The Fate of Microcystins in the Environment and Challenges for Monitoring
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Microcystis Sp. Co-Producing Microcystin and Saxitoxin from Songkhla Lake Basin, Thailand
toxins Article Microcystis Sp. Co-Producing Microcystin and Saxitoxin from Songkhla Lake Basin, Thailand Ampapan Naknaen 1, Waraporn Ratsameepakai 2, Oramas Suttinun 1,3, Yaowapa Sukpondma 4, Eakalak Khan 5 and Rattanaruji Pomwised 6,* 1 Environmental Assessment and Technology for Hazardous Waste Management Research Center, Faculty of Environmental Management, Prince of Songkla University, Hat Yai 90110, Thailand; [email protected] (A.N.); [email protected] (O.S.) 2 Office of Scientific Instrument and Testing, Prince of Songkla University, Hat Yai 90110, Thailand; [email protected] 3 Center of Excellence on Hazardous Substance Management (HSM), Bangkok 10330, Thailand 4 Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai 90110, Thailand; [email protected] 5 Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, NV 89154-4015, USA; [email protected] 6 Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai 90110, Thailand * Correspondence: [email protected]; Tel.: +66-74-288-325 Abstract: The Songkhla Lake Basin (SLB) located in Southern Thailand, has been increasingly polluted by urban and industrial wastewater, while the lake water has been intensively used. Here, we aimed to investigate cyanobacteria and cyanotoxins in the SLB. Ten cyanobacteria isolates were identified as Microcystis genus based on16S rDNA analysis. All isolates harbored microcystin genes, while five of them carried saxitoxin genes. On day 15 of culturing, the specific growth rate and Chl-a content were 0.2–0.3 per day and 4 µg/mL. The total extracellular polymeric substances (EPS) content was Citation: Naknaen, A.; 0.37–0.49 µg/mL. -
State of the Science for Cyanobacterial Blooms (Microcystis Species) in Florida a Summary Document from the 2019 Harmful Algal Bloom State of the Science Symposium
State of the Science for Cyanobacterial Blooms (Microcystis species) in Florida A summary document from the 2019 Harmful Algal Bloom State of the Science Symposium Image: Cyanobacterial bloom in Lake Okeechobee Credit: L. Krimsky, Florida Sea Grant Contents: Introduction In recent years, intense blooms of Karenia brevis red tide and Introduction.....................................................2 Microcystis aeruginosa cyanobacteria, known commonly as Current Understanding.....................................3 blue-green algae, have plagued Florida waterways, impacting the state’s economy, environment and public health. Though Bloom Initiation, Development notable in their duration and intensity, these harmful algal and Termination...............................................3 blooms, or HABs, are not uncommon. Florida experiences a variety of HABs in its marine and fresh waters. Public Health....................................................4 Bloom Prediction and Modeling .......................5 In 2019, Governor Ron DeSantis’ Executive Order 19-12 established the Blue-Green Algae Task Force and revived the Bloom Detection and Monitoring......................5 state’s Harmful Algal Bloom Task Force to provide technical expertise and recommendations to reduce the adverse Bloom Mitigation and Control...........................6 impacts of future blooms. Next Steps........................................................6 This fact sheet represents the latest science-based Conclusion.......................................................6 -
Planktothrix Agardhii É a Mais Comum
Accessing Planktothrix species diversity and associated toxins using quantitative real-time PCR in natural waters Catarina Isabel Prata Pereira Leitão Churro Doutoramento em Biologia Departamento Biologia 2015 Orientador Vitor Manuel de Oliveira e Vasconcelos, Professor Catedrático Faculdade de Ciências iv FCUP Accessing Planktothrix species diversity and associated toxins using quantitative real-time PCR in natural waters The research presented in this thesis was supported by the Portuguese Foundation for Science and Technology (FCT, I.P.) national funds through the project PPCDT/AMB/67075/2006 and through the individual Ph.D. research grant SFRH/BD65706/2009 to Catarina Churro co-funded by the European Social Fund (Fundo Social Europeu, FSE), through Programa Operacional Potencial Humano – Quadro de Referência Estratégico Nacional (POPH – QREN) and Foundation for Science and Technology (FCT). The research was performed in the host institutions: National Institute of Health Dr. Ricardo Jorge (INSA, I.P.), Lisboa; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Porto and Centre for Microbial Resources (CREM - FCT/UNL), Caparica that provided the laboratories, materials, regents, equipment’s and logistics to perform the experiments. v FCUP Accessing Planktothrix species diversity and associated toxins using quantitative real-time PCR in natural waters vi FCUP Accessing Planktothrix species diversity and associated toxins using quantitative real-time PCR in natural waters ACKNOWLEDGMENTS I would like to express my gratitude to my supervisor Professor Vitor Vasconcelos for accepting to embark in this research and supervising this project and without whom this work would not be possible. I am also greatly thankful to my co-supervisor Elisabete Valério for the encouragement in pursuing a graduate program and for accompanying me all the way through it. -
Harmful Cyanobacteria Blooms and Their Toxins In
Harmful cyanobacteria blooms and their toxins in Clear Lake and the Sacramento-San Joaquin Delta (California) 10-058-150 Surface Water Ambient Monitoring Program (SWAMP) Prepared for: Central Valley Regional Water Quality Control Board 11020 Sun Center Drive, Suite 200 Rancho Cordova, CA 95670 Prepared by: Cécile Mioni (Project Director) & Raphael Kudela (Project co-Director) University of California, Santa Cruz - Institute of Marine Sciences Dolores Baxa (Project co-Director) University of California, Davis – School of Veterinary Medicine Contract manager: Meghan Sullivan Central Valley Regional Water Quality Control Board _________________ With technical contributions by: Kendra Hayashi (Project manager), UCSC Thomas Smythe (Field Officer) and Chris White, Lake County Water Resources Scott Waller (Field Officer) and Brianne Sakata, EMP/DWR Tomo Kurobe (Molecular Biologist), UCD David Crane (Toxicology), DFG-WPCL Kim Ward, SWRCB/DWQ Lenny Grimaldo (Assistance for Statistic Analyses), Bureau of Reclamation Peter Raimondi (Assistance for Statistic Analyses), UCSC Karen Tait, Lake County Health Office Abstract Harmful cyanobacteria and their toxins are growing contaminants of concern. Noxious toxins produced by HC, collectively referred as cyanotoxins, reduce the water quality and may impact the supply of clean water for drinking as well as the water quality which directly impacts the livelihood of other species including several endangered species. USEPA recently (May 29, 2008) made the decision to add microcystin toxins as an additional cause of impairment for the Klamath River, CA. However, harmful cyanobacteria are some of the less studied causes of impairment in California water bodies and their distribution, abundance and dynamics, as well as the conditions promoting their proliferation and toxin production are not well characterized. -
Genome Diversification in Globally Distributed Novel Marine
bioRxiv preprint doi: https://doi.org/10.1101/814418; this version posted October 22, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Genome diversification in globally distributed novel 2 marine Proteobacteria is linked to environmental adaptation 3 4 Authors: Zhichao Zhou1, Patricia Q. Tran1, 2, Kristopher Kieft1, Karthik Anantharaman1* 5 6 7 Affiliations: 8 1Department of Bacteriology, University of Wisconsin–Madison, Madison, WI, 53706, USA 9 2Department of Integrative Biology, University of Wisconsin–Madison, Madison, WI 53706, 10 USA 11 12 13 *Corresponding author 14 Email: [email protected] 15 Address: 4550 Microbial Sciences Building, 1550 Linden Dr., Madison, WI, 53706 16 17 Abstract 18 Proteobacteria constitute the most diverse and abundant group of microbes on Earth. In 19 productive marine environments like deep-sea hydrothermal systems, Proteobacteria have been 20 implicated in autotrophy coupled to sulfur, methane, and hydrogen oxidation, sulfate reduction, 21 and denitrification. Beyond chemoautotrophy, little is known about the ecological significance 22 of novel Proteobacteria that are globally distributed and active in hydrothermal systems. Here 23 we apply multi-omics to characterize 51 metagenome-assembled genomes from three 24 hydrothermal vent plumes in the Pacific and Atlantic Oceans that are affiliated with nine novel 25 Proteobacteria lineages. Metabolic analyses revealed these organisms to contain a diverse 26 functional repertoire including chemolithotrophic ability to utilize sulfur and C1 compounds, 27 and chemoorganotrophic ability to utilize environment-derived fatty acids, aromatics, 28 carbohydrates, and peptides. -
<I>MICROCYSTIS</I> BLOOMS
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 8-2018 MOLECULAR CHARACTERIZATION OF FACTORS CONSTRAINING THE SUCCESS AND TOXICITY OF MICROCYSTIS BLOOMS Lauren Elisabeth Krausfeldt University of Tennessee, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Recommended Citation Krausfeldt, Lauren Elisabeth, "MOLECULAR CHARACTERIZATION OF FACTORS CONSTRAINING THE SUCCESS AND TOXICITY OF MICROCYSTIS BLOOMS. " PhD diss., University of Tennessee, 2018. https://trace.tennessee.edu/utk_graddiss/5030 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Lauren Elisabeth Krausfeldt entitled "MOLECULAR CHARACTERIZATION OF FACTORS CONSTRAINING THE SUCCESS AND TOXICITY OF MICROCYSTIS BLOOMS." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Microbiology. Steven W. Wilhelm, Major Professor We have read this dissertation and recommend its acceptance: Alison Buchan, Shawn R. Campagna, Karen G. Lloyd Accepted for the Council: Dixie L. Thompson Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) MOLECULAR CHARACTERIZATION OF FACTORS CONSTRAINING THE SUCCESS AND TOXICITY OF MICROCYSTIS BLOOMS A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Lauren Elisabeth Krausfeldt August 2018 Copyright © 2018 by Lauren E. -
National Wetland DIRECTORY of Sri Lanka
National Wetland DIRECTORY of Sri Lanka Central Environmental Authority National Wetland Directory of Sri Lanka This publication has been jointly prepared by the Central Environmental Authority (CEA), The World Conservation Union (IUCN) in Sri Lanka and the International Water Management Institute (IWMI). The preparation and printing of this document was carried out with the financial assistance of the Royal Netherlands Embassy in Sri Lanka. i The designation of geographical entities in this book, and the presentation of the material do not imply the expression of any opinion whatsoever on the part of the CEA, IUCN or IWMI concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The views expressed in this publication do not necessarily reflect those of the CEA, IUCN or IWMI. This publication has been jointly prepared by the Central Environmental Authority (CEA), The World Conservation Union (IUCN) Sri Lanka and the International Water Management Institute (IWMI). The preparation and publication of this directory was undertaken with financial assistance from the Royal Netherlands Government. Published by: The Central Environmental Authority (CEA), The World Conservation Union (IUCN) and the International Water Management Institute (IWMI), Colombo, Sri Lanka. Copyright: © 2006, The Central Environmental Authority (CEA), International Union for Conservation of Nature and Natural Resources and the International Water Management Institute. Reproduction of this publication for educational or other non-commercial purposes is authorised without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without prior written permission of the copyright holder. -
Practical Success of Biomanipulation Using Filter-Feeding Fish to Control
Research Article TheScientificWorld (2001) 1, 337–356 ISSN 1532-2246; DOI 10.1100/tsw.2001.67 Practical Success of Biomanipulation using Filter-feeding Fish to Control Cyanobacteria Blooms A Synthesis of Decades of Research and Application in a Subtropical Hypereutrophic Lake Ping Xie* and Jiankang Liu Donghu Experimental Station of Lake Ecosystems, The State Key Laboratory for Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China Email: [email protected]; [email protected] Received June 11, 2001; Revised June 25, 2001; Accepted June 25, 2001; Published August 8, 2001 Lake Donghu is a 32-km2 shallow, subtropical lake near the Yangtze River (P.R. China) that has experienced dramatic changes in the past five decades. These changes include: (1) a trophic state change from mesotrophy to hypertrophy; (2) dense blooms of cyanobacteria during every summer from the 1970s to 1984; (3) a cessation of blooms starting in 1985, with no recurrence; and (4) an increase, coincident with bloom declines, in the production of silver and bighead carp (filter-feeders) by more than tenfold. There are several possible explanations for the disappearance of blooms, including changes in nutrient concentrations, increased zooplankton grazing, and increased grazing on algae by fish. The long- term data suggest that changes in nutrients or in zooplankton were not important, but that the remarkably increased fish densities might have played the key role. To test this hypothesis, in situ enclosure experiments were conducted in three years. The main conclusions are as follows: (1) an increased stocking of the lake with carp played a decisive role in the elimination of cyanobacteria blooms; (2) both silver and bighead carp can eliminate cyanobacteria blooms directly by grazing; (3) zooplankton cannot suppress the blooms; and (4) the lake still is vulnerable to the outbreak of blooms, should fish grazing decline. -
Microcystis Aeruginosa: Source of Toxic Microcystins in Drinking Water
African Journal of Biotechnology Vol. 3 (3), pp. 159-168, March 2004 Available online at http://www.academicjournals.org/AJB ISSN 1684–5315 © 2004 Academic Journals Review Microcystis aeruginosa: source of toxic microcystins in drinking water Oberholster PJ1, Botha A-M2* and Grobbelaar JU1 1Department of Plant Sciences, Faculty of Natural and Agricultural Sciences, University of the Free State, PO Box 339, Bloemfontein, ZA9300 2Department of Genetics, Forestry and Agriculture Biotechnology Institute, University of Pretoria, Hillcrest, Pretoria, ZA0002, South Africa Accepted 21 December 2003 Cyanobacteria are one of the earth’s most ancient life forms. Evidence of their existence on earth, derived from fossil records, encompasses a period of some 3.5 billion years in the late Precambrian era. Cyanobacteria are the dominant phytoplanton group in eutrophic freshwater bodies worldwide. They have caused animal poisoning in many parts of the world and may present risks to human health through drinking and recreational activity. Cyanobacteria produce two main groups of toxin namely neurotoxins and peptide hepatotoxins. They were first characterized from the unicellular species, Microcystis aeruginosa, which is the most common toxic cyanobacterium in eutrophic freshwater. The association of environmental parameters with cyanobacterial blooms and the toxicity of microcystin are discussed. Also, the synthesis of the microcystins, as well as the mode of action, control and analysis methods for quantitation of the toxin is reviewed. Key words: Cyanobacteria, microcystins, mcyB gene, PCR-RFLP. INTRODUCTION Cyanobacteria are the dominant phytoplankton group in other accessory pigments are grouped together in rods eutrophic freshwater bodies (Davidson, 1959; Negri et al., and discs that are called phycobilisomes that are 1995). -
Quantitative Observations of Cyanobacteria and Dinoflagellata in Reservoirs of Sri Lanka
Ceylon Journal of Science 46(4) 2017: 55-68 DOI: http://doi.org/10.4038/cjs.v46i4.7468 RESEARCH ARTICLE Quantitative observations of Cyanobacteria and Dinoflagellata in reservoirs of Sri Lanka P.A.A.P.K. Senanayake1, 2 and S.K. Yatigammana3* 1Medical Research Institute, Colombo 08, Sri Lanka 2Postgraduate Institute of Science, University of Peradeniya, Peradeniya, Sri Lanka 3Department of Zoology, Faculty of Science, University of Peradeniya, Peradeniya, Sri Lanka Received: 14/06/2017; Accepted: 20/10/2017 Abstract:. Cyanobacterial and dinoflagellate blooms especially during the dry periods (Piyasiri, 1995; have a range of social, environmental and economic Pathmalal and Piyasiri 1995). When considering impacts due to their potential of toxin production the water resources of Sri Lanka, the country under extreme environmental conditions. Therefore, possesses over 10,000 operational reservoirs the present study aimed to understand the species where majority are important as irrigational and abundance, distribution and the relationship between species distribution and measured environmental recreational water bodies while a few are variables within the 45 reservoirs studied, covering important in hydroelectricity generation three major climatic regions of Sri Lanka (Wet, (Maddumabandara et al., 1995). Intermediate and Dry). Plankton samples were obtained using a 34µm plankton net. Both field and Cyanobacterial blooms have an array of laboratory analyses were conducted to obtain social, environmental and economic impacts limnological data of each reservoir. Multivariate (Chorus and Bartram, 1999). The production of statistical techniques were used to understand the toxic substances by a relatively small number of species distribution along measured environmental species that commonly occur in freshwater lakes gradients. -
Extracellular Enzymes in Aquatic Environments
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 8-2020 Extracellular Enzymes in Aquatic Environments: Possible Role of Non-Specific eptidasesP in Microcystin Degradation and Effects of Assay Protocol on Calculated Activities Christopher Cook University of Tennessee Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Recommended Citation Cook, Christopher, "Extracellular Enzymes in Aquatic Environments: Possible Role of Non-Specific Peptidases in Microcystin Degradation and Effects of Assay Protocol on Calculated Activities. " Master's Thesis, University of Tennessee, 2020. https://trace.tennessee.edu/utk_gradthes/6073 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Christopher Cook entitled "Extracellular Enzymes in Aquatic Environments: Possible Role of Non-Specific eptidasesP in Microcystin Degradation and Effects of Assay Protocol on Calculated Activities." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Science, with a major in Geology. Andrew Steen, Major Professor We have -
Accumulation and Depuration of Microcystin Produced by the Cyanobacterium Microcystis in a Freshwater Snail
Limnology (2003) 4:131–138 © The Japanese Society of Limnology 2003 DOI 10.1007/s10201-003-0106-1 RESEARCH PAPER Kazuhiko Ozawa · Atsushi Yokoyama · Kanako Ishikawa Michio Kumagai · Mariyo F. Watanabe · Ho-Dong Park Accumulation and depuration of microcystin produced by the cyanobacterium Microcystis in a freshwater snail Received: October 25, 2002 / Accepted: August 19, 2003 Abstract Seasonal changes in microcystin concentrations in Introduction a resident snail (Sinotaia histrica) and an edible clam (Cor- bicula sandai) in Lake Biwa were surveyed. To clarify both the accumulation and depuration of microcystins, experi- The occurrence of toxic cyanobacterial blooms in eutrophic mental studies with microcystin were also carried out on the lakes, reservoirs, and recreational waters has become a snail. In the field investigation, microcystin was detected worldwide problem. In Japanese lakes, the toxic cyano- from the hepatopancreas and intestine of S. histrica (up to bacteria are mainly composed of Microcystis (Park et al. 3.2µggϪ1 dry weight and 19.5µggϪ1 dry weight, respec- 1998), which commonly produces microcystin. Microcystin tively); however, no microcystin was detected in the hepato- is known to be a potent hepatotoxin (Carmichael 1994) and pancreas of C. sandai. In the laboratory experiment, the tumor promoter (Nishiwaki-Matsushima et al. 1991, 1992). microcystin-LR concentration in the hepatopancreas of S. Microcystin is composed of seven amino acids, including a histrica reached a value of 436µggϪ1 dry weight on day 10 of unique amino acid called Adda [3-amino-9-methoxy-2, 6, 8- 15 days of uptake, and a high value persisted despite a trimethyl-10-phenyldeca-4, 6-dienoic acid] (Botes et al.