Improving the Coverage of the Cyanobacterial Phylum Using Diversity-Driven Genome Sequencing
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service. -
Microcystis Sp. Co-Producing Microcystin and Saxitoxin from Songkhla Lake Basin, Thailand
toxins Article Microcystis Sp. Co-Producing Microcystin and Saxitoxin from Songkhla Lake Basin, Thailand Ampapan Naknaen 1, Waraporn Ratsameepakai 2, Oramas Suttinun 1,3, Yaowapa Sukpondma 4, Eakalak Khan 5 and Rattanaruji Pomwised 6,* 1 Environmental Assessment and Technology for Hazardous Waste Management Research Center, Faculty of Environmental Management, Prince of Songkla University, Hat Yai 90110, Thailand; [email protected] (A.N.); [email protected] (O.S.) 2 Office of Scientific Instrument and Testing, Prince of Songkla University, Hat Yai 90110, Thailand; [email protected] 3 Center of Excellence on Hazardous Substance Management (HSM), Bangkok 10330, Thailand 4 Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai 90110, Thailand; [email protected] 5 Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, NV 89154-4015, USA; [email protected] 6 Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai 90110, Thailand * Correspondence: [email protected]; Tel.: +66-74-288-325 Abstract: The Songkhla Lake Basin (SLB) located in Southern Thailand, has been increasingly polluted by urban and industrial wastewater, while the lake water has been intensively used. Here, we aimed to investigate cyanobacteria and cyanotoxins in the SLB. Ten cyanobacteria isolates were identified as Microcystis genus based on16S rDNA analysis. All isolates harbored microcystin genes, while five of them carried saxitoxin genes. On day 15 of culturing, the specific growth rate and Chl-a content were 0.2–0.3 per day and 4 µg/mL. The total extracellular polymeric substances (EPS) content was Citation: Naknaen, A.; 0.37–0.49 µg/mL. -
State of the Science for Cyanobacterial Blooms (Microcystis Species) in Florida a Summary Document from the 2019 Harmful Algal Bloom State of the Science Symposium
State of the Science for Cyanobacterial Blooms (Microcystis species) in Florida A summary document from the 2019 Harmful Algal Bloom State of the Science Symposium Image: Cyanobacterial bloom in Lake Okeechobee Credit: L. Krimsky, Florida Sea Grant Contents: Introduction In recent years, intense blooms of Karenia brevis red tide and Introduction.....................................................2 Microcystis aeruginosa cyanobacteria, known commonly as Current Understanding.....................................3 blue-green algae, have plagued Florida waterways, impacting the state’s economy, environment and public health. Though Bloom Initiation, Development notable in their duration and intensity, these harmful algal and Termination...............................................3 blooms, or HABs, are not uncommon. Florida experiences a variety of HABs in its marine and fresh waters. Public Health....................................................4 Bloom Prediction and Modeling .......................5 In 2019, Governor Ron DeSantis’ Executive Order 19-12 established the Blue-Green Algae Task Force and revived the Bloom Detection and Monitoring......................5 state’s Harmful Algal Bloom Task Force to provide technical expertise and recommendations to reduce the adverse Bloom Mitigation and Control...........................6 impacts of future blooms. Next Steps........................................................6 This fact sheet represents the latest science-based Conclusion.......................................................6 -
Characteristic Microbiomes Correlate with Polyphosphate Accumulation of Marine Sponges in South China Sea Areas
microorganisms Article Characteristic Microbiomes Correlate with Polyphosphate Accumulation of Marine Sponges in South China Sea Areas 1 1, 1 1 2, 1,3, Huilong Ou , Mingyu Li y, Shufei Wu , Linli Jia , Russell T. Hill * and Jing Zhao * 1 College of Ocean and Earth Science of Xiamen University, Xiamen 361005, China; [email protected] (H.O.); [email protected] (M.L.); [email protected] (S.W.); [email protected] (L.J.) 2 Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD 21202, USA 3 Xiamen City Key Laboratory of Urban Sea Ecological Conservation and Restoration (USER), Xiamen University, Xiamen 361005, China * Correspondence: [email protected] (J.Z.); [email protected] (R.T.H.); Tel.: +86-592-288-0811 (J.Z.); Tel.: +(410)-234-8802 (R.T.H.) The author contributed equally to the work as co-first author. y Received: 24 September 2019; Accepted: 25 December 2019; Published: 30 December 2019 Abstract: Some sponges have been shown to accumulate abundant phosphorus in the form of polyphosphate (polyP) granules even in waters where phosphorus is present at low concentrations. But the polyP accumulation occurring in sponges and their symbiotic bacteria have been little studied. The amounts of polyP exhibited significant differences in twelve sponges from marine environments with high or low dissolved inorganic phosphorus (DIP) concentrations which were quantified by spectral analysis, even though in the same sponge genus, e.g., Mycale sp. or Callyspongia sp. PolyP enrichment rates of sponges in oligotrophic environments were far higher than those in eutrophic environments. -
Planktothrix Agardhii É a Mais Comum
Accessing Planktothrix species diversity and associated toxins using quantitative real-time PCR in natural waters Catarina Isabel Prata Pereira Leitão Churro Doutoramento em Biologia Departamento Biologia 2015 Orientador Vitor Manuel de Oliveira e Vasconcelos, Professor Catedrático Faculdade de Ciências iv FCUP Accessing Planktothrix species diversity and associated toxins using quantitative real-time PCR in natural waters The research presented in this thesis was supported by the Portuguese Foundation for Science and Technology (FCT, I.P.) national funds through the project PPCDT/AMB/67075/2006 and through the individual Ph.D. research grant SFRH/BD65706/2009 to Catarina Churro co-funded by the European Social Fund (Fundo Social Europeu, FSE), through Programa Operacional Potencial Humano – Quadro de Referência Estratégico Nacional (POPH – QREN) and Foundation for Science and Technology (FCT). The research was performed in the host institutions: National Institute of Health Dr. Ricardo Jorge (INSA, I.P.), Lisboa; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Porto and Centre for Microbial Resources (CREM - FCT/UNL), Caparica that provided the laboratories, materials, regents, equipment’s and logistics to perform the experiments. v FCUP Accessing Planktothrix species diversity and associated toxins using quantitative real-time PCR in natural waters vi FCUP Accessing Planktothrix species diversity and associated toxins using quantitative real-time PCR in natural waters ACKNOWLEDGMENTS I would like to express my gratitude to my supervisor Professor Vitor Vasconcelos for accepting to embark in this research and supervising this project and without whom this work would not be possible. I am also greatly thankful to my co-supervisor Elisabete Valério for the encouragement in pursuing a graduate program and for accompanying me all the way through it. -
The Fate of Microcystins in the Environment and Challenges for Monitoring
Toxins 2014, 6, 3354-3387; doi:10.3390/toxins6123354 OPEN ACCESS toxins ISSN 2072-6651 www.mdpi.com/journal/toxins Review The Fate of Microcystins in the Environment and Challenges for Monitoring Justine R. Schmidt 1,*, Steven W. Wilhelm 2 and Gregory L. Boyer 1 1 Department of Chemistry, College of Environmental Science and Forestry, State University of New York, Syracuse, NY 13210, USA; E-Mail: [email protected] 2 Department of Microbiology, University of Tennessee, Knoxville, TN 37996-0845, USA; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-315-470-6844; Fax: +1-315-470-6856. External Editor: Lesley V. D'Anglada Received: 1 November 2014; in revised form: 29 November 2014 / Accepted: 5 December 2014 / Published: 12 December 2014 Abstract: Microcystins are secondary metabolites produced by cyanobacteria that act as hepatotoxins in higher organisms. These toxins can be altered through abiotic processes, such as photodegradation and adsorption, as well as through biological processes via metabolism and bacterial degradation. Some species of bacteria can degrade microcystins, and many other organisms metabolize microcystins into a series of conjugated products. There are toxicokinetic models used to examine microcystin uptake and elimination, which can be difficult to compare due to differences in compartmentalization and speciation. Metabolites of microcystins are formed as a detoxification mechanism, and little is known about how quickly these metabolites are formed. In summary, microcystins can undergo abiotic and biotic processes that alter the toxicity and structure of the microcystin molecule. The environmental impact and toxicity of these alterations and the metabolism of microcystins remains uncertain, making it difficult to establish guidelines for human health. -
Present and Future Global Distributions of the Marine Cyanobacteria Prochlorococcus and Synechococcus
Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus Pedro Flombauma,b, José L. Gallegosa, Rodolfo A. Gordilloa, José Rincóna, Lina L. Zabalab, Nianzhi Jiaoc, David M. Karld,1, William K. W. Lie, Michael W. Lomasf, Daniele Venezianog, Carolina S. Verab, Jasper A. Vrugta,h, and Adam C. Martinya,i,1 Departments of aEarth System Science, hCivil Engineering, and iEcology and Evolutionary Biology, University of California, Irvine, CA 92697; bCentro de Investigaciones del Mar y la Atmósfera, Departamento de Ciencias de la Atmósfera y los Océanos, and Instituto Franco Argentino sobre Estudios del Clima y sus Impactos, Consejo Nacional de Investigaciones Científica y Tecnológicas and Universidad de Buenos Aires, 1428 Buenos Aires, Argentina; cInstitute of Microbes and Ecosphere, State Key Lab for Marine Environmental Sciences, Xiamen University, Xiamen 361005, People’s Republic of China; dCenter for Microbial Oceanography: Research and Education (C-MORE), University of Hawaii, Honolulu, HI 96822; eFisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, NS, Canada B2Y 4A2; fBigelow Laboratory for Ocean Sciences, East Boothbay, ME 04544; and gDepartment of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 Contributed by David M. Karl, April 25, 2013 (sent for review January 22, 2013) The Cyanobacteria Prochlorococcus and Synechococcus account for outcompeted by other phytoplankton in high-nutrient waters (12, a substantial fraction of marine primary production. Here, we pres- 13). Synechococcus does not extend as deep in the water column as ent quantitative niche models for these lineages that assess present Prochlorococcus, but it has a wider geographical distribution that and future global abundances and distributions. -
Table S5. the Information of the Bacteria Annotated in the Soil Community at Species Level
Table S5. The information of the bacteria annotated in the soil community at species level No. Phylum Class Order Family Genus Species The number of contigs Abundance(%) 1 Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus cereus 1749 5.145782459 2 Bacteroidetes Cytophagia Cytophagales Hymenobacteraceae Hymenobacter Hymenobacter sedentarius 1538 4.52499338 3 Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatirosa Gemmatirosa kalamazoonesis 1020 3.000970902 4 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas indica 797 2.344876284 5 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus piscium 542 1.594633558 6 Actinobacteria Thermoleophilia Solirubrobacterales Conexibacteraceae Conexibacter Conexibacter woesei 471 1.385742446 7 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas taxi 430 1.265115184 8 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas wittichii 388 1.141545794 9 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas sp. FARSPH 298 0.876754244 10 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sorangium cellulosum 260 0.764953367 11 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Sorangium Sphingomonas sp. Cra20 260 0.764953367 12 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas panacis 252 0.741416341 -
Differential Transcriptional Analysis of the Cyanobacterium Cyanothece Sp
JOURNAL OF BACTERIOLOGY, June 2008, p. 3904–3913 Vol. 190, No. 11 0021-9193/08/$08.00ϩ0 doi:10.1128/JB.00206-08 Copyright © 2008, American Society for Microbiology. All Rights Reserved. Differential Transcriptional Analysis of the Cyanobacterium Cyanothece sp. Strain ATCC 51142 during Light-Dark and Continuous-Light Growthᰔ† Jo¨rg Toepel,1 Eric Welsh,2 Tina C. Summerfield,1 Himadri B. Pakrasi,2 and Louis A. Sherman1* Purdue University, Department of Biological Sciences, 201 S. University Street, West Lafayette, Indiana 47907,1 and Washington University, Department of Biology, Reebstock Hall, St. Louis, Missouri 631302 Received 9 February 2008/Accepted 26 March 2008 We analyzed the metabolic rhythms and differential gene expression in the unicellular, diazotrophic cya- nobacterium Cyanothece sp. strain ATCC 51142 under N2-fixing conditions after a shift from normal 12-h light-12-h dark cycles to continuous light. We found that the mRNA levels of ϳ10% of the genes in the genome demonstrated circadian behavior during growth in free-running (continuous light) conditions. The genes for Downloaded from N2 fixation displayed a strong circadian behavior, whereas photosynthesis and respiration genes were not as tightly regulated. One of our main objectives was to determine the strategies used by these cells to perform N2 fixation under normal day-night conditions, as well as under the greater stress caused by continuous light. We determined that N2 fixation cycled in continuous light but with a lower N2 fixation activity. Glycogen degra- dation, respiration, and photosynthesis were also lower; nonetheless, O2 evolution was about 50% of the normal peak. We also demonstrated that nifH (encoding the nitrogenase Fe protein), nifB, and nifX were strongly induced in continuous light; this is consistent with the role of these proteins during the assembly of the enzyme jb.asm.org complex and suggested that the decreased N2 fixation activity was due to protein-level regulation or inhibition. -
Harmful Cyanobacteria Blooms and Their Toxins In
Harmful cyanobacteria blooms and their toxins in Clear Lake and the Sacramento-San Joaquin Delta (California) 10-058-150 Surface Water Ambient Monitoring Program (SWAMP) Prepared for: Central Valley Regional Water Quality Control Board 11020 Sun Center Drive, Suite 200 Rancho Cordova, CA 95670 Prepared by: Cécile Mioni (Project Director) & Raphael Kudela (Project co-Director) University of California, Santa Cruz - Institute of Marine Sciences Dolores Baxa (Project co-Director) University of California, Davis – School of Veterinary Medicine Contract manager: Meghan Sullivan Central Valley Regional Water Quality Control Board _________________ With technical contributions by: Kendra Hayashi (Project manager), UCSC Thomas Smythe (Field Officer) and Chris White, Lake County Water Resources Scott Waller (Field Officer) and Brianne Sakata, EMP/DWR Tomo Kurobe (Molecular Biologist), UCD David Crane (Toxicology), DFG-WPCL Kim Ward, SWRCB/DWQ Lenny Grimaldo (Assistance for Statistic Analyses), Bureau of Reclamation Peter Raimondi (Assistance for Statistic Analyses), UCSC Karen Tait, Lake County Health Office Abstract Harmful cyanobacteria and their toxins are growing contaminants of concern. Noxious toxins produced by HC, collectively referred as cyanotoxins, reduce the water quality and may impact the supply of clean water for drinking as well as the water quality which directly impacts the livelihood of other species including several endangered species. USEPA recently (May 29, 2008) made the decision to add microcystin toxins as an additional cause of impairment for the Klamath River, CA. However, harmful cyanobacteria are some of the less studied causes of impairment in California water bodies and their distribution, abundance and dynamics, as well as the conditions promoting their proliferation and toxin production are not well characterized. -
Identification of Cell Surface Sugars in N2-Fixing Cyanobacterium
254 Proceedings of the South Dakota Academy of Science, Vol. 97 (2018) IDENTIFICATION OF CELL SURFACE SUGARS IN N2-FIXING CYANOBACTERIUM CYANOTHECE ATCC 51142 USING FLUORESCEIN LABELED LECTINS James Young, Michael Hildreth and Ruanbao Zhou* Department of Biology and Microbiology South Dakota State University Brookings, SD 57007 *Corresponding author email: [email protected] ABSTRACT Some cyanobacteria carry out both O2-producing photosynthesis and O2-sensitive nitrogen fixation, making them unique contributors to global carbon and nitrogen cycles and potential contributors to industrial and agricul- tural applications. Much research has focused on how cyanobacteria protect the O2-sensitive N2-fixing enzyme, nitrogenase. Cyanobacteria separate these two incompatible biochemical processes either spatially, in filamentous 2N -fixing cyanobacteria, or temporally, in unicellular cyanobacteria. Approximately 10% of the vegetative cells in filamentous N2-fixing cyanobacteria such as Anabaena spp. become heterocysts that are present singly at semiregular intervals along the filaments. Heterocysts are morphologically and biochemically specialized for N2-fixation. By sequestering nitrogenase within heterocysts, Anabaena spp. can carry out, simultaneously, oxygenic photosynthesis and the O2-labile assimilation of N2. Heterocysts have three mechanisms to protect nitrogenase: (1) form an additional two-layer of cell wall with a layer of glycolipids and an outer, protec- tive layer of specific polysaccharides to block the environmental 2O ; (2) stop O2 production by shutting down PSII; and (3) increase respiration to consume O2. Unlike filamentous cyanobacteria,Cyanothece ATCC 51142 (hereafter cya- nothece), a unicellular cyanobacterium, rhythmically separates photosynthesis and nitrogen fixation. However, cyanothece still has to deal with environmen- tal oxygen. Little is known about how cyanothece protects nitrogenase from inactivation by environmental O2. -
National Wetland DIRECTORY of Sri Lanka
National Wetland DIRECTORY of Sri Lanka Central Environmental Authority National Wetland Directory of Sri Lanka This publication has been jointly prepared by the Central Environmental Authority (CEA), The World Conservation Union (IUCN) in Sri Lanka and the International Water Management Institute (IWMI). The preparation and printing of this document was carried out with the financial assistance of the Royal Netherlands Embassy in Sri Lanka. i The designation of geographical entities in this book, and the presentation of the material do not imply the expression of any opinion whatsoever on the part of the CEA, IUCN or IWMI concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The views expressed in this publication do not necessarily reflect those of the CEA, IUCN or IWMI. This publication has been jointly prepared by the Central Environmental Authority (CEA), The World Conservation Union (IUCN) Sri Lanka and the International Water Management Institute (IWMI). The preparation and publication of this directory was undertaken with financial assistance from the Royal Netherlands Government. Published by: The Central Environmental Authority (CEA), The World Conservation Union (IUCN) and the International Water Management Institute (IWMI), Colombo, Sri Lanka. Copyright: © 2006, The Central Environmental Authority (CEA), International Union for Conservation of Nature and Natural Resources and the International Water Management Institute. Reproduction of this publication for educational or other non-commercial purposes is authorised without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without prior written permission of the copyright holder.