Heteroptera: Miridae) and a Green Lacewing Chrysoperla Rufilabris (Neuroptera: Chrysopidae), Two Predators of the Azalea Lace Bug (Heteroptera: Tingidae)

Total Page:16

File Type:pdf, Size:1020Kb

Heteroptera: Miridae) and a Green Lacewing Chrysoperla Rufilabris (Neuroptera: Chrysopidae), Two Predators of the Azalea Lace Bug (Heteroptera: Tingidae) BIOLOGICAL CONTROL Functional Response of the Azalea Plant Bug (Heteroptera: Miridae) and a Green Lacewing Chrysoperla rufilabris (Neuroptera: Chrysopidae), Two Predators of the Azalea Lace Bug (Heteroptera: Tingidae) 1 2 COLIN D. STEWART, S. KRISTINE BRAMAN, AND ANDREW F. PENDLEY University of Georgia Department of Entomology, 1109Experiment Street, GrifÞn, GA 30223Ð1797 Environ. Entomol. 31(6): 1184Ð1190 (2002) ABSTRACT Azalea plant bug (Rhinocapsus vanduzeei Uhler) Þfth instars and a commercially obtained green lacewing (Chrysoperla rufilabris Burmeister) Þrst and second instars exhibited a type II functional response when caged with varying densities of fourth or Þfth instar azalea lace bug, Stephanitis pyrioides (Scott), prey. Attack coefÞcients for combined fourth and Þfth instar prey were statistically similar for R. vanduzeei and C. rufilabris (0.052 and 0.057, respectively). The handling time was signiÞcantly greater for R. vanduzeei (3.96 h) than C. rufilabris (2.41 h). Search efÞciency generally declined for both predators as initial azalea lace bug density increased. C. rufilabris killed signiÞcantly more fourth and Þfth instar prey than R. vanduzeei (8.0 and 6.0, respectively) in 24 h. Results indicate that C. rufilabris is a more suitable candidate for augmentative, not inoculative, release for azalea lace bug control than R. vanduzeei. However, R. vanduzeei can effect reductions in azalea lace bug populations in the landscape as a component of the guild of lace bugÕs natural enemies and should be considered in conservation efforts. KEY WORDS Augmentative release, Chrysoperla rufilabris, functional response, Stephanitis pyri- oides, Rhinocapsus vanduzeei, urban landscape AZALEAS ARE ONE of the most common landscape shrubs Uhler (Braman and Beshear 1994), and Stethoconus in the eastern United States. In Maryland, they rep- japonicus Schumacher (Henry et al. 1986, Neal et al. resented between 15 and 21% of the shrubbery or total 1991). D. rhododendri and R. vanduzeei are generalists. woody plant material monitored (Hellman et al. 1982, S. japonicus, an obligate lace bug predator (Neal and Holmes and Davidson 1984, Raupp and Noland 1984). Haldemann 1992), has been reported only in Belts- In the metropolitan Atlanta area, 87% of landscape ville, MD, and in Rockland County, NY (Schwartz managers reported azaleas among the plants that are 1989). most often treated with insecticides (Braman et al. The azalea plant bug, R. vanduzeei, described in 1998). The azalea lace bug, Stephanitis pyrioides 1890 (Uhler 1890), is a generalist predator found on (Scott), was Þrst reported in the United States by azaleas (Wheeler and Herring 1979) and raspberry Weiss (1916). It is the most important pest of azaleas (Van Duzee 1904). It is univoltine, and egg hatch is (Neal and Douglass 1988, Braman and Pendley 1992) synchronized with azalea bloom. R. vanduzeei has and has four generations a year in Georgia (Braman et been observed feeding on the azalea lace bug, white- al. 1992). Adults and nymphs feed on the underside of ßies, leafhoppers, aphids, small ßies, thrips (Braman the leaf by piercing and removing cell contents from and Beshear 1994), fall armyworm [Spodoptera frugi- the upper palisade parenchyma layer (Buntin et al. perda (J. E. Smith)] eggs and larvae, twospotted spider 1996) causing stippling and, in severe infestations, leaf mite (Tetranychus urticae Koch), azalea leafminer desiccation (Schultz 1993). [Caloptilia azaleella (Brants)] pupae, each other Few natural enemies of the azalea lace bug have (Stewart and Braman 1999), and azalea pollen been reported (Neal et al. 1991, Balsdon et al. 1996). (Wheeler and Herring 1979). This predator has been These include the mymarid, Anagrus takeyanus Gordh observed on Alabama (Rhododendron alabamense Re- (an egg parasitoid), and three predatory mirids Dicy- hder), Flame [Rhododendron austrinum (Small) Re- phus rhododendri Dolling, Rhinocapsus vanduzeei hder], Korean azaleas [Rhododendron yedoense Maxi- mowicz variety poukhanense (Leveille) Nakai], 1 Current address: University of Maine Pest Management OfÞce, Piedmont [Rhododendron calendulaceum (Michaux) 491 College Avenue, Orono, ME 04473Ð1295. Torrey], and wild swamp Rhododendron viscosum (L.) 2 E-mail: [email protected]Þn.peachnet.edu. Torrey, as well as the Ghent hybrids of the ßame 0046-225X/02/1184Ð1190$02.00/0 ᭧ 2002 Entomological Society of America December 2002 STEWART ET AL.: FUNCTIONAL RESPONSE OF AZALEA LACE BUG PREDATORS 1185 azalea. Its recorded range is from Quebec (Moore dishes with only a moist paper towel immediately 1907) and Maine to Florida and as far west as Missouri before testing. (Wheeler and Herring 1979). It has also been reported Problems with comparing functional response stud- in Manitoba, Canada (Henry and Wheeler 1988). ies in petri dishes with whole-plant Þeld studies have Green lacewings feed on a diverse array of arthro- been discussed in detail elsewhere (OÕNeil 1997). pod prey including azalea lace bugs (Principi and Cages containing azalea terminals were used instead Canard 1984, and references therein; Ehler and Kinsey of petri dishes in our studies to more closely simulate 1995; Shrewsbury and Smith-Fiola 2000). Although plant architecture and thus produce a more Þeld- little data for relative abundance of lacewing species applicable functional response curve (Messina and on azaleas exists, studies in Georgia indicate that C. Hanks 1998). Mesh screen (Chicopee Manufacturing rufilabris is the dominant species in Georgian pecan Co., Cornelia, GA) (4.96 ϫ 4.96 apertures/cm2) was orchards (Dinkins et al. 1994, Smith et al. 1995). Fur- attached to cover the 3.2-cm diameter hole in the base thermore, C. rufilabris seems better adapted than of the 11.0 cm ϫ 5.0 cm plastic cage (Thornton Plastic Chrysoperla carnea Stephens to the more humid con- Co., Salt Lake City, UT) (Klingeman et al. 2000a). ditions in the southeastern United States (Tauber and Inner cage surface area equaled 212.1 cm2. An azalea Tauber 1983). terminal (Rhododendron obtusum ÔHinodegiriÕ) with The functional response, Þrst discussed by Solomon four to seven leaves was inserted through a 2.0-cm long (1949), describes the relationship between prey den- section of 6.4-mm i.d. Nalgene Grade VI Premium sity and the number of prey consumed by an individ- NonToxic Tubing (Nalge Co., Rochester, NY) and ual predator. Holling (1959) described three possible sealed using ParaÞlm “M” Laboratory Film (American responses in which the number of prey consumed rises Can Co., Greenwich, CT) (Klingeman et al. 2000a). linearly, hyperbolically, or sigmoidally, for a type I, The stem was inserted through a 0.95-cm diameter type II, and type III response, respectively. The gen- hole in the lower half of a Falcon 1007 60 ϫ 15 mm eralist predatory mirid Deraeocoris nebulosus Uhler petri dish (Becton Dickinson, Lincoln Park, NJ), exhibited a type II response, characteristic of most which served as the bottom of the cage. Azalea lace arthropod predators, when challenged with varying bugs do not feed on new growth; thus terminal foliage levels of oak lace bug [Corythuca arcuata (Say)] was removed. The stem was in contact with 60 ml of fourth and Þfth instars (Wheeler et al. 1975). C. rufi- water contained in a 120-ml plastic cup. labris exhibited a type I or a type II functional re- One, 3, 5, 10, 15, 20, 25, and 30 Þfth instar azalea lace sponse when fed cotton aphids (Aphis gossypii bugs were placed on the top of the foliage. One Þfth Glover) or Heliothis virescens (F.) eggs or larvae (Nor- instar R. vanduzeei was introduced on the bottom dlund and Morrison 1990). portion of the stem. Controls were maintained without In our study, the functional response, handling time, the predator present. After 24 h, the predator was and attack coefÞcient of R. vanduzeei and C. rufilabris removed from the cage, and the number of live azalea to fourth or Þfth instar azalea lace bugs, Stephanitis lace bugs was determined. All tests were performed in pyrioides, on azaleas were determined, as was the an environmental chamber (Percival Co., Boone, IA) number of azalea lace bugs killed in 24 h. at 21ЊC, 91% RH, and a photoperiod of 14:10 (L:D) h. Stem length and diameter were measured, and leaf area was determined using a Li-Cor model 3100 leaf Materials and Methods area meter (Li-Cor, Lincoln, NE). The experiment Azalea lace bugs were collected in GrifÞn, GA, and was repeated on seven occasions until a minimum of were kept in 1.0 m3 screened cages at 27 Ϯ 1ЊC and a 15 replications at all densities were obtained. The photoperiod of 14:10 (L:D) h, and fed azaleas (various experiment was also repeated simultaneously on seven cultivars) as needed. occasions using fourth instar azalea lace bugs as prey Immature R. vanduzeei were collected from native at all densities. azaleas, Rhododendron canescens (Michaux) Sweet, Commercially obtained, “prefed” late Þrst or early and Rhododendron austrinum at Callaway Gardens second instar green lacewings (BeneÞcial Insectary, (Pine Mountain, GA) on 9, 13, 20 April 1999 by beating Oak Run, CA) were tested using the system described, the foliage over a 40 cm ϫ 24 cm enamel pan. They except the larvae were not starved for 24 h but were were placed in individual 11 cm diameter ϫ 2.4 cm used within 18 h from the time they were received. petri plates containing one fall armyworm egg mass, an Preliminary data indicated that the Þrst and second azalea leaf, and piece of damp paper towel. The dishes instars were capable of capturing and killing azalea were placed in an environmental chamber (Percival lace bug fourth and Þfth instars. Tests were conducted Co., Boone, IA) at 21ЊC, 91% RH, and a photoperiod using 1, 3, 5, 10, 15, 20, 30, and 40 azalea lace bug fourth of 14:10 (L:D) h. The predators were checked every or Þfth instars per cage. Leaf area was determined as 24 h to determine if they had molted.
Recommended publications
  • Vol. 16, No. 2 Summer 1983 the GREAT LAKES ENTOMOLOGIST
    MARK F. O'BRIEN Vol. 16, No. 2 Summer 1983 THE GREAT LAKES ENTOMOLOGIST PUBLISHED BY THE MICHIGAN EN1"OMOLOGICAL SOCIErry THE GREAT LAKES ENTOMOLOGIST Published by the Michigan Entomological Society Volume 16 No.2 ISSN 0090-0222 TABLE OF CONTENTS Seasonal Flight Patterns of Hemiptera in a North Carolina Black Walnut Plantation. 7. Miridae. J. E. McPherson, B. C. Weber, and T. J. Henry ............................ 35 Effects of Various Split Developmental Photophases and Constant Light During Each 24 Hour Period on Adult Morphology in Thyanta calceata (Hemiptera: Pentatomidae) J. E. McPherson, T. E. Vogt, and S. M. Paskewitz .......................... 43 Buprestidae, Cerambycidae, and Scolytidae Associated with Successive Stages of Agrilus bilineatus (Coleoptera: Buprestidae) Infestation of Oaks in Wisconsin R. A. Haack, D. M. Benjamin, and K. D. Haack ............................ 47 A Pyralid Moth (Lepidoptera) as Pollinator of Blunt-leaf Orchid Edward G. Voss and Richard E. Riefner, Jr. ............................... 57 Checklist of American Uloboridae (Arachnida: Araneae) Brent D. Ope II ........................................................... 61 COVER ILLUSTRATION Blister beetles (Meloidae) feeding on Siberian pea-tree (Caragana arborescens). Photo­ graph by Louis F. Wilson, North Central Forest Experiment Station, USDA Forest Ser....ice. East Lansing, Michigan. THE MICHIGAN ENTOMOLOGICAL SOCIETY 1982-83 OFFICERS President Ronald J. Priest President-Elect Gary A. Dunn Executive Secretary M. C. Nielsen Journal Editor D. C. L. Gosling Newsletter Editor Louis F. Wilson The Michigan Entomological Society traces its origins to the old Detroit Entomological Society and was organized on 4 November 1954 to " ... promote the science ofentomology in all its branches and by all feasible means, and to advance cooperation and good fellowship among persons interested in entomology." The Society attempts to facilitate the exchange of ideas and information in both amateur and professional circles, and encourages the study of insects by youth.
    [Show full text]
  • Effect of Different Host Plants of Normal Wheat Aphid (Sitobion Avenae) on the Feeding and Longevity of Green Lacewing (Chrysoperla Carnea)
    2011 International Conference on Asia Agriculture and Animal IPCBEE vol.13 (2011) © (2011)IACSIT Press, Singapoore Effect of different host plants of normal wheat aphid (Sitobion avenae) on the feeding and longevity of green lacewing (Chrysoperla carnea) Shahram Hesami 1, Sara Farahi 1 and Mehdi Gheibi 1 1 Department of Plant Protection, College of Agricultural Sciences, Shiraz branch, Islamic Azad University, Shiraz, Iran Abstract. The role of two different hosts of normal wheat aphid (Sitobion avenae) on feeding and longevity of larvae of green lacewing (Chrysoperla carnea), were conducted in laboratory conditions (50 ± 1 ˚C 70 ± 5 % RH and photoperiod of L16: D8). In this study wheat aphid had fed on wheat (main host) and oleander (compulsory host) for twenty days. For the experiments we used 3rd and 4th instars of aphids and 2nd instar larvae of green lacewing. The results were compared by each other and oleander aphid (Aphis nerii). Significant effects of host plant and aphid species on feeding rate and longevity of green lacewing were observed. The average feeding rate of 2nd instar larvae of C. carnea on wheat aphid fed on wheat, oleander aphid and wheat aphid fed on oleander were 40.3, 19.5, 30.6 aphids respectively. Also the longevity of 2nd instar larvae of green lacewing which fed on different aphids was recorded as 3.7, 7.8 and 6 days respectively. The results showed that biological characteristics of larvae of C. carnea are influenced by the quality of food which they fed on. Keywords: host plant effect, Biological control, Chrysoperla carnea, Sitobion avenae, Aphis nerri 1.
    [Show full text]
  • Abundance of Beneficial Arthropods on Woody Landscape Plants at Professionally-Managed Landscape Sites 1
    This Journal of Environmental Horticulture article is reproduced with the consent of the Horticultural Research Institute (HRI – www.hriresearch.org), which was established in 1962 as the research and development affiliate of the American Nursery & Landscape Association (ANLA – http://www.anla.org). HRI’s Mission: To direct, fund, promote and communicate horticultural research, which increases the quality and value of ornamental plants, improves the productivity and profitability of the nursery and landscape industry, and protects and enhances the environment. The use of any trade name in this article does not imply an endorsement of the equipment, product or process named, nor any criticism of any similar products that are not mentioned. Copyright, All Rights Reserved Research Reports Abundance of Beneficial Arthropods on Woody Landscape Plants at Professionally-Managed Landscape Sites1 Colin D. Stewart2, S. Kristine Braman3, and Beverly L. Sparks4 Department of Entomology, University of Georgia Georgia Experiment Station, Griffin, GA 30223 Abstract Eight 0.2–0.4 ha (0.5–1.0 A) sites managed by landscape professionals were monitored biweekly for beneficial arthropod activity. More than 30 generalist predator taxa were identified. Spiders and green lacewings were the most numerous taxa and both were found on all plant taxa sampled. Green lacewings, especially the egg stage, were the most numerous natural enemies detected on birch, crape myrtle, cherry, and oak trees accounting for 52.5, 49.9, 43.5, and 38.1%, respectively. Spiders accounted for 56.2% of the insectivorous arthropods observed on magnolia and were the most abundant predatory arthropod on azaleas comprising 46.5% of all arthropod predators/parasites across all properties.
    [Show full text]
  • Parasites (Hymenoptera: Braconidae) Near Belleville, Ontario, Canada
    Naturaliste can - 1 07: 87-93 (1980). PLANT BUG HOSTS (HETEROPTERA: MIRIDAE) OF SOME EUPHORINE PARASITES (HYMENOPTERA: BRACONIDAE) NEAR BELLEVILLE, ONTARIO, CANADA C. C. LOAN Biosystematics Research Institute, Agriculture Canada, Research Branch, Ottawa KlA 0C6 Resume Nous avons e'eve des Euphorines parasites (14 espbces de Peristenus et 4 de Leiophron) b partir de 28 especes de Mirides, recoltes pres de Belleville, Ontario. Nous avons, en plus, obtenu plusieurs immatures d'Euphorines indeterminees chez 24 autres espbces d'hotes. Les parasites de chaque espece se rencontrent dans les nymphes d'une ou plusieurs especes de mirides. La majorite des hates et tous les parasites nont qu'une seule generation annuelle. L'attaque des para- sites ne se produit que durant la periode nymphale de I'hote. Les adultes hivernent en diapause, dans les cocons. Le taux de parasitisme est de 16 6 64%. Abstract Euphorine parasites, comprising 14 species of Peristenus and four of Leio- phron, were reared from 28 plant bug species collected near Belleville, Ontario. Immature, unidentifiable euphorines were found in 24 other host species. Each of the parasite species attacked nymphs of one or more plant bugs. Most of the hosts, and all the parasites have one generation per year. Parasitism was limited to the portion of the season when the host(s) was in the nymphal stage. The over- wintered parasites were inactive as diapausing adults in cocoons until the growing season of the following year. From 16-64 per cent of host nymphs were parasitized. Introduction Materials and methods Species of the euphorine genera Periste- Plant bugs were collected during May- nus Foerster and Leiophron Nees parasitize August in representative habitats immediately nymphs of plant bugs (Miridae).
    [Show full text]
  • Identified Difficulties and Conditions for Field Success of Biocontrol
    Identified difficulties and conditions for field success of biocontrol. 4. Socio-economic aspects: market analysis and outlook Bernard Blum, Philippe C. Nicot, Jürgen Köhl, Michelina Ruocco To cite this version: Bernard Blum, Philippe C. Nicot, Jürgen Köhl, Michelina Ruocco. Identified difficulties and conditions for field success of biocontrol. 4. Socio-economic aspects: market analysis and outlook. Classical and augmentative biological control against diseases and pests: critical status analysis and review of factors influencing their success, IOBC - International Organisation for Biological and Integrated Controlof Noxious Animals and Plants, 2011, 978-92-9067-243-2. hal-02809583 HAL Id: hal-02809583 https://hal.inrae.fr/hal-02809583 Submitted on 6 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. WPRS International Organisation for Biological and Integrated Control of Noxious IOBC Animals and Plants: West Palaearctic Regional Section SROP Organisation Internationale de Lutte Biologique et Integrée contre les Animaux et les OILB Plantes Nuisibles:
    [Show full text]
  • Gut Content Metabarcoding Unveils the Diet of a Flower‐Associated Coastal
    ECOSPHERE NATURALIST No guts, no glory: Gut content metabarcoding unveils the diet of a flower-associated coastal sage scrub predator PAUL MASONICK , MADISON HERNANDEZ, AND CHRISTIANE WEIRAUCH Department of Entomology, University of California, Riverside, 900 University Avenue, Riverside, California 92521 USA Citation: Masonick, P., M. Hernandez, and C. Weirauch. 2019. No guts, no glory: Gut content metabarcoding unveils the diet of a flower-associated coastal sage scrub predator. Ecosphere 10(5):e02712. 10.1002/ecs2.2712 Abstract. Invertebrate generalist predators are ubiquitous and play a major role in food-web dynamics. Molecular gut content analysis (MGCA) has become a popular means to assess prey ranges and specificity of cryptic arthropods in the absence of direct observation. While this approach has been widely used to study predation on economically important taxa (i.e., pests) in agroecosystems, it is less frequently used to study the broader trophic interactions involving generalist predators in natural communities such as the diverse and threatened coastal sage scrub communities of Southern California. Here, we employ DNA metabarcoding-based MGCA and survey the taxonomically and ecologically diverse prey range of Phymata pacifica Evans, a generalist flower-associated ambush bug (Hemiptera: Reduviidae). We detected predation on a wide array of taxa including beneficial pollinators, potential pests, and other predatory arthropods. The success of this study demonstrates the utility of MGCA in natural ecosystems and can serve as a model for future diet investigations into other cryptic and underrepresented communities. Key words: biodiversity; blocking primers; DNA detectability half-life; Eriogonum fasciculatum; food webs; intraguild predation; natural enemies. Received 24 January 2019; accepted 11 February 2019.
    [Show full text]
  • Consequences of Linguistic Uncertainty for Insect Management
    WATCH YOUR LANGUAGE Consequences of Linguistic Uncertainty for Insect Management THERESA M. CIRA, KATHY QUICK, AND ROBERT C. VENETTE JA'CRISPY/ISTOCK 258 AMERICAN ENTOMOLOGIST | WINTER 2019 his is a call to entomologists to consider the un- certainty introduced into our works through the language we use. Albert Einstein remarked, “Every- thing depends on the degree to which words and word-combinations correspond to the world of im- Tpression,” which makes language a “dangerous source of error and deception” (Hawking 2007). Scientists usually research and deliberately choose the language they use to propose new concepts or terminology. Often, however, terms slip into the lexicon through less systematic means. Words may seem to have meanings so obvious that broad understanding of the term may be taken for granted, but individual contexts are diverse, and to assume that a word’s meaning is unchanging across time and space is to overlook the uncertainties of lan- guage. Thus, communication through even the most common entomological vocabulary can fail. Language is a mutable, un- certain, and imperfect way of representing the world. Because language is integral to science and yet inherently imprecise, it is important for scientists to recognize and address uncertain- ty in the language of our works. Uncertainty, as defined by the Society a phenomenon is repeatedly observed and for Risk Analysis (2015), is “not knowing the individuals agree that measurements con- true value of a quantity or the future con- verge, to some degree, on a specific point, sequences of an activity,” or “imperfect or more certainty about the true nature of the incomplete information/knowledge about phenomenon can be asserted.
    [Show full text]
  • The Maryland Entomologist
    THE MARYLAND ENTOMOLOGIST Insect and related-arthropod studies in the Mid-Atlantic region Volume 6, Number 2 September 2014 September 2014 The Maryland Entomologist Volume 6, Number 2 MARYLAND ENTOMOLOGICAL SOCIETY www.mdentsoc.org Executive Committee: Co-Presidents Timothy Foard and Frederick Paras Vice President Philip J. Kean Secretary Richard H. Smith, Jr. Treasurer Edgar A. Cohen, Jr. Historian (vacant) Publications Editor Eugene J. Scarpulla The Maryland Entomological Society (MES) was founded in November 1971, to promote the science of entomology in all its sub-disciplines; to provide a common meeting venue for professional and amateur entomologists residing in Maryland, the District of Columbia, and nearby areas; to issue a periodical and other publications dealing with entomology; and to facilitate the exchange of ideas and information through its meetings and publications. The MES was incorporated in April 1982 and is a 501(c)(3) non-profit, scientific organization. The MES logo features an illustration of Euphydryas phaëton (Drury) (Lepidoptera: Nymphalidae), the Baltimore Checkerspot, with its generic name above and its specific epithet below (both in capital letters), all on a pale green field; all these are within a yellow ring double-bordered by red, bearing the message “● Maryland Entomological Society ● 1971 ●”. All of this is positioned above the Shield of the State of Maryland. In 1973, the Baltimore Checkerspot was named the official insect of the State of Maryland through the efforts of many MES members. Membership in the MES is open to all persons interested in the study of entomology. All members receive the annual journal, The Maryland Entomologist, and the monthly e-newsletter, Phaëton.
    [Show full text]
  • First Report of the Lace Bug Neoplerochila Paliatseasi (Rodrigues, 1981) (Hemiptera: Tingidae) Infesting Cultivated Olive Trees
    Zootaxa 4722 (5): 443–462 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4722.5.3 http://zoobank.org/urn:lsid:zoobank.org:pub:0183A47A-AA1E-4AAF-8802-54CB9CCDE58C First report of the lace bug Neoplerochila paliatseasi (Rodrigues, 1981) (Hemiptera: Tingidae) infesting cultivated olive trees in South Africa, and its complete mitochondrial sequence JETHRO LANGLEY1, MORGAN CORNWALL1, CHANTÉ POWELL1, CARLO COSTA2, ELLEUNORAH ALLSOPP3, SIMON VAN NOORT4,5, ERIC GUILBERT6 & BARBARA VAN ASCH1 1Department of Genetics, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa. 2Crop Development Division, Infruitec Campus, Agricultural Research Council, Private Bag X5013, Stellenbosch 7600, South Africa. 3Agricultural Research Council, Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch 7599, South Africa. 4Research and Exhibitions Department, Iziko South African Museum, P.O. Box 61, Cape Town 8000, South Africa. 5Department of Biological Sciences, University of Cape Town, Private Bag, Rondebosch 7701, South Africa. 6Département Adaptation du Vivant, Muséum National d’Histoire Naturelle, UMR 7179, CP50, 45 Rue Buffon, 75005 Paris, France. Barbara van Asch - [email protected] ABSTRACT Olive lace bugs are small phytophagous Hemipteran insects known to cause agricultural losses in olive production in South Africa. Plerochila australis (Distant, 1904) has been reported as the species responsible for damage to olive trees; however, the diversity of olive lace bug species in the region has lacked attention. Adult olive lace bugs were collected incidentally from wild and cultivated olive trees in the Western Cape Province, and identified as P. australis and Neoplerochila paliatseasi (Rodrigues, 1981).
    [Show full text]
  • The Potential of Chrysoperla Rufilabris and Doru Taeniatum As Agents For
    Entomologia Experimentalis et Applicata 98: 353–359, 2001. 353 © 2001 Kluwer Academic Publishers. Printed in the Netherlands. The potential of Chrysoperla rufilabris and Doru taeniatum as agents for dispersal of Spodoptera frugiperda nucleopolyhedrovirus in maize Vasty Castillejos1,LuisGarc´ıa1, Juan Cisneros1, Dave Goulson2, Ronald D. Cave3,Primi- tivo Caballero4 & Trevor Williams1;∗ 1ECOSUR, Tapachula 30700, Chiapas, Mexico; 2Biology Department, University of Southampton, Southampton SO16 7PX, UK; 3Escuela Agr´ıcola Panamericana, El Zamorano, Honduras; 4Dept. Producci´on Agraria, Universidad P´ublica de Navarra, Pamplona 31006, Spain; ∗Author for correspondence (Fax: Mex(52) 962 81015; E-mail: [email protected]) Accepted: October 17, 2000 Key words: search time, prey consumption, Neuroptera, Dermaptera, Lepidoptera, baculovirus, virus dispersal Abstract The behaviour of two abundant predators in Mesoamerican maize crops, Chrysoperla rufilabris larvae and Doru taeniatum adults, towards healthy and nucleopolyhedrovirus-infected Spodoptera frugiperda larvae was compared. C. rufilabris did not discriminate between healthy and virus-infected prey, although the mean search time was approximately two times longer towards virus-infected larvae. In contrast, D. taeniatum directed a greater propor- tion of their attacks towards virus-infected prey but there was no significant difference in the search time. Prey consumption time did not differ significantly for each type of prey by either predator, although prey consumption was much faster in D. taeniatum. Viable virus was detected in D. taeniatum faeces up to 3 d after feeding on infected S. frugiperda larvae, whereas virus was inactivated in the gut of C. rufilabris. Both predators were shown to have acidic guts. A field experiment demonstrated that D.
    [Show full text]
  • Green Lacewing Species in Tennessee in Tennessee, We Have Found the Green Lacewing Lacewing Larvae Look Like Tiny Alligators
    College of Agriculture Cooperative Extension ANR-E1-2020 Entomology Insect Predators-Green Lacewings Kaushalya Amarasekare, Assistant Professor, Tennessee State University Contact: 615 963 5001, [email protected] Natural enemies such as green lacewings Adults (Neuroptera: Chrysopidae) are important for sus- Adult lacewings are green in color and have golden tainable agriculture because they provide us a free eyes. They have two pairs of green lacelike netted service in managing and controlling unwanted insect wings. The body of the adult is 1/2–3/4 inch long and mite (arthropod) pests in agricultural crops in depending on the species. They are not strong fliers fields and greenhouses. Green lacewings are preda- and are commonly found near aphid colonies. Adults tors of many soft-bodied insects (e.g. aphids, thrips, fly during night and are often attracted to night- mealybugs, soft scales, whiteflies, psyllids and small lights. They can live approximately 30-40 days. New- caterpillars) and mites (e.g. spider mites) and their ly emerged adults mate and lay eggs within 4–5 days. eggs. They are called generalist predators because It takes approximately one month to complete the they feed on many different types of insect and/or life cycle from newly laid eggs to emergence of mite prey. Green lacewings are considered as one of adults. the most important predatory natural enemies of agricultural pests. Eggs Adult females lay their eggs as small batches on plant materials. They prefer to lay eggs among aphid colonies. Lacewing larvae are cannibalistic and attack sibling eggs and larvae. To avoid the first hatched larva/larvae attacking unhatched eggs or young larvae, females lay each egg on a long stalk.
    [Show full text]
  • Predation by Insects and Mites
    1.2 Predation by insects and mites Maurice W. Sabelis & Paul C.J. van Rijn University of Amsterdam, Section Population Biology, Kruislaan 320, 1098 SM Amsterdam, The Netherlands Predatory arthropods probably play a prominent role in determining the numbers of plant-feeding thrips on plants under natural conditions. Several reviews have been published listing the arthropods observed to feed and reproduce on a diet of thrips. In chronological order the most notable and comprehensive reviews have been presented by Lewis (1973), Ananthakrishnan (1973, 1979, 1984), Ananthakrishnan and Sureshkumar (1985) and Riudavets (1995) (see also general arthropod enemy inventories published by Thompson and Simmonds (1965), Herting and Simmonds (1971) and Fry (1987)). Numerous arthropods, recognised as predators of phytophagous thrips, have proven their capacity to eliminate or suppress thrips populations in greenhouse and field crops of agricultural importance (see chapters 16 and 18 of Lewis, 1997), but a detailed analysis of the relative importance of predators, parasitoids, parasites and pathogens under natural conditions is virtually absent. Such investigations would improve understanding of the mortality factors and selective forces moulding thrips behaviour and life history, and also indicate new directions for biological control of thrips. In particular, such studies may help to elucidate the consequences of introducing different types of biological control agents against different pests and diseases in the same crop, many of which harbour food webs of increasing complexity. There are three major reasons why food web complexity on plants goes beyond one- predator-one-herbivore systems. First, it is the plant that exhibits a bewildering variety of traits that promote or reduce the effectiveness of the predator.
    [Show full text]