochemicals (e.g., Flint et al. 1979; Hooper et al. 2002; Tóth available commercially. Nevertheless, it is important to note et al. 2006). Despite the identification of several compounds from that the taxon previously referred to as ‘Chrysoperla carnea’ is different green lacewing species (e.g., Aldrich et al. 2009), composed of several species (Henry et al. 2001); hence, the reports on the behavioral responses of green lacewings to these name C. carnea species-complex or C. carnea s. lat. Besides semiochemicals are scarce. (1R,2S,5R,8R)-Iridodial from extracts of male Nearctic lace-wings Chrysopa oculata Say, 1839 (Zhang et al. 2004) and C. nigricornis Burmeister, 1839, was reported as a male attrac-tant (Zhang et al. 2006), and it has also been found to be attractive to other green lacewing species (Aldrich and * Sándor Koczor Zhang 2016). Interestingly, Aldrich et al. (2016) found that this [email protected] com-pound was not produced by laboratory-reared C. oculata, but only by field-collected individuals. Zhu et al. (2000) identified 1 Plant Protection Institute, Centre for Agricultural Research, (Z)-4-tridecene (TRIDEC) from a Nearctic Chrysoperla sp. and HAS, H-1022 Herman Ottó u. 15, Budapest, Hungary reported that it elicited arrestment in a Y-tube olfactometer, and 2 Department of Biointeractions and Crop Protection, Rothamsted decreased attraction to 2-phenylethanol, a floral volatile, in a Research, Harpenden, Hertfordshire AL5 2JQ, UK preliminary field experiment. Reduced oviposition of Chrysopa commata Kis & Újhelyi, 1965, C. oculata, C. perla was used with a constant humidified airflow of ca. 0.7 l.min−1. (Linnaeus, 1758) and ‘C. carnea (Stephens)’ on surfaces where An antenna was freshly amputated at the base from a live lace- hatched first-instar larvae had been present has been reported wing and mounted between two glass capillary electrodes con- (Ruzicka 1994, 1996, 1998, 2010). However, poten-tial taining Ringer solution. The antennal preparation was placed ca. semiochemicals have not been identified. Interestingly de- 3 mm from the effluent airflow. One of the electrodes was spite the reports on the effect of freshly hatched larvae on grounded, while the other was connected to a high-impedance DC oviposition, later studies conducted with Chrysoperla species amplifier (IDAC-232, Syntech, Kirchzarten, Germany). Aliquots did not verify the effect of previously laid eggs on oviposition (10 μl) of head, thoracic or abdominal extracts were administered onto a 10 mm diam. Rotilabo filter disc (RKTech Kft., Budapest, by females (Fréchette et al. 2006; Koczor et al. 2017). Previous work has shown that Chrysoperla spp. green lace- Hungary) inside a Pasteur pipette. Methyl sa-licylate (10 μl of 1 wings respond to plant volatiles (e.g., Flint et al. 1979; Tóth et μg.μl−1 hexane solution) was used as a standard, and was tested al. 2006 and references therein). For instance, a ternary plant before and after the other stimuli, for normalizing response volatile blend was more attractive to males and females of amplitudes. Solvent (hexane) and air were the controls. For a European populations of the C. carnea species-complex (i.e., stimulus, 1 ml of air was pushed through the Pasteur pipette into C. carnea complex) than previously published attractants the airstream flowing toward the antenna. Stimuli were (Tóth et al. 2009). The ternary blend, also, was found to administered at ca. 20–30 s intervals. increase oviposition in the vicinity of baits (Jaastad et al. 2010; Koczor et al. 2015a), and adults preferred overwintering Coupled Gas Chromatography- shelters baited with the blend (Koczor et al. 2015a). Electroantennography (GC-EAG) The current study focused on C. formosa Brauer 1850, one of the most common Chrysopa species in Hungary, which is also of A thoracic extract was purified on silica gel (hexane) to remove significance in agroecosystems of arable crops and orchards contamination from high molecular weight contaminants, and throughout Europe and Asia (Duelli 2001; Szentkirályi 2001). was subjected to coupled GC-EAG using an Agilent 6890 N gas Given the important ecological role that C. formosa has, as a chromatograph equipped with a DB-WAX column (J&W predator of soft-bodied insects, our aim was to investigate semio- Scientific, Folsom, CA, USA, 30 m × 0.32 mm i.d.). Helium was chemicals from C. formosa with a view to using the identified the carrier gas and injection was performed in the splitless mode. compounds as potential tools in ecological pest management. The temperature program started at 60 °C and increased to 220 °C by 10 °C.min−1. The column effluent was split be-tween the flame ionization detector (FID) and a heated transfer line to the Methods and Materials EAG apparatus. For each test, 1 μl aliquots of an extract and 10 ng tetradecyl acetate in 1 μl hexane as internal standard, were co- Preparation of Lacewing Extracts injected. A compound was defined as EAG-active if it evoked an antennal response, distinguishable from background noise, in at Male C. formosa were collected in the field at Halásztelek least three replicates. (Hungary) with CSALOMON® VARL+ funnel traps (Plant Protection Institute, CAR, HAS, Budapest, Hungary, http:// Coupled GC/Mass Spectrometry (GC/MS) Analysis www.csalomontraps.com) baited with (1R,4aS,7S,7aR)- nepetalactol (NEPOH; Botanix Ltd., Paddock Wood, Kent, UK) Thoracic extracts were analyzed on an HP 6890 GC, equipped in PVC rope formulation (5% loading w:w; Agrisense-BCS Ltd., with a cool-on-column injector and FID, and fitted with a 30 Pontypridd, Wales, UK). This trap design and for-mulation is m × 0.32 mm inner dia. × 0.5 μm film thickness polar DB- effective at catching C. formosa males (Koczor et al. 2010, WAX column, or a 50 m × 0.32 mm inner dia. × 0.52 μm film 2015b). For the preparation of extracts, 25 live males were frozen thickness non-polar HP-1 column (J & W Scientific, Folsom, at −20 °C, dissected into head, thorax and abdomen, which were CA, USA). The oven temperature was maintained at 30 °C for then immersed in hexane at room tem-perature. The supernatant 2 min and then programmed at 10 °C.min−1 to 250 °C. The was placed in glass microcapillaries, which were closed by heat carrier gas was hydrogen. For tentative identification of EAG- sealing, and stored at -20 °C until required for active peaks from thoracic ex-tracts, GC/MS analysis was electrophysiological and chemical studies. performed on a Micromass Autospec Ultima magnetic sector mass spectrometer (Waters, Milford, MA, USA), attached to Electrophysiology (EAG) an Agilent 6890 N GC (fitted with a 30 m × 0.32 mm inner dia. × 0.5 μm film thickness polar DB-WAX column, J & W Extracts were tested for EAG activity with antennae from male C. Scientific, Folsom, CA, USA) equipped with a cool-on- formosa in a preliminary screening. For presenting the stim-uli to column injector. Ionization was by electron impact (70 eV, the antenna, a stainless steel tube (teflon coated inside) 220 °C). The GC oven temperature was maintained at 30 °C for 5 min and then programmed at 5 BuLi solution (32.2 ml, 43.40 mmol) and the mixture stirred for −1 °C.min to 250 °C. Tentative identifications were obtained 60 min. Iodine (11.00 g, 43.40 mmol) in Et2O (100 ml) was by comparison of mass spectra with the NIST mass spectral added slowly to the mixture before being allowed to warm to database (2011), and confirmed by comparison of KI values room temperature over 3 h.
Recommended publications
  • The Green Lacewings of the Genus Chrysopa in Maryland ( Neuroptera: Chrysopidae)
    The Green Lacewings of the Genus Chrysopa in Maryland ( Neuroptera: Chrysopidae) Ralph A. Bram and William E. Bickley Department of Entomology INTRODUCTION Tlw green lacewings which are members of the genus Chrysopa are extreme- ly lwndicia1 insects. The larvae are commonly called aphislions and are well known as predators of aphids and other injurious insects. They play an important part in the regulation of populations of pests under natural conditions, and in California they have been cultured in mass and released for the control of mealy- bugs ( Finney, 1948 and 1950) . The positive identification of members of the genus is desirable for the use of biological-control workers and entomologists in general. Descriptions of most of the Nearctic species of Chrysopidae have relied heavily on body pigmentation and to a lesser extent on wing shape, venational patterns and coloration. Specimens fade when preserved in alcohol or on pins, and natural variation in color patterns occurs in many species ( Smith 1922, Bickley 1952). It is partly for these reasons that some of the most common and relatively abundant representatives of the family are not easily recognized. The chrysopid fauna of North America was treated comprehensively by Banks ( 1903). Smith ( 1922) contributed valuable information about the biology of the green lacewings and about the morphology and taxonomy of the larvae. He also pro- vided k<'ys and other help for the identification of species from Kansas ( 1925, 1934) and Canada ( 1932). Froeschner ( 194 7) similarly dealt with Missouri species. Bickley and MacLeod ( 1956) presented a review of the family as known to occur in the N earctic region north of Mexico.
    [Show full text]
  • Effect of Different Host Plants of Normal Wheat Aphid (Sitobion Avenae) on the Feeding and Longevity of Green Lacewing (Chrysoperla Carnea)
    2011 International Conference on Asia Agriculture and Animal IPCBEE vol.13 (2011) © (2011)IACSIT Press, Singapoore Effect of different host plants of normal wheat aphid (Sitobion avenae) on the feeding and longevity of green lacewing (Chrysoperla carnea) Shahram Hesami 1, Sara Farahi 1 and Mehdi Gheibi 1 1 Department of Plant Protection, College of Agricultural Sciences, Shiraz branch, Islamic Azad University, Shiraz, Iran Abstract. The role of two different hosts of normal wheat aphid (Sitobion avenae) on feeding and longevity of larvae of green lacewing (Chrysoperla carnea), were conducted in laboratory conditions (50 ± 1 ˚C 70 ± 5 % RH and photoperiod of L16: D8). In this study wheat aphid had fed on wheat (main host) and oleander (compulsory host) for twenty days. For the experiments we used 3rd and 4th instars of aphids and 2nd instar larvae of green lacewing. The results were compared by each other and oleander aphid (Aphis nerii). Significant effects of host plant and aphid species on feeding rate and longevity of green lacewing were observed. The average feeding rate of 2nd instar larvae of C. carnea on wheat aphid fed on wheat, oleander aphid and wheat aphid fed on oleander were 40.3, 19.5, 30.6 aphids respectively. Also the longevity of 2nd instar larvae of green lacewing which fed on different aphids was recorded as 3.7, 7.8 and 6 days respectively. The results showed that biological characteristics of larvae of C. carnea are influenced by the quality of food which they fed on. Keywords: host plant effect, Biological control, Chrysoperla carnea, Sitobion avenae, Aphis nerri 1.
    [Show full text]
  • Heteroptera: Miridae) and a Green Lacewing Chrysoperla Rufilabris (Neuroptera: Chrysopidae), Two Predators of the Azalea Lace Bug (Heteroptera: Tingidae)
    BIOLOGICAL CONTROL Functional Response of the Azalea Plant Bug (Heteroptera: Miridae) and a Green Lacewing Chrysoperla rufilabris (Neuroptera: Chrysopidae), Two Predators of the Azalea Lace Bug (Heteroptera: Tingidae) 1 2 COLIN D. STEWART, S. KRISTINE BRAMAN, AND ANDREW F. PENDLEY University of Georgia Department of Entomology, 1109Experiment Street, GrifÞn, GA 30223Ð1797 Environ. Entomol. 31(6): 1184Ð1190 (2002) ABSTRACT Azalea plant bug (Rhinocapsus vanduzeei Uhler) Þfth instars and a commercially obtained green lacewing (Chrysoperla rufilabris Burmeister) Þrst and second instars exhibited a type II functional response when caged with varying densities of fourth or Þfth instar azalea lace bug, Stephanitis pyrioides (Scott), prey. Attack coefÞcients for combined fourth and Þfth instar prey were statistically similar for R. vanduzeei and C. rufilabris (0.052 and 0.057, respectively). The handling time was signiÞcantly greater for R. vanduzeei (3.96 h) than C. rufilabris (2.41 h). Search efÞciency generally declined for both predators as initial azalea lace bug density increased. C. rufilabris killed signiÞcantly more fourth and Þfth instar prey than R. vanduzeei (8.0 and 6.0, respectively) in 24 h. Results indicate that C. rufilabris is a more suitable candidate for augmentative, not inoculative, release for azalea lace bug control than R. vanduzeei. However, R. vanduzeei can effect reductions in azalea lace bug populations in the landscape as a component of the guild of lace bugÕs natural enemies and should be considered in conservation efforts. KEY WORDS Augmentative release, Chrysoperla rufilabris, functional response, Stephanitis pyri- oides, Rhinocapsus vanduzeei, urban landscape AZALEAS ARE ONE of the most common landscape shrubs Uhler (Braman and Beshear 1994), and Stethoconus in the eastern United States.
    [Show full text]
  • Identified Difficulties and Conditions for Field Success of Biocontrol
    Identified difficulties and conditions for field success of biocontrol. 4. Socio-economic aspects: market analysis and outlook Bernard Blum, Philippe C. Nicot, Jürgen Köhl, Michelina Ruocco To cite this version: Bernard Blum, Philippe C. Nicot, Jürgen Köhl, Michelina Ruocco. Identified difficulties and conditions for field success of biocontrol. 4. Socio-economic aspects: market analysis and outlook. Classical and augmentative biological control against diseases and pests: critical status analysis and review of factors influencing their success, IOBC - International Organisation for Biological and Integrated Controlof Noxious Animals and Plants, 2011, 978-92-9067-243-2. hal-02809583 HAL Id: hal-02809583 https://hal.inrae.fr/hal-02809583 Submitted on 6 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. WPRS International Organisation for Biological and Integrated Control of Noxious IOBC Animals and Plants: West Palaearctic Regional Section SROP Organisation Internationale de Lutte Biologique et Integrée contre les Animaux et les OILB Plantes Nuisibles:
    [Show full text]
  • Gut Content Metabarcoding Unveils the Diet of a Flower‐Associated Coastal
    ECOSPHERE NATURALIST No guts, no glory: Gut content metabarcoding unveils the diet of a flower-associated coastal sage scrub predator PAUL MASONICK , MADISON HERNANDEZ, AND CHRISTIANE WEIRAUCH Department of Entomology, University of California, Riverside, 900 University Avenue, Riverside, California 92521 USA Citation: Masonick, P., M. Hernandez, and C. Weirauch. 2019. No guts, no glory: Gut content metabarcoding unveils the diet of a flower-associated coastal sage scrub predator. Ecosphere 10(5):e02712. 10.1002/ecs2.2712 Abstract. Invertebrate generalist predators are ubiquitous and play a major role in food-web dynamics. Molecular gut content analysis (MGCA) has become a popular means to assess prey ranges and specificity of cryptic arthropods in the absence of direct observation. While this approach has been widely used to study predation on economically important taxa (i.e., pests) in agroecosystems, it is less frequently used to study the broader trophic interactions involving generalist predators in natural communities such as the diverse and threatened coastal sage scrub communities of Southern California. Here, we employ DNA metabarcoding-based MGCA and survey the taxonomically and ecologically diverse prey range of Phymata pacifica Evans, a generalist flower-associated ambush bug (Hemiptera: Reduviidae). We detected predation on a wide array of taxa including beneficial pollinators, potential pests, and other predatory arthropods. The success of this study demonstrates the utility of MGCA in natural ecosystems and can serve as a model for future diet investigations into other cryptic and underrepresented communities. Key words: biodiversity; blocking primers; DNA detectability half-life; Eriogonum fasciculatum; food webs; intraguild predation; natural enemies. Received 24 January 2019; accepted 11 February 2019.
    [Show full text]
  • Consequences of Linguistic Uncertainty for Insect Management
    WATCH YOUR LANGUAGE Consequences of Linguistic Uncertainty for Insect Management THERESA M. CIRA, KATHY QUICK, AND ROBERT C. VENETTE JA'CRISPY/ISTOCK 258 AMERICAN ENTOMOLOGIST | WINTER 2019 his is a call to entomologists to consider the un- certainty introduced into our works through the language we use. Albert Einstein remarked, “Every- thing depends on the degree to which words and word-combinations correspond to the world of im- Tpression,” which makes language a “dangerous source of error and deception” (Hawking 2007). Scientists usually research and deliberately choose the language they use to propose new concepts or terminology. Often, however, terms slip into the lexicon through less systematic means. Words may seem to have meanings so obvious that broad understanding of the term may be taken for granted, but individual contexts are diverse, and to assume that a word’s meaning is unchanging across time and space is to overlook the uncertainties of lan- guage. Thus, communication through even the most common entomological vocabulary can fail. Language is a mutable, un- certain, and imperfect way of representing the world. Because language is integral to science and yet inherently imprecise, it is important for scientists to recognize and address uncertain- ty in the language of our works. Uncertainty, as defined by the Society a phenomenon is repeatedly observed and for Risk Analysis (2015), is “not knowing the individuals agree that measurements con- true value of a quantity or the future con- verge, to some degree, on a specific point, sequences of an activity,” or “imperfect or more certainty about the true nature of the incomplete information/knowledge about phenomenon can be asserted.
    [Show full text]
  • T.C Harran Ünġversġtesġ Fen Bġlġmlerġ Enstġtüsü
    T.C HARRAN ÜNĠVERSĠTESĠ FEN BĠLĠMLERĠ ENSTĠTÜSÜ YÜKSEK LĠSANS TEZĠ BĠRECĠK (ġANLIURFA) ĠLÇESĠ FIRAT VADĠSĠ’NDEKĠ ANTEPFISTIĞI BAHÇELERĠNDE YAPAY KIġLAMA BARINAKLARINDA KIġLAYAN BÖCEK (ARTHROPODA: INSECTA) FAUNASININ BELĠRLENMESĠ Yeliz SABUNCU BĠTKĠ KORUMA ANABĠLĠM DALI ġANLIURFA 2019 Dr. Öğr. Üyesi Mehmet MAMAY danıĢmanlığında, Yeliz SABUNCU‟nun hazırladığı “Birecik (ġanlıurfa) Ġlçesi Fırat Vadisi’ndeki Antepfıstığı Bahçelerinde Yapay KıĢlama Barınaklarında KıĢlayan Böcek (Arthropoda: Insecta) Faunasının Belirlenmesi” konulu bu çalıĢma 10/06/2019 tarihinde aĢağıdaki jüri tarafından oy birliği ile Harran Üniversitesi Fen Bilimleri Enstitüsü Ziraat Mühendisliği Anabilim Dalı‟nda YÜKSEK LĠSANS TEZĠ olarak kabul edilmiĢtir. Ġmza DanıĢman : Dr. Öğr. Üyesi Mehmet MAMAY ………………… Üye : Prof. Dr. Ġnanç ÖZGEN ………………… Üye : Dr. Öğr. Üyesi Çetin MUTLU ………………… Bu Tezin Bitki Koruma Anabilim Dalı’nda Yapıldığını ve Enstitümüz Kurallarına Göre Düzenlendiğini Onaylarım Doç. Dr. Ġsmail HĠLALĠ Enstitü Müdürü Not: Bu tezde kullanılan özgün ve baĢka kaynaktan yapılan bildiriĢlerin, çizelge, Ģekil ve fotoğrafların kaynak gösterilmeden kullanımı, 5846 sayılı Fikir ve Sanat Eserleri Kanunundaki hükümlere tabidir. i ĠÇĠNDEKĠLER Sayfa No ÖZET ................................................................................................................................................... ii ABSTRACT ........................................................................................................................................ iii ġELĠLLER DĠZĠNĠ .............................................................................................................................
    [Show full text]
  • Review of Ecologically-Based Pest Management in California Vineyards
    Review Review of Ecologically-Based Pest Management in California Vineyards Houston Wilson 1,* and Kent M. Daane 2 1 Department of Entomology, University of California, Riverside, Riverside, CA 92521, USA 2 Department Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA 94720-3114, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-559-646-6519 Academic Editors: Alberto Pozzebon, Carlo Duso, Gregory M. Loeb and Geoff M. Gurr Received: 28 July 2017; Accepted: 6 October 2017; Published: 11 October 2017 Abstract: Grape growers in California utilize a variety of biological, cultural, and chemical approaches for the management of insect and mite pests in vineyards. This combination of strategies falls within the integrated pest management (IPM) framework, which is considered to be the dominant pest management paradigm in vineyards. While the adoption of IPM has led to notable and significant reductions in the environmental impacts of grape production, some growers are becoming interested in the use of an explicitly non-pesticide approach to pest management that is broadly referred to as ecologically-based pest management (EBPM). Essentially a subset of IPM strategies, EBPM places strong emphasis on practices such as habitat management, natural enemy augmentation and conservation, and animal integration. Here, we summarize the range and known efficacy of EBPM practices utilized in California vineyards, followed by a discussion of research needs and future policy directions. EBPM should in no way be seen in opposition, or as an alternative to the IPM framework. Rather, the further development of more reliable EBPM practices could contribute to the robustness of IPM strategies available to grape growers.
    [Show full text]
  • The Maryland Entomologist
    THE MARYLAND ENTOMOLOGIST Insect and related-arthropod studies in the Mid-Atlantic region Volume 6, Number 2 September 2014 September 2014 The Maryland Entomologist Volume 6, Number 2 MARYLAND ENTOMOLOGICAL SOCIETY www.mdentsoc.org Executive Committee: Co-Presidents Timothy Foard and Frederick Paras Vice President Philip J. Kean Secretary Richard H. Smith, Jr. Treasurer Edgar A. Cohen, Jr. Historian (vacant) Publications Editor Eugene J. Scarpulla The Maryland Entomological Society (MES) was founded in November 1971, to promote the science of entomology in all its sub-disciplines; to provide a common meeting venue for professional and amateur entomologists residing in Maryland, the District of Columbia, and nearby areas; to issue a periodical and other publications dealing with entomology; and to facilitate the exchange of ideas and information through its meetings and publications. The MES was incorporated in April 1982 and is a 501(c)(3) non-profit, scientific organization. The MES logo features an illustration of Euphydryas phaëton (Drury) (Lepidoptera: Nymphalidae), the Baltimore Checkerspot, with its generic name above and its specific epithet below (both in capital letters), all on a pale green field; all these are within a yellow ring double-bordered by red, bearing the message “● Maryland Entomological Society ● 1971 ●”. All of this is positioned above the Shield of the State of Maryland. In 1973, the Baltimore Checkerspot was named the official insect of the State of Maryland through the efforts of many MES members. Membership in the MES is open to all persons interested in the study of entomology. All members receive the annual journal, The Maryland Entomologist, and the monthly e-newsletter, Phaëton.
    [Show full text]
  • Using Plant Volatile Traps to Estimate the Diversity of Natural Enemy Communities in Orchard Ecosystems
    Tennessee State University Digital Scholarship @ Tennessee State University Agricultural and Environmental Sciences Department of Agricultural and Environmental Faculty Research Sciences 5-5-2016 Using plant volatile traps to estimate the diversity of natural enemy communities in orchard ecosystems Nicholas J. Mills University of California - Berkeley Vincent P. Jones Washington State University Callie C. Baker Washington State University Tawnee D. Melton Washington State University Shawn A. Steffan Washington State University See next page for additional authors Follow this and additional works at: https://digitalscholarship.tnstate.edu/agricultural-and-environmental- sciences-faculty Part of the Plant Sciences Commons Recommended Citation Nicholas J. Mills, Vincent P. Jones, Callie C. Baker, Tawnee D. Melton, Shawn A. Steffan, Thomas R. Unruh, David R. Horton, Peter W. Shearer, Kaushalya G. Amarasekare, Eugene Milickzy, "Using plant volatile traps to estimate the diversity of natural enemy communities in orchard ecosystems", Biological Control, Vol. 102, 2016, Pages 66-76, ISSN 1049-9644, https://doi.org/10.1016/j.biocontrol.2016.05.001. This Article is brought to you for free and open access by the Department of Agricultural and Environmental Sciences at Digital Scholarship @ Tennessee State University. It has been accepted for inclusion in Agricultural and Environmental Sciences Faculty Research by an authorized administrator of Digital Scholarship @ Tennessee State University. For more information, please contact [email protected].
    [Show full text]
  • Chemical Ecology of Pollination in Deceptive Ceropegia
    Chemical Ecology of Pollination in Deceptive Ceropegia CHEMICAL ECOLOGY OF POLLINATION IN DECEPTIVE CEROPEGIA DISSERTATION zur Erlangung des Doktorgrades Dr. rer. nat. an der Bayreuther Graduiertenschule für Mathematik und Naturwissenschaften (BayNAT) der Universität Bayreuth vorgelegt von Annemarie Heiduk Bayreuth, Januar 2017 Die vorliegende Arbeit wurde in der Zeit von Februar 2012 bis Dezember 2016 in Bayreuth am Lehrstuhl Pflanzensystematik unter der Betreuung von Herrn Univ.-Prof. Dr. Stefan Dötterl (Erst-Mentor) und Herrn PD Dr. Ulrich Meve (Zweit-Mentor) angefertigt. Gefördert wurde die Arbeit von Februar bis April 2012 durch den ‛Feuerwehrfond’ zur Doktorandenförderung der Universität Bayreuth, von Mai 2012 bis April 2015 durch ein Stipendium nach dem Bayerischen Eliteförderungsgesetzt (BayEFG), und von Mai bis Juli 2015 durch ein Stipendium des Bayerischen Programms zur Förderung der Chancengleichheit für Frauen in Forschung und Lehre. Vollständiger Abdruck der von der Bayreuther Graduiertenschule für Mathematik und Naturwissenschaften (BayNAT) der Universität Bayreuth genehmigten Dissertation zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.). Dissertation eingereicht am: 02.02.2017 Zulassung durch das Leitungsgremium: 10.02.2017 Wissenschaftliches Kolloquium: 31.05.2017 Amtierender Direktor: Prof. Dr. Stephan Kümmel Prüfungsausschuss: Prof. Dr. Stefan Dötterl (Erstgutachter) Prof. Dr. Konrad Dettner (Zweitgutachter) Prof. Dr. Heike Feldhaar (Vorsitz) Prof. Dr. Bettina Engelbrecht Declaration of self-contribution This dissertation is submitted as a “Cumulative Thesis“ and contains a general synopsis (Part I) and three manuscripts (Part II) about the chemical ecology and pollination biology of Ceropegia . The major part of the research presented here was accomplished by myself under supervision of Univ.-Prof. Dr. Stefan Dötterl (Universities of Bayreuth and Salzburg) and PD Dr.
    [Show full text]
  • The Potential of Chrysoperla Rufilabris and Doru Taeniatum As Agents For
    Entomologia Experimentalis et Applicata 98: 353–359, 2001. 353 © 2001 Kluwer Academic Publishers. Printed in the Netherlands. The potential of Chrysoperla rufilabris and Doru taeniatum as agents for dispersal of Spodoptera frugiperda nucleopolyhedrovirus in maize Vasty Castillejos1,LuisGarc´ıa1, Juan Cisneros1, Dave Goulson2, Ronald D. Cave3,Primi- tivo Caballero4 & Trevor Williams1;∗ 1ECOSUR, Tapachula 30700, Chiapas, Mexico; 2Biology Department, University of Southampton, Southampton SO16 7PX, UK; 3Escuela Agr´ıcola Panamericana, El Zamorano, Honduras; 4Dept. Producci´on Agraria, Universidad P´ublica de Navarra, Pamplona 31006, Spain; ∗Author for correspondence (Fax: Mex(52) 962 81015; E-mail: [email protected]) Accepted: October 17, 2000 Key words: search time, prey consumption, Neuroptera, Dermaptera, Lepidoptera, baculovirus, virus dispersal Abstract The behaviour of two abundant predators in Mesoamerican maize crops, Chrysoperla rufilabris larvae and Doru taeniatum adults, towards healthy and nucleopolyhedrovirus-infected Spodoptera frugiperda larvae was compared. C. rufilabris did not discriminate between healthy and virus-infected prey, although the mean search time was approximately two times longer towards virus-infected larvae. In contrast, D. taeniatum directed a greater propor- tion of their attacks towards virus-infected prey but there was no significant difference in the search time. Prey consumption time did not differ significantly for each type of prey by either predator, although prey consumption was much faster in D. taeniatum. Viable virus was detected in D. taeniatum faeces up to 3 d after feeding on infected S. frugiperda larvae, whereas virus was inactivated in the gut of C. rufilabris. Both predators were shown to have acidic guts. A field experiment demonstrated that D.
    [Show full text]