POWER BEAMING to ENERGY STORAGE AIRSHIPS a Presentation for the 19Th Annual Directed Energy Symposium by Les Johnson and Daniel O’Neil

Total Page:16

File Type:pdf, Size:1020Kb

POWER BEAMING to ENERGY STORAGE AIRSHIPS a Presentation for the 19Th Annual Directed Energy Symposium by Les Johnson and Daniel O’Neil POWER BEAMING TO ENERGY STORAGE AIRSHIPS A Presentation for the 19th Annual Directed Energy Symposium By Les Johnson and Daniel O’Neil February 2017 DISTRIBUTION A. Approved for public release: distribution unlimited Airships Will Fill a Void in the Cargo Delivery Market “We really do have a very large need for a better system of lifting bigger pieces and bigger sizes that you can’t fit into an airplane door, into all kinds of places … A lot of places around the world are inaccessible.” - Barry E. Prentice, professor in the department of supply chain management at the University of Manitoba’s I.H. Asper School of Business Since trains, trucks, and cargo boats can’t reach many parts of the world, Prentice predicts airships will come to fill that void. And he says it would happen even sooner if world economies were “more serious” about climate change. https://www.inverse.com/article/14312-how-airships-like-the-airlander-10-could-replace-cargo-planes-in-just-years Companies are Buying Airships Lockheed Martin strikes $480M deal to sell airships Wednesday, 30 Mar 2016 | 5:39 AM ET Lockheed Martin has landed its first contract for the hybrid airship it created inside its top secret Skunk Works division. In a deal valued at $480 million, Straightline Aviation (SLA) has signed a letter of intent to purchase 12 of the heavier-than-air airships that measure nearly a football field long. First delivery is scheduled for 2018, with the final airship expected no later than 2021. http://www.cnbc.com/2016/03/29/lockheed-has-liftoff-sells-new-airships-in-480m-deal.html Cargo Delivery Air Ships Are not your parents’ blimp Hybrid Air Vehicle (HAV) • Airlander 10 made its maiden voyage August 17, 2016 92 x 43.5 x 26 m (302 x 143 x 85 ft) • Manned: aloft for five days Payload: 10,000 kg (22,050 lb) • Unmanned: aloft for two weeks • Four 325-hp (242-kW), turbocharged diesel engines • Applications: Communication, Cargo transport, & Surveying http://newatlas.com/airlander-10-first-flight/44956/ https://www.hybridairvehicles.com/aircraft/airlander-10 Current GZ-20A Blimp New Zeppelin NT Length 192′ 246.4′ Maximum Width 50′ 64.79 Envelope Volume 202,700 cubic feet 297,527 cubic feet Maximum Speed 50 miles per hour 73 miles per hour http://www.airships.net/goodyear-blimp/ Lockheed Martin’s Available in 2018 Capacity • 10’ x 10’ x 60’ cargo bay • Flexible, customizable • Roll-On Roll-Off, CAT D6, ATCO trailer • Up to 44,000 lbs of payload • Up to 19 passengers • 5,000 gallon cargo fuel tanks built-in http://hybridhe.com/hybrid-airship/hybrid-airship- advantages/built-cargo/ A Potential Application: Humanitarian Assistance http://hybridhe.com/hybrid-airship/hybrid-airship-advantages/humanitarian-assistance/ Ambri Liquid Metal Battery $11M from ARPA-E & Total “Beta Core” Lab-based System (French oil co.) 20KWH 2MWH The 2MWH system 2009 2011 2016 2018 2020? Is intended for the Power Grid. $15M 500KWH from Khosla Additional $25M from Bill Gates, Ventures KLP Enterprises, and Building Insurance Bern (GVB) https://www.technologyreview.com/s/511081/ambris-better-grid-battery/ https://www.greentechmedia.com/articles/read/Ambri-Returns-to-The-Energy-Storage-Hunt-With-Liquid-Metal-Battery-Redesign http://static1.1.sqspcdn.com/static/f/1497163/26853855/1455290007250/ambri_brochure_feb16.pdf?token=9Bw9RuK2Wpj1i5A9Te CJoNIZzGE%3D Air Ship with Rectenna and Eight Mg-Sb Liquid Metal Batteries Overall Dimensions: Payload Deck Space: - Length: 770 feet - Length: 380 feet - Width: 296 feet - Width: 61 feet - Height: 183 feet ML 868 - Height: 45 feet • Assume 210mx80m = 16,800 sq.meters Available for a rectenna. A Future Airship Payload: 250 tons https://en.wikipedia.org/wiki/Worldwide_Aeros_Corp • If only one third were usable at any point during the satellite passing overhead the usable area is 5,600 sq.meters Liquid Metal Battery Assume 8,000 kg available 2 MW*hrs • With one sun energy flux of 1kW/m^2, Capacity of one container in each Liquid Metal Battery (Can serve 200 households) the rectenna could receive 5.6 MW Container 8 Liquid Metal Battery • If the line-of-time of a MEO SSP satellite were Containers 16 MW*hrs one hour, 2.8 batteries could be charged and four orbits could charge eight batteries. • http://www.ted.com/talks/donald_sadoway_the_missing_link_to_renewable_energy?language=en 7 ft • http://www.ambri.com/technology/ 40 ft 24.5ft 162 ft Three Generations of the Airship with Liquid Metal Batteries Customers Conceptual Design Benefits • Disaster relief agencies • A moving receiver enables a lower orbit • Emerging nations • A lower orbit reduces system & launch cost • Military logistics trains • Molten metal, in batteries, need the heat • Explorers of oceans, deserts and jungles • Three generations provide early revenue • Outdoor venues for huge week-long events • Mobile infrastructure enables swift response to large power needs “Milk-runs” Solar powered airship and sustained heat Beamed power for a long-duration global fleet Power Beaming to a Model Airplane • In 2002 and 2003, a team Marshall Space Flight Center and Dryden Flight Research Center demonstrated power beaming to a radio controlled model aircraft • The 2002 demo involved manually directed spotlight that illuminated a solar panel, which powered a six watt motor in a model airplane that flew inside of a building • The 2003 demo involved a 1KW laser that transmitted power to a rotorcraft that operated along guide wires. • Attempts to power model airplane at the Redstone Arsenal Laser range were unsuccessful due to gusty winds http://www.nasa.gov/centers/armstrong/news/FactSheets/FS-087-DFRC.html Power Beaming Demonstration In 2008, John Mankins and Prof. Nobuyuki Kaya of Kobe University beamed 20 watts with an array of eight transmitters on top of the volcano Haleakala on Maui and received by signal detectors at Mauna Loa Observatory on Hawaii's Big Island, 92 miles (148km) away. The Discovery Channel sponsored demonstration was produced in less than five months with less than a million dollars. Sources: http://www.wired.com/2008/09/visionary-beams/ http://www.thespacereview.com/article/1210/1 Launch Costs for the SPS-Alpha A 500MW system in GEO mass = 34,813,882 kg @ $20,000/kg to orbit, the launch cost >$696B The mass of a 2MW system in Geosynchronous Earth Orbit (GEO) would be 232,610 kg @ $20,000/kg to orbit, the launch cost >$4.6B The transmitter on the GEO system has a mass of 106, 643. Moving the system to MEO could cut the mass of the transmitter by half and the launch cost to >$3.58B A 2MW system in Middle Earth Orbit (MEO) could be sufficient to supply airships with Liquid Metal Batteries (LMB). http://www.nasa.gov/pdf/716070main_Mankins_2011_PhI_ SPS_Alpha.pdf Middle Earth Orbit based Constellation of Solar Power Satellites Each Day Mean Duration (seconds) Energy_Airship_1-To-MEO_SSP_1 3138 Assume 50% loss due Energy_Airship_1-To-MEO_SSP_2 1865 Energy_Airship_1-To-MEO_SSP_3 1671 to angles and atmosphere Energy_Airship_1-To-MEO_SSP_4 3274 Total 9,948 seconds 2.76 hours 1 MW * 2.76 hours = 2.76 MW-hours = 17% of the 16MW-hr storage capacity Conclusions • First generation of energy air ships provide revenue • Enables development of solar-powered 2nd generation • Eliminates issue of revenue delay to “first light” • Provides franchise opportunities for power plants • Flight plans for air ship fleets can be flexible • Flights can be timed for coverage by a small constellation • Larger constellations provide greater planning flexibility • A constellation of four satellites can “top-off-tanks” by 17% per day • Customers in space: a new generation of LEO satellites with rectennas • When the Middle Earth Orbit (MEO) satellites are not beaming power to the air ships • Future satellites could replace bulky self-shadowing solar arrays with rectennas • Satellites would receive energy each time they pass under a MEO solar power satellite • Customers in the air: cargo delivery electric airships • Solar arrays and rectennas would receive power for the electric propulsion • Electric airships would provide an alternative to trains and ships • Customers on the ground: Fleets of energy storage airships could support • Disaster relief efforts • Temporary remote projects, such as expeditions • Military logistics • Remote villages.
Recommended publications
  • 2020 Annual Report
    2020 ANNUAL REPORT THE GOODYEAR TIRE & RUBBER COMPANY Goodyear is one of the world’s leading tire companies, with one of the most recognizable brand names. It develops, manufactures, markets and distributes tires for most applications and manufactures and markets rubber-related chemicals for various uses. The company also has established itself as a leader in providing services, tools, analytics and products for evolving modes of transportation, including electric vehicles, autonomous vehicles and fleets of shared and connected consumer vehicles. Goodyear was the first major tire manufacturer to offer direct-to-consumer tire sales on-line and offers a proprietary service and maintenance platform for fleets of shared passenger vehicles. Within its global retail presence, Goodyear operates approximately 1,000 company-owned outlets around the world where it offers its products for sale to consumer and commercial customers and provides repair and other services. It is one of the world’s largest operators of commercial truck service and tire retreading centers and offers a leading service and maintenance platform for commercial fleets. Goodyear is annually recognized as a top place to work and is guided by its corporate responsibility framework, Goodyear Better Future, which articulates the company’s commitment to sustainability. The company manufactures its products in 46 facilities in 21 countries and has operations in most regions of the world. Its two Innovation Centers in Akron, Ohio, and Colmar-Berg, Luxembourg, strive to develop state-of-the-art products and services that set the technology and performance standard for the industry. THE GOODYEAR TIRE & RUBBER COMPANY 200 Innovation Way Akron, Ohio 44316-0001 www.goodyear.com ON THE COVER Top: In 2020, Goodyear became the first tire manufacturer to install a dynamic driving simulator.
    [Show full text]
  • Meeting Minutes
    City of Miami City Hall 3500 Pan American Drive Miami, FL 33133 www.miamigov.com Meeting Minutes Friday, September 4, 2009 10:00 AM SPECIAL MEETING City Hall Commission Chambers City Commission Manuel A. Diaz, Mayor Joe Sanchez, Chair Michelle Spence-Jones, Vice-Chair Angel González, Commissioner District One Marc David Sarnoff, Commissioner District Two Tomas Regalado, Commissioner District Four Pedro G. Hernandez, City Manager Julie O Bru, City Attorney Priscilla A. Thompson, City Clerk City Commission Meeting Minutes September 4, 2009 10:00 A.M. INVOCATION AND PLEDGE OF ALLEGIANCE Present: Commissioner González, Commissioner Sarnoff, Chair Sanchez, Commissioner Regalado and Vice Chair Spence-Jones On the 4th day of September 2009, the City Commission of the City of Miami, Florida, met at its regular meeting place in City Hall, 3500 Pan American Drive, Miami, Florida, in special session. The meeting was called to order by Chair Sanchez at 10:38 a.m., recessed at 1:11 p.m., reconvened at 2:24 p.m., and adjourned at 6:18 p.m. Note for the Record: Commissioner Gonzalez entered the Commission chambers at 10:46 a.m. Note for the Record: Vice Chair Spence-Jones entered the Commission chambers at 2:37 p.m. ALSO PRESENT: Pedro G. Hernandez, City Manager Julie O. Bru, City Attorney Priscilla A. Thompson, City Clerk Order of the Day SP.1 06-02095 ORDINANCE First Reading AN ORDINANCE OF THE MIAMI CITY COMMISSION, WITH ATTACHMENT(S), AMENDING THE CODE OF ORDINANCES OF THE CITY OF MIAMI TO ADOPT A NEW ZONING CODE TO BE KNOWN AS THE "MIAMI 21 CODE", INCLUDING DEFINITIONS, GENERAL PROVISIONS WHICH ALSO INCLUDE THE ADOPTION OF THE MIAMI 21 ATLAS FOR THE ENTIRE CITY OF MIAMI, REGULATIONS GENERAL TO ZONES, STANDARDS AND TABLES, REGULATIONS SPECIFIC TO ZONES, SUPPLEMENTAL REGULATIONS, PROCEDURES AND NONCONFORMITIES, AND THOROUGHFARE GUIDELINES; REPEALING ORDINANCE NO.
    [Show full text]
  • Cargo Airships: an International Status Report
    CARGO AIRSHIPS: AN INTERNATIONAL STATUS REPORT Dr. Barry E. Prentice, Professor University of Manitoba and Robert Knotts BA MBA M Phil (Engineering), Chairman Airship Association Giant airships were built and operated primarily by the German Zeppelin company, from 1909 to 1940. The Imperial Airship Scheme of the British Government, the military airships of the U.S. Army and the Italian airships of Forlanini and Nobile also furthered airship technology. A negative perception of airship exists because of accidents that cloud the important achievements of this period. The giant Zeppelins could cruise at 80 miles per hour and carry useful loads of 70 tons on scheduled flights across the oceans. Of particular note is the Graf Zeppelin that made over 150 Atlantic crossings and circumnavigated the globe. These records were established without sophisticated communication equipment or navigation facilities. The ability to adapt this technology for cargo transport is recognized and has created interest internationally. Small inflatables (blimps) and semi-rigid airships are available for research, advertising or surveillance purposes. But, no heavy-lift airships exist currently. Over the past 15 years, new strategies have been developed to overcome the drawbacks of airship for cargo applications. The competition for the dominant cargo airship design is worldwide. This paper reviews the status of cargo airship developments on three Type: Regular 1 Prentice & Knotts 1 Prentice/Knotts continents. The technological approaches are compared and examined for the emergence of a dominant design. Search for the Dominant Design The last large airship capable of commercial cargo haulage was built before the invention of the strain gauge in 1938.
    [Show full text]
  • Goodyear – Civilian Blimps
    Goodyear – civilian blimps Peter Lobner, 24 August 2021 1. Introduction Goodyear Tire & Rubber Company began their involvement with lighter-than-air (LTA) vehicles in 1912, when the company developed a fabric envelope suitable for use in airships and aerostats. The first blimps manufactured by the Goodyear Tire & Rubber Company were B-Type blimps ordered by the US Navy in 1917 for convoy escort duty. Goodyear (envelope supplier) and Curtiss Aeroplane (gondola supplier) produced 9 of the 17 B-Type blimps ordered. Goodyear also supplied the envelopes for some of the Navy’s 10 C-Type patrol blimps, which were delivered in 1918, after the end of WW I. Both the B- and C-Type blimps used hydrogen as the lift gas. In 1923, Goodyear teamed with German firm Luftschiffbau Zeppelin and created a new subsidiary, Goodyear Zeppelin Corporation. In June 1925, their Type AD Pilgrim (NC-9A) made its first flight and became Goodyear’s first blimp to use helium lift gas. Pilgrim was certified later in 1925, becoming the first US commercial airship. Goodyear Zeppelin Corporation filed a patent application for a nonrigid airship in September 1929, describing the objectives of their invention as follows: “This invention relates to non-rigid airships, and it has particular relation to the suspension of pilot cars or gondolas from the envelopes of non-rigid airships. The principal object of the invention is to provide a non-rigid airship in which the envelope and the pilot car or engine car are so constructed as to offer the minimum air resistance. Another object of the invention is to provide connections between the envelope and pilot car that are not exposed to the airstream for sustaining the weight of the pilot car, as well as stabilizing it against lateral or longitudinal movement.” 1 In patent Figure 1, the pressurized lift gas envelope (10) contains an air ballonet (12, for adjusting airship buoyancy) and a load suspension system for carrying and distributing the weight of the gondola (11) affixed under the envelope and the thrust loads from the with attached engines.
    [Show full text]
  • Keck Study Airships; a New Horizon for Science”
    Keck Study Airships; A New Horizon for Science” Scott Hoffman Northrop Grumman Aerospace Systems May 1, 2013 Military Aircraft Systems (MAS) Melbourne FL 321-951-5930 Does not Contrail ITAR Controlled Data Airship “Lighter than Air” Definition Airplanes are heavier than air and fly because of the aerodynamic force generated by the flow of air over the lifting surfaces. Balloons and airships are lighter-than-air (LTA), and fly because they are buoyant, which is to say that the total weight of the aircraft is less than the weight of the air it displaces.1 The Greek philosopher Archimedes (287 BC – 212 B.C.) first established the basic principle of buoyancy. While the principles of aerodynamics do have some application to balloons and airships, LTA craft operate principally as a result of aerostatic principles relating to the pressure, temperature and volume of gases. A balloon is an unpowered aerostat, or LTA craft. An airship is a powered LTA craft able to maneuver against the wind. 1 NASA Web site U.S. Centennial of Flight Commission http://www.centennialofflight.gov/index2.cfm Does not Contain ITAR Controlled Data Atmospheric Airship Terminology • Dirigible – Lighter-than-air, Engine Driven, Steerable Craft • Airship –Typically any Type of Dirigible – Rigid –Hindenburg, USS Macon, USS Akron USS Macon 700 ft X 250 ft – Semi-Rigid – Has a Keel for Carriage and Engines • NT-07 Zeppelin Rigid – Non-Rigid – Undercarriage and Engines Support by the Hull • Cylindrical Class-C – “Blimp” – Goodyear, Navy AZ-3, Met Life Blimp, Blue Devil Simi-Rigid
    [Show full text]
  • Manufacturing Techniques of a Hybrid Airship Prototype
    UNIVERSIDADE DA BEIRA INTERIOR Engenharia Manufacturing Techniques of a Hybrid Airship Prototype Sara Emília Cruz Claro Dissertação para obtenção do Grau de Mestre em Engenharia Aeronáutica (Ciclo de estudos integrado) Orientador: Prof. Doutor Jorge Miguel Reis Silva, PhD Co-orientador: Prof. Doutor Pedro Vieira Gamboa, PhD Covilhã, outubro de 2015 ii AVISO A presente dissertação foi realizada no âmbito de um projeto de investigação desenvolvido em colaboração entre o Instituto Superior Técnico e a Universidade da Beira Interior e designado genericamente por URBLOG - Dirigível para Logística Urbana. Este projeto produziu novos conceitos aplicáveis a dirigíveis, os quais foram submetidos a processo de proteção de invenção através de um pedido de registo de patente. A equipa de inventores é constituída pelos seguintes elementos: Rosário Macário, Instituto Superior Técnico; Vasco Reis, Instituto Superior Técnico; Jorge Silva, Universidade da Beira Interior; Pedro Gamboa, Universidade da Beira Interior; João Neves, Universidade da Beira Interior. As partes da presente dissertação relevantes para efeitos do processo de proteção de invenção estão devidamente assinaladas através de chamadas de pé de página. As demais partes são da autoria do candidato, as quais foram discutidas e trabalhadas com os orientadores e o grupo de investigadores e inventores supracitados. Assim, o candidato não poderá posteriormente reclamar individualmente a autoria de qualquer das partes. Covilhã e UBI, 1 de Outubro de 2015 _______________________________ (Sara Emília Cruz Claro) iii iv Dedicator I want to dedicate this work to my family who always supported me. To my parents, for all the love, patience and strength that gave me during these five years. To my brother who never stopped believing in me, and has always been my support and my mentor.
    [Show full text]
  • K J__I Year Factories, Which Are Busily Pewa of This Week
    THF WTNereQT ClAN = AKRON EDITION = PROTECT OUR GOOD NAME Vol. 30 AKRON, OHIO, WEDNESDAY, JUNE 11, 1941 No. 12 Earn Vacation Money and Help Defense by Turning In Suggestions to Cut Waste TWENTY-YEAR Miss Biddle Win WOMEN FOUND CLUB OUTING Another Goodyear Ship For U. S. Be Bride June 21 SUPERIOR IN Marguerite Biddle, sales and ON JUNE 22 office personnel, will end service SPECIAL LINES of 15 years at Goodyear by be- Meeting Thursday Night coming a bride, Have Very Important Role she and Lorenz _M____k_____k Will Discuss Plans Brimlow of Se- At Goodyear in Exten- For Big Event bring to have _m sive Program the nuptial knot tied on Satur- "We are looking forwardto a day, June 21. That women have an impor- grand time on Sunday, June 22, Marguerite will tant role in the national defense our Twenty- program is no better exempli- when we will hold —_____.. '~^__ leave the com- anywhere in the Year Club basket picnic at Chip- U.S. NAVY L~3 pany on Friday fied than Good- J_.ake Park," said R. C. __k _J__I year factories, which are busily pewa of this week. engaged in manufacturing air- Griffith, club president, yester- A few nights day. ships, barrage balloons, air- ago about sixty plane flotation bags, gas masks, girl Marguerite Biddle mAtmWe plan to have several new of her life rafts, tank tracks, etc., for Bs injected into our program, friends gave the the shower, armed forces of the United mWinnovations to be of the type bride-elect a and the States.
    [Show full text]
  • Blimp by Sharon Nittinger T Fly? Fly? Fly? Fly? T T T T I I Es Es O O D D HOW HOW Fly? Fly? T T I I Es Es O O D D D D HOW HOW HOW HOW HOW D HOW
    HOW DOES IT FLY? HOW DOES IT FLY? D HOW C S O N M O M I O T FLY? T U I C ES N E I N T Y N • O C ES I T FLY? HOW D HOW T FLY? O O T FLY? HOW D HOW T FLY? I ES ES HOW DOES IT FLY? I T FLY? O BLIMP BY SHARON NITTINGER T FLY? FLY? FLY? FLY? T T T T I I ES ES O O D D HOW HOW FLY? FLY? T T I I ES ES O O D D D D HOW HOW HOW HOW HOW D HOW Blimp.indd 1 5/19/11 5:05 PM Published in the United States of America by Cherry Lake Publishing Ann Arbor, Michigan www.cherrylakepublishing.com Content Adviser: Jacob Zeiger, Production Support Engineer, the Boeing Company Special thanks to Rob Delagrange, Goodyear blimp pilot, for sharing his time, knowledge, and support in the writing of this book. Photo Credits: Cover and pages 1, 5, 7, 9, 11, 13, and 21, Photos courtesy of The Goodyear Tire & Rubber Company; page 15, ©First Light/Alamy; page 17, ©Kenneth Summers/Shutterstock, Inc.; page 19, ©Kenneth Sponsler/Shutterstock, Inc. Copyright ©2012 by Cherry Lake Publishing All rights reserved. No part of this book may be reproduced or utilized in any form or by any means without written permission from the publisher. LIBRARY OF CONGRESS CATALOGING-IN-PUBLICATION DATA Nittinger, Sharon, 1966– How does it fly? Blimp/by Sharon Nittinger. p. cm.—(Community connections) Includes bibliographical references and index.
    [Show full text]
  • Heavy-Lift Systems
    I‘ ’, 1 NASA -! TP 1921 ’ .I I 1:. NASA Technical Paper 1921 c. 1 Vehicle Concepts and Technology Requirements for Buoyant Heavy-Lift Systems Mark D. Ardema SEPTEMBER 1981 TECH LIBRARY KAFB, NM NASA Technical Paper 1921 Vehicle Concepts and Technology Requirements for Buoyant Heavy-Lift Systems Mark D. Ardema Ames Research Center Moffett Field, California National Aeronautics and Space Administration Scientific and Technical Information Branch 1981 VEHICLECONCEPTS AND TECHNOLOGYREQUIREMENTS FOR BUOYANT HEAVY-LIFTSYSTEMS Mark D. Ardema Ames Research Center Several buoyant-vehicle (airship) concepts proposed for short hauls of heavy payloads are described. Numer- ous studies have identified operating cost and payload capacity advantages relative to existing or proposed heavy-lift helicopters for such vehicles. Applications mvolving payloads of from 15 tons up to 800 tons have been identified. The buoyant quad-rotor concept is discussed in detail, including the history of its development, current estimates of performance and economics, currently perceived technology requirements, and recent research and technology development. It is concluded that the buoyant quad-rotor, and possibly other buoyant vehicle concepts, has the potential of satisfying the market for very heavy vertical lift but that additional research and technology development are necessary. Because of uncertainties in analytical prediction methods and small-scale experimental measurements, there is a strong need for large or full-scale experiments in ground test facilities and, ultimately, with a flight research vehicle. INTRODUCTION world vehicles is about 18 tons. Listed in the figure are several payload candidates for airborne vertical lift that are beyond this 18-ton payload weight limit, Feasibility studies of modern airships (refs.
    [Show full text]
  • Advanced Airship Design [Pdf]
    Modern Airship Design Using CAD and Historical Case Studies A project present to The Faculty of the Department of Aerospace Engineering San Jose State University in partial fulfillment of the requirements for the degree Master of Science in Aerospace Engineering By Istiaq Madmud May 2015 approved by Dr. Nikos Mourtos Faculty Advisor AEROSPACE ENGINEERING Modern Airship Design MSAE Project Report By Istiaq Mahmud Signature Date Project Advisor: ____________________ ______________ Professor Dr. Nikos Mourtos Project Co-Advisor: ____________________ ______________ Graduate Coordinator: ____________________ ______________ Department of Aerospace Engineering San Jose State University San Jose, CA 95192-0084 Istiaq Mahmud 009293011 Milpitas, (408) 384-1063, [email protected] Istiaq Mahmud Modern Airship Design 2 AEROSPACE ENGINEERING Istiaq Mahmud Modern Airship Design 3 AEROSPACE ENGINEERING Non‐Exclusive Distribution License for Submissions to the SJSU Institutional Repository By submitting this license, you (the author(s) or copyright owner) grant to San Jose State University (SJSU) the nonexclusive right to reproduce, convert (as defined below), and/or distribute your submission (including the abstract) worldwide in print and electronic format and in any medium, including but not limited to audio or video. You agree that SJSU may, without changing the content, convert the submission to any medium or format for the purpose of preservation. You also agree that SJSU may keep more than one copy of this submission for purposes of security, back‐up and preservation. You represent that the submission is your original work, and that you have the right to grant the rights contained in this license. You also represent that your submission does not, to the best of your knowledge, infringe upon anyone's copyright.
    [Show full text]
  • Wikireader Luftschiffe Möchte Die Welt Dieser Leichter-Als-Luft-Fahrzeuge Näher Beleuchten
    ENTWURFWIKIREADER LUFTSCHIFFE EINE ARTIKELSAMMLUNG AUS WIKIPEDIA, DER FREIEN ENZYKLOPÄDIE STAND VOM 07.APRIL 2005 ZUM READER Der WikiReader Luftschiffe möchte die Welt dieser Leichter-als-Luft-Fahrzeuge näher beleuchten. Neben den riesigen historischen Luftschiffen sollen auch die Schiffe und Projekte der letzten Jahre vorgestellt werden. Diese erste Ausgabe ist noch sehr dünn. Sie hat einen Schwerpunkt auf der amerikanischen Luftschifffahrt in der Wikipedia. Es ist nur ein Bruchteil der gesamten Aktivitäten aufgeführt, jedoch soll dies auch nur der Anfang sein. Ob- wohl die deutschsprachige Wikipedia schon einiges mehr an Luftschiffen zu bieten hat, als ihre große englischsprachige Schwester gibt es immer noch weiße Flecken im Inhaltverzeichnis und sehr viele verbesse- rungswürdige Stellen in den Artikeln. Jeder der Interesse hat kann sie unter http://www.Wikipedia.de ausfüllen. Von Zeit zu Zeit werde ich den Reader aktualisieren. Dies wird dann jedes Mal auch eine Gelegeheit sein ihn auch um Artikel aus anderen Bereichen der Luftschifffahrt zu erweitern, die bereits vorhanden, vielleicht aber auch noch gar nicht geschrieben sind oder nur darauf warten überarbeitet zu werden. Benutzer:Hadhuey Über Wikipedia Die Wikipedia ist eine freie Enzyklopädie, die es sich zur Aufgabe gemacht hat, jedem eine freie Wissensqelle zu bieten, an der er nicht nur passiv durch lesen teilhaben, sondern auch aktiv als Autor mitwirken kann. Auf der Webseite http://de.wikipedia.org findet man nicht nur die aktuellen Artikel der deutschsprachigen Wiki- pedia, sondern darf auch sofort und ohne eine Anmeldung mitschreiben. Auf diese außergewöhnliche Art sind seit 2001 in nur vier Jahren eine halbe Million Artikel zustande gekommen, in mehr als 60 Sprachen von Afrikaans über Esperanto bis Zulu.
    [Show full text]
  • Hybrid Buoyant Aircraft: Future STOL Aircraft for Interconnectivity of the Malaysian Islands
    Available online at http://docs.lib.purdue.edu/jate Journal of Aviation Technology and Engineering 6:2 (2017) 80–88 Hybrid Buoyant Aircraft: Future STOL Aircraft for Interconnectivity of the Malaysian Islands Anwar ul Haque International Islamic University Malaysia (IIUM) Waqar Asrar Department of Mechanical Engineering, International Islamic University Malaysia (IIUM) Ashraf Ali Omar Department of Aeronautical Engineering, University of Tripoli Erwin Sulaeman Department of Mechanical Engineering, International Islamic University Malaysia (IIUM) Jaffar Syed Mohamed Ali Department of Mechanical Engineering, International Islamic University Malaysia (IIUM) Abstract Hybrid buoyant aircraft are new to the arena of air travel. They have the potential to boost the industry by leveraging new emerging lighter-than-air (LTA) and heavier-than-air (HTA) technologies. Hybrid buoyant aircraft are possible substitutes for jet and turbo- propeller aircraft currently utilized in aviation, and this manuscript is a country-specific (Malaysia) analysis to determine their potential market, assessing the tourism, business, agricultural, and airport transfer needs of such vehicles. A political, economic, social, and tech- nological factors (PEST) analysis was also conducted to determine the impact of PEST parameters on the development of buoyant aircraft and to assess all existing problems of short takeoff and landing (STOL) aircraft. Hybrid buoyant aircraft will not only result in reduction of transportation costs, but will also improve the economic conditions of the region. New airworthiness regulations can lead to greater levels of competition in the development of hybrid buoyant aircraft. Keywords: hybrid buoyant aircraft, green energy, PEST analysis http://dx.doi.org/10.7771/2159-6670.1138 A. ul Haque et al.
    [Show full text]